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Abstract
The development of regionalised hydrological models or procedures for estimating flow duration statistics has been the subject of international
research since the 1970s. Historically these models have been based on multivariate statistical models that relate flow statistics to the physical
and climatic characteristics of a catchment. The a priori classification of catchments has often been a component of this analysis. This paper
discusses the background to the development of such models, with particular emphasis on the United Kingdom; it describes a new region of
influence approach to estimating flow duration statistics and compares the performance of this method with current multivariate regression
based methods for estimating flow duration statistics within the United Kingdom.
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Introduction
River flow behaviour varies widely across the UK both in
space and time. The flashy response of a wet impermeable
catchment in the north and west of the country contrasts
markedly with that of an English lowland chalk stream,
where flows vary little over the year. At the broadest scale,
natural river flow regimes are dependent on rainfall,
temperature and evaporation. At a local scale, the flows will
be controlled by the physical properties of the catchment,
including geology, land use and the presence of surface water
bodies. Information on the magnitude and variability of flow
regimes at the river reach scale is central to aspects of water
resources and water quality management. However, many
resource assessments are required for ungauged catchments
and this has led to the development of a series of regional
models for predicting flow statistics within ungauged
catchments.

Approaches to the estimation of
natural low flow statistics
International references to techniques for estimating
statistics describing the low flow regime at an ungauged

site by models, or rules, relating flow statistics from the
same region to physiographic and/or climatic characteristics
include Pearson (1995) and Clausen and Pearson (1995)
for New Zealand, Musiake et al. (1975) for Japan, Knisel
(1963) for south central United States, Mitchell (1957) for
Illinois USA, Hines (1975) for Arkansas USA, Klaassen
and Pilgrim (1975) and Nathan and McMahon (1992) for
Australia, Martin and Cunnane (1976) for Ireland, Lundquist
and Krokli (1985) for Norway, and Gustard et al. (1989)
for northern and western Europe. Demuth (1993) reviews
the regionalisation of low flows in western Europe whilst
Smakhtin (2001) provides an extensive review of low flow
hydrology, including the estimation of low flows at
ungauged sites. Multivariate linear regression analysis is
the most widely used statistical technique for developing
these models or rules for a region. Linear regression is a
special case of Generalised Linear Models (GLM) (Cox and
Hinkley, 1974); they are valid only over the range of data
set used to construct the models. More sophisticated models
involve ascribing a probability distribution to the dependent
variable, in this case a flow statistic. Some function, f, known
as the link function of the distribution parameters, is then
modelled as a linear combination of the independent
predictor variables.  GLM based techniques for estimating
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flow statistics have been used widely in the United States
(Stedinger and Tasker, 1985; Kroll and Stedinger, 1998).
   The definition, or delineation, of homogeneous regions
has been the subject of much research both for low flows
and flood estimation. In the context of flood estimation, this
enables uncorrelated data to be pooled from similar
catchments, whilst for low flow estimation the residual
variation within a region that has to be explained using a
subsequent, multivariate statistical model is normally
minimised. A region may be defined by geography, (Institute
of Hydrology 1975, 1980), by stream flow characteristics
(Wiltshire, 1986; Hughes, 1987; Burn and Boorman, 1993)
or by the physical and climatic characteristics of catchments
(Acreman and Sinclair, 1986).
   The problem with a predefined region approach arises
when a new, ungauged catchment is to be assigned to a
region. In the case of a geographically based classification,
the regions are clearly delineated and the assignment of a
catchment is unambiguous. However, in reality, the stream
flow characteristics of the catchment may be similar to those
for other catchments in more than one region, particularly
those that are close to boundaries delineating regions in the
vicinity of the ungauged catchment. Furthermore, as the
model used for estimating a flow statistic will generally vary
between regions, the boundary represents a discontinuity
in the estimation of the flow statistics. In the case of a
classification based on multivariate stream flow and
catchment characteristics, there is commonly a significant
overlap between regions. For a classification based on stream
flow, the ungauged site will have to be assigned to a region
according to the physical and climatic characteristics of the
region and the outcome may be erroneous

Using cluster analysis, Burn and Boorman (1993)
developed regions, based on streamflow characteristics and
subsequently used canonical discriminant analysis to
differentiate between regions based on physical and climatic
characteristics; this was not entirely satisfactory as the
assignment to a region is unambiguous and does not
recognise a probability of membership to a region other than
that of unity. Acreman and Wiltshire (1989) allowed
fractional membership of different regions and averaged the
predictions for each region, weighted by the probability of
membership of the ungauged site to each. They then
dispensed with an a priori definition of region and proposed
a dynamic construction of a region based upon the similarity
of the characteristics of the gauged catchments to those of
the ungauged site. This method, described by Burn (1990a,b)
as the region of influence (ROI) for an ungauged site, has
been applied to flood estimation by Burn and Zrinji (1994),
Robson and Reed (1999) and Burn and Goel (2000).

The history of  flow duration curve
estimation in the United Kingdom
A flow duration curve is an expression of frequency of
occurrence; it is constructed from gauged flow data by
ranking flows in decreasing order of size and plotting flows
as functions of exceedence probability. The curve shows
the percentage of time during which any selected discharge
may be equalled or exceeded and a log-normal
transformation for the flow data is normally applied to
linearise the resultant curve. The 1980 Low Flow Studies
Report (Institute of Hydrology, 1980), the first major UK
study of the relationships between low flow regimes and
physiographic and climatic catchment characteristics in the
UK, showed that when low flows are expressed as a
percentage of the long-term mean flow (standardised), the
dependencies on the climatic variability across the country
and on the scale effect of catchment area are minimised.
The shape of the standardised flow-duration curve indicates
the characteristic response of a catchment to rainfall. The
gradients of the log-normal flow duration curves for a range
of catchments with differing geology (Fig. 1) illustrate that
impermeable catchments have high gradient curves
reflecting a very variable flow regime; low storage of water
in the catchment results in a quick response to rainfall and
low flows in the absence of rainfall. Low gradient
flow-duration curves indicate that the variance of daily flows
is low, because of the damping effects of groundwater
storages provided naturally, for example, by extensive chalk
or limestone aquifers. This relationship between
hydrogeological characteristics and shape is the dominant
influence on shape within the UK; thus, approaches to
predicting standardised flow duration curves within the UK
are targeted largely towards explaining the relationships
between shape and catchment hydrogeology.
   Since the 1980 study for application within the UK, several
regional low flow estimation procedures have been
developed including those of Pirt and Douglas (1982) and
Gustard et al. (1987). Gustard et al. (1992) published the
first truly national models for predicting mean flow and flow
duration statistics, while Bullock et al. (1994) extended these
methods to estimating mean flow and flow duration statistics
for specific calendar months.  These models were delivered
to the user community through a river network based
software package Micro LOW FLOWS (Young et al., 2000).
All of these methods have been based on multivariate
regression analysis. This paper presents a new, region of
influence approach to flow duration curve estimation, which
builds on the work of Gustard et al. (1992) whose models
are referred to as Report 108 procedures.
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Report 108 flow duration curve
estimation procedures
The Report 108 models for predicting flow duration statistics
were based on a conceptual water balance model for
estimating Mean Flow (MF) and a linear multivariate
regression model for predicting the flow equalled or
exceeded 95% of the time, standardised by MF (Q95). The
estimate of Q95 is used to select a ‘type curve’ from a family
of generalised, standardised Flow Duration Curves (FDCs).
The resultant flow duration curve is re-scaled by the estimate
of MF. The overall estimation procedure is presented as a
flow diagram in Fig. 2. These models have been
implemented as part of the Micro LOW FLOWS software
package (Young et al., 2000) and have been in operational
use with UK environmental agencies since the early 1990s.
   The Report 108 models were developed using the flow
records and catchment characteristics for 687 catchments.
In the absence of a national digital geology or hydrogeology
database of the UK, soil information from the Hydrology
Of Soil Types classification (HOST) (mapped at a scale of
1:250,000) was used as a surrogate. HOST is a soil
association based hydrological response classification of
soils across the United Kingdom (Boorman et al., 1995),
and was developed by grouping soil associations into self-
similar groups based upon their physical properties which
included:

1. Soil hydrogeology using soil descriptions from
hydrogeological maps.

2. Depth to aquifer or groundwater.
3. Presence of peaty topsoil.
4. Depth to a slowly permeable layer.
5. Integrated air capacity or “drainable” pore space of a

soil layer. A surrogate for permeability in permeable
soils and indicative of an impermeable soil’s ability to
store excess water.

Thus, although a soils database is used extensively in HOST,
the classification does not incorporate hydrogeological data
directly. Simple conceptual models describing the flow paths
of water provide the structure of the classification scheme.
Initially, the 969 UK soil series were analysed and those
with similar hydrological response, indicated by their
physical properties, were grouped together into a single
HOST class.  This produced a more manageable data set
for further analysis. The percentage cover of the reduced
number of classes was then related to gauged Base Flow
Index values (Gustard et al., 1992) using multiple regression
analysis, as well as by inspection of the response of
individual catchments. The regression analysis provided
further guidance on discriminating and grouping soil series.
The process resulted in a final 30-class system consisting
of 29 soil classes and one class representing the fractional
extent of lakes. The final form of the classification exists as
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Fig. 1. The influence of geology on the gradient of a standardised flow duration curve
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a set of 1-km digital grids expressing the fractional extent
of each HOST class within each 1-km grid cell. Gustard et
al. (1992) used a provisional classification that considered
the dominant HOST class within a 1-km cell.
   The Report 108 model developed for predicting
standardised Q95 was a multivariate, linear regression model
with the dependant variable being Q95 standardised by MF
and the 29 HOST classes, amalgamated into 12 Low Flow
HOST Groups (LFHGs), forming the independent variables,
Eqn. (1).

∑
=

×=
1

12
_95

i
ii LFHGaESTQ (1)

where Q95_EST is the estimate of Q95 standardised by MF,
LFHGi is the fraction of Low Flow HOST Group i occurring
in the catchment and ai  are parameter estimates.
   The regression was constrained to have zero intercept, as
the fractional extents must sum to unity to resolve the non-
independence of fractional extents, as represented by high
condition indices within the analysis. The grouping of the
HOST classes into the LFHG classes on the basis of
similarity in response to rainfall, was required to ensure that
realistic parameter estimates could be obtained from the
regression analysis. This enabled the issue of poor
representation of certain HOST classes, both within the
catchment data set and nationally, to be resolved. Grouping

effectively amalgamated poorly represented classes (with
parameter estimates that are not significantly different from
zero) with better-represented HOST classes, subject to the
provisos that the classes could be considered  similar in terms
of physical properties, and that the addition of the poorly
represented class(es) does not modify the parameter estimate
unduly for the well represented class. This is equivalent to
constraining parameters for poorly represented classes to
be equal to the parameter values identified for “similar”
classes that are well represented. The primary limitation of
the regression model is that the model has difficulty in
predicting the extremes within the observed range of Q95
across the data set. Thus, the model tends to over-predict in
catchments with low values of standardised Q95 values and
under-predict in catchments with high values. This problem
of modelling both the extremes of the data and the complete
range of data is common to many hydrological modelling
activities.
   A set of flow duration type curves was used to estimate
the full flow duration curve from an estimate of Q95. These
curves were derived by pooling standardised curves from
687 catchments using classes defined by equally spaced Q95
values. Operationally, the estimate of Q95 obtained by the
multivariate regression model is used to identify appropriate
type curves and a FDC that coincides with the predicted
value of Q95 is generated by linear interpolation between
these curves.

Fig. 2. Procedure for estimating natural flow statistics using the Report 108 methodology
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Development of  the region of
influence model for estimating flow
duration statistics
The catchment dataset used in the study was based upon a
revision of the classification of Gustard et al. (1992), in
which all UK gauged catchments were classified according
to the hydrometric quality of the gauging station and the
impact of water use within the catchment on the ratio of the
gauged estimates of Q95 (cumecs) and mean flow. The
revision for this study included more recently established
stations and considered the absolute impact of artificial
influences on the low flow characteristics of the catchment.
For this study, 653 gauged catchments were selected with
flow records in excess of five years and which were believed
to be both relatively natural and of good hydrometric quality.
The catchment data set of 653 catchments was subdivided
into a calibration data set of 523 catchments for the
modelling work and a validation data set of 130 catchments.

The evaluation catchments were selected randomly from
the original data set, so that three ranges of observed Q95
values were represented equally; Q95 < 10%, 10% < Q95 <
20% and Q95 >20%. The distribution of the calibration and
evaluation data sets across the UK is shown in Fig. 3.
   The primary objective in revising the model for predicting
standardised Q95 was to reduce the systematic errors at the
extremes of the range of Q95. Various approaches were
investigated, including additional topographic and climatic
catchment characteristics as well as schemes that developed
a priori regions using a geographic and/or data space basis.
The final approach adopted is based on a Region of Influence
(ROI) algorithm, developed using the calibration catchment
data set and evaluated across both the calibration and
evaluation data sets. In developing the new procedures, the
potential advantages of standardising for scale effects using
the median flow, Q50, and catchment area as alternatives to
mean flow were assessed. Standardising by mean flow has
the conceptual advantage that the standardising variable can
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be estimated from water balance considerations; however,
the mean flow is more susceptible to sampling error than
the other candidate variables. Standardising by Q50 was
found to offer no practical advantages, and left the residual
problem of how to estimate Q50 effectively. Standardising
by area compromised the ability to predict the standardised
flow duration curve effectively. This paper is restricted to
describing and comparing the Report 108 and ROI based
procedures for estimating standardised flow duration curves.
A new approach to estimating mean flow in the United
Kingdom, based on a daily-time step soil moisture
accounting model, is presented by Holmes et al. (2002).
   The national, Report 108 Q95 regression model sought to
optimise a fit across a wide range of observed values of
Q95 by a relatively complex process of minimising the sum-
of-squares differences between observed and predicted Q95
using multivariate soil characteristics as predictor variables.
The weakness of this approach was that the extremes of the
range in Q95 were poorly modelled. The ROI based model
reduces the variability of the dependent variable within the
data set by reducing it to a much smaller ‘region’ of
catchments that are ‘similar’ to the target catchment. An
arithmetic, weighted averaging process is then used to
predict a value of Q95 for the target catchment from this
reduced data set. This approach reduces the within region
variability at the expense of the complexity of the predictive
model for estimating the flows within the target catchment
using the data from the region. The final ROI methodology
developed for estimating the full flow duration curve at an
ungauged ‘target’ catchment in the UK involves three steps;

1. Catchment similarity is assessed by calculating a
weighted Euclidean distance, in HOST space, between
the target catchment and every other catchment within
a large data pool of natural gauged catchments.

2. A ‘region’ is formed around a target catchment by
ranking all of the catchments in the data pool by their
weighted Euclidean distance in HOST space and
selecting a set of catchments from the pool that are
‘closest’ to that target catchment.

3. An estimate of Q95 for the target catchment is calculated
from a weighted average of the observed Q95 values
for the selected catchments in the region, where the
weight is based on the reciprocal of the Euclidean
distance measure.

For each catchment within the data pool, the weighted
Euclidean distance from the target catchment in HOST space
is calculated using:

( )∑
=

−
M

m
mtmimit XXW=de

1

2 (2)

where deit is the weighted Euclidean distance from the target
catchment, t, to catchment, i, from the data pool; Wm is the
weight applied to catchment characteristic, m, and Xmi is the
standardised value of catchment characteristic, m, for
catchment, i.
    The catchment characteristics, Xm, used are the fractional
extents of the 30 HOST classes within a catchment, which
will vary between zero and unity. The use of differing
weights for individual HOST classes reflects that relatively
small proportions of certain HOST classes, especially HOST
classes of permeable soil overlying permeable geologies,
dominate the variability of the flows within a catchment.
The weights were derived using the output from a bounded,
multi-variate regression model exercise for predicting Q95
from the fractional extent of HOST classes across the
catchments in the calibration scheme and are listed, by
HOST class, in Table 1. A region size of ten was ultimately
identified as optimal and represented a partially subjective
decision based on minimising the unexplained variance
across the catchment data set whilst also minimising the
tendency for the model to over-predict for very low Q95
catchments and under-predict for very high Q95 catchments.
    In application, the region of catchments used for
estimating Q95 for the target catchment is also used to
estimate a standardised flow duration curve for the target.
This is estimated by taking a weighted average of the
standardised flow duration curves for the gauged catchments
within the region, using the same procedure as is used for
Q95. This procedure involves weighting each of the ‘n’
catchment’s flow duration curves by the reciprocal distance,
in weighted HOST space, of the catchment from the target
catchment. Thus, greater weight is given to catchments that
are more similar in HOST characteristics to the target
catchment. The weighted average estimate for a percentile
flow is thus:

             (3)

where QP(x)t
PRED is the estimate of the flow for the target

catchment, t, at exceedence percentile P(x); QP(x)i
OBS is the

observed value of QP(x) for the ith source catchment in the
region of n (10) catchments closest to the target catchment
and deit is the weighted Euclidean distance of the ith
catchment from the target catchment, t, in HOST space.

i
OBS

n

i
n

i it

itt
PRED xQP 

de

de
=xQP )(

1

1

)(
1

1
5.0

5.0

×



































∑
∑=

=



A region of influence approach to predicting flow duration curves within ungauged catchmentse

727

Table 1. Region of influence weights for individual HOST classes

HOST                              General Description of HOST class Parameter Percent.
CLASS estimate of UK

by CLASS

1 Chalk, chalk drift 41.0 5.3%
2 Soft magnesian and oolitic limestone 30.5 2.6%
3 Soft sandstone, weakly consolidated sands 65.0 2.0%
4 Hard fissured sandstone/limestone 28.1 3.3%
5 Blown sand, gravels, sand 65.0 6.1%
6 Colluvium, coverloam, sand 31.0 2.1%
7 Blown sand, gravel, sand 50.0 0.6%
8 Hard deeply shattered rock, river colluvium, alluvium, coverloam 5.0 1.0%
9 Hard deeply shattered rock, river colluvium, alluvium, coverloam 5.0 4.4%
10 Shattered sandstone, river colluvium, alluvium, coverloam 5.0 1.8%
11 Drained earthy peat, underlain by hard shattered rock 5.0 0.5%
12 Un-drained peat, underlain by hard rock, river alluvium, coverloam 1.0 1.2%
13 Permeable soils, underlain by hard sandstone, weathered intru./metam. rock, coverloam 86.9 0.3%
14 Permeable soils, underlain by weathered intrusive/metamorphic rock, coverloam 10.0 0.5%
15 Permeable soils, underlain by hard sandstone, weathered intru./metam. rock, coverloam 5.0 12.6%
16 Slowly permeable soils – very soft, bedded shales, mudstones, loams/clays/sands 23.6 0.3%
17 Hard coherent rock 10.0 11.2%
18 Slowly permeable soils – very soft, bedded shales, mudstones, loams/clays/sands 9.6 5.4%
19 Hard coherent rock 1.0 2.4%
20 Soft massive clays 5.0 0.1%
21 Slowly permeable soils – soft, bedded shales, mudstones, marls 9.9 4.0%
22 Hard coherent rock 1.0 0.4%
23 Soft massive clays 5.0 1.0%
24 Shales, mudstones, marls, loams/clays/sands 9.0 17.0%
25 Soft massive clays 8.0 5.0%
26 Shales, mudstones, marls, loams/clays/sands, till, clay and flints 17.4 2.7%
27 Hard coherent rock 1.0 0.3%
28 Eroded peat 1.0 0.5%
29 Raw Peat 1.0 4.9%
LAKE Surface water 50.0 0.6%

Results: estimation of  standardised
Q95
The performance indicators adopted were the root mean sum
of squares error, RMSE, to give an indication of the random
error of the model and the average bias, BIAS. These
indicators were calculated as follows;

( )∑
=

−=
n

i

i
PRED

i
OBS QQ

n
RMSE

1

295951 (4)

∑
=






 −
=

n

i
i
OBS

i
PRED

i
OBS

Q
QQ

n
BIAS

1 95
95951 (5)

where Q95i
OBS is the observed Q95 value for catchment i,

Q95i
PRED is the predicted Q95 value for catchment i and n is

the total number of catchments in the data set considered.
The performance indicators were evaluated over sub-sets

of the calibration and evaluation data sets to examine the
performance of the model in low (Q95<10% of mean flow),
medium (10%<Q95<20% of mean flow) and high Q95
(Q95>20% of mean flow) catchments. The results are
presented in Table 2 for the Report 108 regression model
and Table 3 for the ROI model for each Q95 class within
both the calibration and evaluation catchment data sets. The
performance of the ROI model was evaluated using two
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Table 3. Performance of the Region of Influence Q95 model using a data pool of 523 catchments and results
using a data pool of 653 catchments in brackets

Data Set Observed Number RMSE (%MF)    BIAS
Q95 range of catchments

Calibration All 523 7.1 (6.9) –0.24 (–0.24)
Q95 < 10% 141 6.3 (6.2) –1.05 (–1.04)
10% < Q95 < 20% 214 5.1 (5.1) –0.04 (–0.04)
Q95 > 20% 168 9.5 (9.1)   0.20 (+0.18)

Evaluation All 130 6.4  (6.4) –0.36 (–0.36)
Q95 < 10% 35 6.4  (6.3) –1.50 (–1.47)
10% < Q95 < 20% 55 3.6  (3.7) –0.04 (–0.05)
Q95 > 20% 40 8.9  (8.9)   0.19 (+0.18)

Table 2. Performance of the Report 108 Q95 model using revised HOST data set

Data Set Observed Number RMSE (%MF) BIAS
Q95 range of catchments

Calibration All 523 7.2 –0.28
Q95 < 10% 141 6.7 –1.14
10% < Q95 < 20% 214 5.6 –0.06
Q95 > 20% 168 9.5 0.18

Evaluation All 130 8.0 –0.42
Q95 < 10% 35 6.9 –1.61
10% < Q95 < 20% 55 6.4 –0.10
Q95 > 20% 40 10.4 0.20

different data pools of catchments from which a region could
be developed. The first of these was the data pool of the
523 calibration data set catchments used to develop the
method. The second data pool was the full data pool of all
653 catchments, the results for which are shown in brackets
on Table 3. The results obtained using the full data pool are
presented as it is this pool that would be used in practice for
estimating at an ungauged site. In this analysis, and in the
development of the method, the target catchment was always
excluded from the data pool of candidate, source catchments.
The performance of the models is illustrated on Fig. 4 for
the full data set (653 catchments), using the full data pool
of 653 catchments.
    Considering first the Report 108 regression model, the
data show that the performance of the model over the
calibration and evaluation data sets is broadly comparable,
with the fit of the calibration set being marginally better
than that over the evaluation data set. Over all catchments

within a data set the model BIAS is  –0.28 (i.e. a systematic
over-prediction error of 28%) over the calibration data set
and –0.42 over the evaluation set. This BIAS is primarily a
consequence of the over-prediction within low Q95
catchments, although it should be recognised that a large
percentage error in these catchments corresponds to a
relatively small absolute error. There is a tendency to under-
predict within high Q95 catchments, although this is not as
marked. The patterns in random error (RMSE) are similar
for both catchment data sets. The lowest errors are seen
within the middle range of Q95 values and the highest are
observed in the highest Q95 range.
    The performance of the ROI model (Table 3) is superior
to the Existing Report 108 model over all ranges of Q95,
both when the data pool is restricted to the calibration data
set and when the full data set is used. The systematic and
random errors are lower for the ROI model at the extremes
of the data set, although some of the differences are small,
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and the performance of the model is stable between the
calibration and evaluation data set. As expected, the
performance of the ROI model improved with an increase
in the size of the data pool from which catchments could be
drawn.

Results: estimation of  standardised
flow duration curve
The predictive performance of the ROI based FDC
estimation procedure is compared with that of the Report
108 procedure in Figs. 5 and 6 for flows corresponding to
two exceedence percentiles; Q(10) and  Q(50), respectively.
The 1:1 relationship is shown as a line within each plot.
These figures demonstrate that the ROI-based estimation
of these flows is superior to the use of the type curves and
the Report 108 technique.
   The performance of the two estimation methods was
assessed at each of 17, equally spaced, normally transformed
points on the flow duration curve by regressing the predicted
flow for QxPRED against QxOBS in the following form;

(6)

A plot of the factorial standard errors obtained for each
percentile point from this regression exercise (Fig. 7)
demonstrates that the ROI estimation method is clearly

superior across the entire flow duration curve. As n is large,
a 68% prediction confidence interval for a percentile point
Q(x) can be approximated as

PRED
PRED xQesfxQ
esf

xQ )(..)(
..
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Conclusions
This paper has presented a nationally applicable, region of
influence approach to estimating flow duration curves at
ungauged sites. Within the approach, a region of
hydrogeologically similar catchments is developed using
soils data as a surrogate for hydrogeological data. The flow
duration data from these catchments are then used to estimate
flow duration statistics for the ungauged site. In previous
applications of the techniques to the regionalisation of flood
events (Burn, 1990a,b; Robson and Reed, 1999) the
objective has been to increase the sample size of rare flood
events by pooling information from a number of flow
records. In this paper, the approach has been used to reduce
the variation of flow duration statistics amongst catchments
that are subsequently used directly to estimate these statistics
for an ungauged catchment.

When tested over a large set of UK catchments, the
performance of the new ROI model was superior to that of
the Report 108 model, (Gustard et al.,1992) as implemented
operationally within the Micro LOW FLOWS software
package or applied manually using maps. The Report 108
models are based on a multivariate regression model for
predicting Q95 coupled with the selection of a flow duration
type curve from a family of such curves. The ROI model
reduced both the random and systematic errors across the
entire range of flow percentiles. The improvements are
attributable to the use of the ROI algorithm dynamically to
select a region of  ‘similar’ catchments to be used in the
estimation of flow statistics.  Unlike the Report 108 methods,
implemented within Micro LOW FLOWS (Young et al.,
2000) or applied manually using maps, the ROI-based
models must be used with the re-developed Micro LOW
FLOWS software system which incorporates these models

using contemporary programming tools and taking
advantage of the increased computing power that is available
on the ‘average’ desktop. The UK Environment Agency has
implemented the new software, called Low Flows 2000 as
a national system.
    One weakness of the current formulation of the ROI low
flow model is that there is an underlying assumption that
the catchment characteristics used to define similarity (the
fractional extents of HOST classes) are suitable and
sufficient to be used across the entire UK. While these soil
parameters may provide strong correlations with flow
variability in England and Wales, where the spatial
variability in hydrogeology is high, this is not necessarily
the case in all parts of the UK. For example, the strong
rainfall gradients observed in Scotland may also influence
the spatial variability of low flows (Gustard et al., 1987).
Furthermore, the HOST classification is used as a surrogate
for a nationally consistent hydrogeological classification at
a similar or larger scale. The current ROI model uses a fixed
‘region’ size of ten catchments. The choice of ten represents
a trade off between minimising the differences between the
target catchment and the members of the region, while
maximising the differences between the chosen region and
the remaining data pool. This effect is most pronounced at
the extremes of the range in Q95 observed within the UK.
The use of techniques that enable a region to be developed
dynamically with additional catchments being included until
some measure of within-region similarity is reduced beyond
an acceptable limit should be investigated.
    This study illustrates that the regionalisation of low flow
statistics has come full circle to  a point where the concept
of a priori regions is dispensed with. The site of interest
now forms the centre of a new region that is constructed
from observed data using similarity measures specific to
low flow hydrology.
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