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Abstract
The Multi-Layer Feed-Forward Neural Network (MLFFNN) is applied in the context of river flow forecast combination, where a number of
rainfall-runoff models are used simultaneously to produce an overall combined river flow forecast. The operation of the MLFFNN depends
not only on its neuron configuration but also on the choice of neuron transfer function adopted, which is non-linear for the hidden and output
layers. These models, each having a different structure to simulate the perceived mechanisms of the runoff process, utilise the information
carrying capacity of the model calibration data in different ways. Hence, in a discharge forecast combination procedure, the discharge
forecasts of each model provide a source of information different from that of the other models used in the combination. In the present work,
the significance of the choice of the transfer function type in the overall performance of the MLFFNN, when used in the river flow forecast
combination context, is investigated critically. Five neuron transfer functions are used in this investigation, namely, the logistic function, the
bipolar function, the hyperbolic tangent function, the arctan function and the scaled arctan function. The results indicate that the logistic
function yields the best model forecast combination performance.
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Introduction
River flow forecast combination is a methodology that
simultaneously utilises the discharge forecasts of a number
of different rainfall-runoff models to produce an aggregate
discharge forecast which is generally superior to those of
the individual models involved in the combination. The
combinational methodology may be viewed as being a rather
simple alternative to the iterative method of systematic
model refinement for improving the accuracy of river flow
forecasts (Shamseldin et al., 2000).

The combination concept is widely used in diverse fields,
such as economics, business, statistics and meteorology
(Clemen, 1989). However, in the context of river flow
forecasting, the combination concept was introduced
originally by McLeod et al. (1987) for combining the
monthly river flows obtained from different time series
models and it was further developed and investigated by
Shamseldin (1996), Shamseldin et al. (1997) and
Shamseldin and O’Connor (1999) using the daily discharge
forecasts of different rainfall-runoff models. The theoretical

justification of the river flow forecast combination
methodology is that each rainfall-runoff model provides an
important source of information, which may differ from that
of the other models. Thus, the ensemble of the information
from such different sources would logically be expected to
provide more accurate and reliable discharge forecasts.

A further justification for using the combination
methodology in the context of river flow forecasting is that,
at the present time, there is no ‘super-model’ available which
performs better, under all circumstances, than the other
available models. This fact is reflected in many of the inter-
comparison studies of river flow forecasting models. The
series of very useful but inconclusive model-
intercomparison studies conducted by the World
Meteorological Organisation (WMO, 1975, 1992) did not
result in clear guidelines for model selection. Naef (1981)
noted that neither simple nor complex rainfall-runoff models
are free from failure in certain cases. Chiew et al. (1993)
compared the performance of six rainfall-runoff modelling
approaches of different levels of complexity. Their results
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indicated that the complex conceptual models are capable
of providing adequate estimates of daily flows in wet
catchments whereas the simulation of daily flows for the
drier catchments is generally poor. They also showed that
the other modelling approaches considered, e.g. those of
the black-box type and simple conceptual models, cannot
provide consistently adequate flow estimates. Another
notable model-intercomparison study is that of Perrin et al.
(2001), who compared the performance of the structures of
19 lumped rainfall- runoff models using the daily data of
429 catchments located around the world. They found that
the complex models generally out-performed the simpler
models in the calibration period but not in the verification/
validation period. Many studies have also confirmed the
equifinality characteristic of rainfall-runoff models, in the
sense that structurally different models can produce quite
similar results (cf. Loague and Freeze, 1985; Hughes, 1994;
Franchini and Pacciani, 1991; Michaud and Sorooshian,
1994; Ye et al., 1997; Beven and Freer, 2001). This concept
of equifinality is also applicable to sub-versions of an
elaborate complex model, as it is often observed that simple
sub-versions can produce similar results that are not
substantially different from those of the elaborate form of
the model (cf. Mein and Brown, 1978; Kachroo, 1992;
Shamseldin, 1992; O’Connor, 1995; Lidén and Harlin,
2000). Indeed, the regular emergence of published reports
on new models for river flow forecasting, such as those based
on various neural network configurations, illustrates the
clear perception among hydrologists that no single superior
model has yet been developed.

The combined estimate of discharge, icQ̂ , of a number
of N rainfall-runoff models, for the i-th time period is
mathematically defined as (Shamseldin, 1996)

)Q̂,Q̂,.......,Q̂,....,Q̂,Q̂ F(= cQ̂ N,i1,iN-j,i2,i1,ii
     (1)

where F ( ) is the combination function and j,iQ̂  is the
estimated discharge of the j-th model. The river flow forecast
combination methods are classified as being linear or non-
linear methods, depending on the nature of the postulated
combination function. The linear combination methods
include the Simple Average Method (SAM) and the
Weighted Average Method (WAM). In the naïve SAM, the
combined forecast is simply the arithmetic average of the
forecasts of the individual models. However, in  the WAM,
the combined forecast is the weighted sum of the forecasts
of the individual rainfall-runoff models. The Neural Network
Method (NNM), which uses neural network models for the
production of the combined forecasts (Shamseldin et al.,
1997), is an example of a non-linear combination method.
The neural network may be visualised as a mathematical

technique for modelling systems without any a priori
assumption regarding the explicit form of the relationship
between the inputs and the outputs. In systems terminology,
a neural network is normally regarded as a non-linear black-
box model, which is calibrated using a set of input and output
data.

In recent years, the neural network technique has become
an increasingly popular modelling tool for river flow
forecasting. This popularity can be gauged by the plethora
of recent studies which have dealt with the application of
neural networks in that context (Coulibaly et al., 2001; Kim
and Barros, 2001; Chang and Chen, 2001; See and Abrahart
2001; Xiong et al., 2001; Tingsanchali and Gautam,  2000;
Imrie et al., 2000; Gautam et al., 2000; See and Openshaw,
2000; Dawson and Wilby1998, 1999; Campolo et al., 1999;
Sajikumar and Thandaveswara, 1999). A recent
comprehensive review of the application of neural networks
in hydrological and water resources modelling can be found
in the works of Maier and Dandy (2000a) and Dawson and
Wilby (2001). However, despite the claims made for their
versatility and generality, it has not been demonstrated
conclusively that these neural network river flow-forecasting
models are in fact superior to the traditional models (See
and Abrahart 2001; Lauzon et al., 2000; Tingsanchali and
Gautam, 2000; Sajikumar and Thandaveswara, 1999;
Shamseldin, 1997) and indeed the neural network models
can prove to be quite disappointing. For example, the failure
of these neural network models to capture the flood peaks
has been reported in several flow simulation studies
(Karunanithi, et al., 1994; See et al., 1997; Dawson and
Wilby, 1998; Campolo et al., 1999).

Various forms of neural networks have been applied in
various disciplines (Lippmann, 1987). However, in the
context of hydrological modelling, the Multi-Layer Feed-
Forward Neural Network (MLFFNN) is generally chosen
because of its perceived versatility in function
approximation (Shamseldin et al., 1997). The MLFFNN
consists of a number of interconnected computational
elements. These elements are known as neurons and they
are arranged in a series of layers. The layers forming the
MLFFNN are the input layer, the output layer and a number
of intermediate layers between the input and the output
layers. These intermediate layers are usually known as
hidden layers. Each neuron can be regarded as a multiple
input - single output sub-model. A mathematical function,
known as the neuron transfer function, is used for
transforming the neuron inputs into its single output.

In the case of the input layer, a linear transfer function is
used. However, in the case of the hidden and output layers,
a non-linear transfer function is used for both forms of layer.
A consequence of the non-linearity of this transfer function
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in the operation of the network, when so introduced, is that
the network is thereby enabled to deal robustly with complex
undefined relations between the inputs and the output. Thus,
the selection of an appropriate transfer function is an
important issue in the application of the MLFFNN. The most
popular non-linear transfer function used in neural network
studies is the logistic function (Blum, 1992, p. 39). However,
there are various other types of non-linear transfer functions
that can also be used in conjunction with the MLFFNN (cf.
Fausett, 1994, pp. 17–19; Masters, 1993, pp. 81–82).
According to the recent comprehensive review of neural
network applications in water resources by Maier and Dandy
(2000a), it appears that the logistic and the hyperbolic
tangent functions are most widely used in such applications.

In the context of salinity forecasting, Maier and Dandy
(2000b) compared the performance of three MLFFNN
models, which use three different neuron transfer functions,
the linear threshold, the hyperbolic tangent and the sigmoid
functions. However, in each case, the same transfer function
was used for both the hidden and the output layers. The
study showed that the results obtained using the linear
threshold function were consistently the worst, whereas the
results obtained using the hyperbolic tangent and the sigmoid
functions were comparable, the results for the hyperbolic
tangent function being only marginally better.

Imrie et al. (2000) investigated the effects on the overall
performance of the MLFFNN river flow forecasting models
of using four different transfer functions for the output
neuron, the bipolar function being used for the hidden
neurons. The results of the study indicated that the use of a
cubic polynomial transfer function, or other transfer
functions with a similar shape, in the output layer may be
necessary for the neural networks to capture the extreme
flood events successfully.

In Shamseldin (1996) and Shamseldin et al. (1997) on
the MLFFNN river flow forecast combination method, only
the logistic function was used in conjunction with the
neurons in the hidden and the output layers. In the present
study, the significance of using different non-linear transfer
functions for the hidden and output layers is examined in
the context of the overall performance of the MLFFNN river
flow forecast combination method. Five neuron transfer
functions are selected for this investigation, namely, the
logistic function, the bipolar function, the hyperbolic tangent
function, the arctan function and the scaled arctan function.
To test which of these functions performs best, the discharge
forecasts of five rainfall-runoff models, applied to eight
catchments, are used. The five rainfall-runoff models are
the Simple Linear (Total Response) Model (SLM) (Nash
and Foley, 1982; Kachroo and Liang, 1992), the seasonally-
based Linear Perturbation Model (LPM) (Nash and Barsi,
1983), the Linearly-Varying Variable Gain Factor Model
(LVGFM) (Ahsan and O’Connor, 1994), the Constrained
Linear System with a Single Threshold (CLS-Ts) (Todini
and Wallis, 1977; Xia, 1989) and the Soil Moisture
Accounting and Routing Procedure (SMAR) (O’Connell et
al., 1970; Kachroo, 1992; Khan, 1986; Liang, 1992). The
first four of these models are system-theoretical (black-box)
models while the fifth is a lumped quasi-physical conceptual
model. These models are described in considerable detail
by Shamseldin et al. (1997). The eight test catchments are
in different locations throughout the world (Table 1).

Table 1. Summary description of the eight test catchments.

Catchments Country Area Average Average Average Calibration Verification Data Set
Km2 Rainfall Evaporation Discharge Period Period Starting

(mm/day) (mm/day) (mm/day) (years) (years)

Sunkosi-1 Nepal 18000 4.65 3.30 3.63 6 2 1Jan.1975
Baihe China 61780 2.59 2.89 1.04 6 2 1Jan.1972
Bird Creek USA 2344 2.66 3.58 0.61 6 2 1 Oct.1955
Brosna Ireland 1207 2.20 1.31 0.98 8 2 1 Jan. 1969
Halda Bangladesh 779 6.75 2.77 4.84 5 2 1 Apr.1980
Kelantan Malaysia 12867 6.58 4.84 3.50 6 2 1 Jan. 1975
Shiquan-3 China 3092 2.30 2.41 0.98 6 2 1 Jan. 1973
Yanbian China 2350 3.28 5.79 2.55 6 2 1 Jan. 1978
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The Multi-Layer Feed-Forward
Neural Network (MLFFNN) method
used for river flow forecast
combination
The Multi-Layer Feed-Forward Neural Network is one of
the most widely used forms of neural network. The
MLFFNN is capable of modelling the unknown input-output
relations of a wide variety of complex systems. The structure
of the MLFFNN used in the present study (Fig. 1) consists
of only three layers; the input layer, the intermediate (hidden)
layer and the output layer. Each layer contains a number of
neurons (i.e. mathematical processing elements). Even
though the neurons in any of the three layers are not linked
to each other (e.g. the neurons of the hidden layer are not
connected to each other), each neuron in the input layer is
linked by connection pathways to all of the neurons in the
following intermediate layer and likewise each neuron in
the intermediate layer is linked by connection pathways to
the single neuron in the output layer. Each neuron can
receive a single input or an array of inputs, but it produces
only a single output. In the case of the MLFFNN, the
information flows successively only in the forward direction,
i.e. from the input layer through the intermediate layer to
the output layer. The connection pathways provide the means
of transferring the information between any two consecutive
layers.

The input layer receives all the external inputs to the
network. In the context of river flow forecast combination,
the external inputs to the network for a particular time period

are the discharge forecasts of the individual rainfall models
for that time period. Each of the individual model forecasts
is assigned to one neuron in the input layer. Thus, the number
of neurons in the input layer is equal to the number of the
rainfall-runoff models involved in the discharge-forecast
combination procedure. For each of these neurons in the
input layer, a direct linear transformation is used for the
mapping of the neuron input to the neuron output according
to

    f(x) = x  for all x. (2)

For each neuron of the input layer, its output then becomes
the input to each of the neurons of the hidden layer.

The hidden layer is an intermediate layer between the input
and the output layers. It is this layer that usually enhances
the capability of the network to deal robustly and efficiently
with inherently complex non-linear relations between the
inputs and the output of the network (Medsker, 1994, p.
12). Of course, in contrast to the simple form of MLFFNN
sketched in Fig. 1, the MLFFNN can have more than one
hidden layer. However, the use of more than one hidden
layer is rarely justified in practice (Masters, 1993, p. 174)
and may well result in gross over-parameterisation of the
model. Accordingly, a single hidden layer is used in the
present study. Each hidden layer neuron has an input array
but only a single output, connected to the single neuron of
the output layer. Excluding the neurons of the input layer,
the elements of the input array to a neuron are the final
outputs of the corresponding neurons in the preceding layer,

S LM  o u tp u t

LPM  o u tp u t

LV G M  o u tp u t

S M A R ou tp u t

CL S -T s  ou tp u t

N e tw ork  

ou tp u t

H idd en la yer

In pu t L ayer  

Outp ut Ne uron  

H idde n N eu ron  

Inp ut Ne uron 

Linear 

transform ation
C om b i n e d  

d i s ch arge  

Fig. 1. Schematic diagram for the Multi-layer Feed-Forward Neural Network used for combining the outputs of the
five rainfall-runoff models (after Shamseldin et al., 1997).
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while its single output becomes an element for the input
array of each of the neurons in the subsequent layer. Unlike
the input layer, which has the same number of neurons as
individual models providing their forecasts as inputs to that
layer, the number of the neurons in the hidden layer is
unknown a priori. There is no rule of thumb to specify the
appropriate number of neurons in the hidden layer. In
practical applications, this number can be estimated by an
iterative process, which involves the calibration and the
evaluation of the performance of the network using different
assumed numbers of hidden layer neurons. The optimum
number is that which has near-maximum efficiency using
as few neurons as are necessary, i.e. the principle of
parameter parsimony applies.

The output layer is the last layer in the network and it
produces the final output of the network, i.e. the combined
model discharge forecast. Similar to the neurons in the
hidden layer, the output neuron receives an input array from
the neurons of the preceding (hidden) layer and produces a
single output, corresponding to the single neuron in the
output layer. In the more general multiple-output case, there
would be as many neurons in the output layer as network
outputs. In the present study, only one neuron is required in
that layer. In the case of hidden and output neurons, the
process of transformation of the input array to a single output
is quite similar. This transformation process is given by

)WWYf()f(YY oi

N

1i
inetout +== ∑

=

(3)

where Yout is the neuron output, f( ) is the selected neuron
transfer function, N is the total number of the neurons in
the preceding layer, Yi is the neuron input received from
the neuron in the preceding layer,     is the
neuron net input, Wi is the connection weight assigned to
the path linking the neuron to that i-th neuron and Wo is the
neuron threshold value or bias. The neuron transfer function
is non-linear and in the present study, similar to other studies,
the same transfer function is used for all neurons in the
hidden and the output layers. However, in the case of the
output layer, linear functions can also be used. The most
widely used non-linear transfer function in neural network
applications is the logistic function (Blum, 1992, p. 39).
The logistic function is bounded between 0 and +1 and is
defined by

)YExp(-1
1)f(Y

net
net +

= (4)

However, a number of other non-linear transfer functions
can be used in the case of hidden and output neurons of the

MLFFNN river flow-forecasting combination method. In
the present study, in addition to the logistic function, the
following four non-linear transfer functions are also
considered in the application of the MLFFNN combination
method;
1. The hyperbolic tangent function, which is bounded

between –1 and +1, and expressed as

)Y2Exp(1
)Y2Exp(1

)YExp()Exp(Y
)YExp()Exp(Y)f(Y

net

net

netnet

netnet
net −+

−−=
−+
−−=   (5)

2. The bipolar function, which is a linear transformation
of the logistic function, has output values varying
between -1 and +1. This function is given by

)YExp(1
)YExp(11

)YExp(1
2)f(Y

net

net

net
net −+

−−=−
−+

=      (6)

3. The arctan function, which has values ranging between
–1 and +1, and is defined as

)arctan(Y
π
2)f(Y netnet = (7)

4. The scaled arctan function, which is also bounded
between –1 and +1. This function has the following
form

( ))sinh(Yarctan
π
2)f(Y netnet = (8)

These four different neuron transfer functions are shown in
graphical form in Fig. 2. From this figure, it can be seen
that the hyperbolic tangent function and the scaled arctan
function are quite similar in form.

The connection weights (Wi) and the neuron threshold
values W0 constitute the parameters of the network. These
parameters are estimated by an optimisation technique to
minimise the sum of the squares of the errors. The use of
the above bounded transfer functions for the output neuron
implies that the estimated network output values are likewise
bounded within the range of the selected transfer function.
As the actual observed discharge values are usually outside
this range, rescaling of the observed discharge values is
required to facilitate comparison of the actual observed
discharges and the network-estimated outputs. In the present
study, the following linear rescaling function is used

)
Q

Qb(aQ
max

i
si += (9)

where Qsi is the rescaled discharge, a and b are the parameters
of the rescaling function, Qi is the observed discharge and
Qmax is the maximum actual observed discharge in the
calibration period. In practical applications, the effective

oi

N

i
inet WWYY += ∑

=1
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range is usually less than that of the selected transfer function
to avoid the occurrence of values near the extreme values
because such values can affect the calibration of the network
adversely. The use of such an effective range is also
important to enable the network to predict discharge values
greater than those occurring in the calibration period. In the
case of the logistic function, the values of the rescaling
parameters are chosen such that the Qsi series is bounded
between 0.1 and 0.85. However, in the case of the other
four non-linear transfer functions, which are bounded in
the range [-1,1], the values of the rescaling parameters are
chosen such that the Qsi series is between –0.85 and 0.85.
Should linear transfer functions be used in the output layer,
any rescaling of the observed outputs would become
unnecessary.

Calibration of  the Multi-Layer Feed-
Forward Neural Network
In the present study, the network parameters (i.e. connection
weights (Wi) and the neuron threshold values W0) are
estimated by minimising the least squares objective function
(i.e. sum of the squares of the errors between the estimated
and observed outputs) using a sequential search procedure.
This sequential procedure involves the consecutive use of
two optimisation methods:

(i) The genetic algorithm (GA) is a globally based search
procedure introduced by Holland (1975). It is loosely

based on the Darwin theory of survival of the fittest
where the potential solutions mate with each other in
order to produce stronger solutions (van Rooij et al.,
1996, pp. 18–24). The main characteristics of the GA
are that it searches a population of solutions, uses
probabilistic rules to advance the search and codes the
parameter values as genes in a chromosome (cf. Khosla
and Dillon, 1997, p. 46; Wang, 1991). The operation of
the GA starts with an initial population of parameter
sets which is randomly generated. Pairs of parameter
sets are selected from this initial population according
to their fitness evaluated on the basis of the selected
objective function value. These pairs of parameter sets
are then used to produce a new population of parameter
sets (i.e. the next generation) according to the genetic
operators of crossover and mutation. This new
population is expected to be better than the old one.
The process of generating new populations of parameter
sets is repeated until the stopping condition is satisfied
(i.e. the total number of function evaluations is reached).
The GA was first applied in the context of calibrating
conceptual catchment models by Wang (1991)

(ii) The conjugate gradient method is a derivative-based
local search method suitable for optimisation in complex
modelling problems. It is regarded as being more robust
and efficient than the back-propagation method which
is widely used for estimating the parameters of the
MLFFNN (Masters, 1993, pp. 105–111). This method
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Fig. 2. The five neuron transfer functions.
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adjusts the parameter values iteratively and requires
determination of the objective function value, the
corresponding gradient (i.e. the first order derivative)
and a search direction vector to perform this iterative
process (cf. Haykin, 1999, p. 243: Press et al., 1992,
pp. 413–418). The search direction vector for any
particular iteration is determined in such a way that it is
conjugate to (i.e. linearly independent of) the previous
search directions. The parameter values are adjusted
by conducting line searches along the search direction
vector. The method terminates when a stopping
condition is satisfied (e.g. the maximum number of
iterations, or the proscribed degree of convergence of
the successive values of the objective function).

In this sequential search procedure, the final optimised
parameter values of the genetic algorithm are used as the
initial starting values for the conjugate gradient method. The
rationale behind the use of this sequential procedure is
simply to maximise (or at least enhance) the likelihood of
finding the global optimum parameter values.

Applications of  the Multi-Layer Feed-
Forward Neural Network (MLFFNN)
as a river flow forecast combination
method
The MLFFNN river flow forecasting method, incorporating
in turn the five different neuron transfer functions; the
logistic, the bipolar, the hyperbolic tangent, the arctan and
the scaled arctan, is tested using the discharge forecasts of
five rainfall-runoff models, each operating on a total of eight
test catchments. The five resulting models of the MLFFNN
forecasting combination method are henceforth referred to
as MLFFNN-1 (logistic function), MLFFNN-2 (bipolar
function), MLFFNN-3 (hyperbolic tangent function),
MLFFNN-4 (arctan function), and MLFFNN-5 (scaled
arctan function), respectively. In each neural network model,
the same transfer function is used for all the neurons in the
hidden and the output layers. The available data for these
catchments are split into two non-overlapping parts (i.e.
split-sampling), the first part being used for calibration and
the second part for verification. The lengths of the calibration
and the verification periods for the eight catchments, as well
as a brief summary description of these catchments, are
shown in Table (1).

The number of neurons in the single hidden layer is taken
as two and the MLFFNN is calibrated using the sequential
optimisation procedure described earlier. In the present
study, the number of hidden neurons is determined by a
trial and error procedure in which the network is calibrated

(i.e. trained) successively with an increasing number of
hidden neurons and the optimal number of neurons adopted
for the hidden layer is generally that beyond which the
performance of the network does not improve substantially
with an increase of that number. In the present work, the
optimal number selected is two simply because the
corresponding results of the network are found to be either
as good as or, in some cases, even better than those obtained
using more than two neurons in the hidden layer.

The overall performance of the MLFFNN solutions and
of the five individual rainfall-runoff models providing their
inputs is assessed using the model efficiency criterion (E)
of Nash and Sutcliffe (1970). This  efficiency index E is
given by

1001 ×






oF
F-E= (10)

where F is the sum of the squares of the differences between
the estimated discharges and the corresponding observed
discharges and Fo is the ‘initial variance’, which is defined
as the sum of the squares of the differences between the
observed discharges and the mean discharge of the
calibration period.

Table 2 shows the E values of the five rainfall-runoff
models for the eight test catchments. The SLM model is
consistently the worst model among the five rainfall-runoff
models considered, in both the calibration and the
verification periods. The table also indicates that, in the
calibration period, the SMAR model performs best for six
out of the eight catchments; Bird Creek, Brosna, Halda,
Kelantan, Shiquan-3 and Yanbian. For the remaining two
catchments, Baihe and Sunkosi-1, the models having the
best results are the LVGFM and the LPM, respectively.
Likewise, in the verification period, the SMAR model has
the highest E among the five models for five catchments,
Bird Creek, Brosna, Halda, Kelantan and Yanbian. For the
remaining three catchments, the LPM has the highest E
values in the Sunkosi-1 and the Baihe catchments while the
LVGFM has the highest E values in the Shiquan-3
catchment.

Table 3 displays the E values of the five different forms
of the MLFFNN river flow forecasting method and their
ranking for the eight test catchments. This table also displays
the best E values among the five rainfall-runoff models.
Inspection of Table 3 reveals that, in the calibration period,
all five different forms of the MLFFNN combination method
have higher E values than those obtained by the best of the
five rainfall-runoff models. However, in the verification
period, the results are quite variable. One or other form of
the MLFFNN performs better than the best of the five
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Table 2.  E-efficiency values for the test catchments obtained using
the five individual rainfall-runoff models applied in the combination.

CALIBRATION PERIOD

Catchment  (E)  SLM  (E)  LPM  (E)  LVGFM (E)  CLS-Ts  (E)  SMAR

Sunkosi-1 85.78 91.96 88.63 90.52 89.81
Baihe 70.46 74.30 87.19 83.31 83.32
Bird Creek 59.52 63.54 86.10 65.35 88.69
Brosna 40.12 70.28 41.37 46.95 85.83
Halda 81.70 84.58 83.62 83.99 85.52
Kelantan 62.81 76.71 78.91 79.49 89.24
Shiquan-3 72.01 76.85 87.63 75.76 89.74
Yanbian 73.66 83.00 78.05 81.59 85.87

VERIFICATION PERIOD

Catchment  (E)  SLM  (E)  LPM  (E)  LVGFM (E)  CLS-Ts  (E)  SMAR

Sunkosi-1 83.37 90.49 83.59 84.62 85.19
Baihe 70.52 73.17 61.45 65.50 72.79
Bird Creek -53.21 -38.99 24.90 -43.72 73.31
Brosna 45.68 77.53 48.06 60.25 85.39
Halda 72.38 77.18 75.31 66.53 84.55
Kelantan 37.49 37.89 43.84 37.49 50.55
Shiquan-3 54.02 56.16 79.01 57.30 68.16
Yanbian 75.74 79.21 76.38 81.10 83.93

rainfall-runoff models for four catchments, namely, Baihe,
Brosna, Halda and Yanbian.

Table 3 also indicates that, for some of the test catchments,
the differences in the E values among the five forms of the
MLFFNN combination method are very marginal indeed.
They also indicate that, in the calibration period,
MLFFNN-1 (logistic function) has a better performance than
other forms of MLFFNN for all of the test catchments, with
the exception of Bird Creek, where it has only the third best
performance. Furthermore, in the calibration period,
MLFFNN-4 (arctan function) has the worst performance
for six catchments, namely, Sunksoi-1, Baihe, Brosna,
Halda, Kelantan, and Yanbian. However, MLFFNN-4 has
the best performance only in the case of Bird Creek
catchment for which its corresponding E value is not
significantly different from those of MLFFNN-3 and
MLFFNN-1.

Further comparison of the performance of the five
MLFFNN models reveals that, in the calibration period, the
performance of MLFFNN-2 ranks third in the case of three
catchments, fourth for three catchments and for the
remaining two catchments its performance rank is second
and fifth. Likewise, the rank of the performance of

MLFFNN-3 is second in the case of four catchments, third
for three catchments and fourth for one catchment. Similarly,
the performance of MLFFNN-5 is best for one catchment,
second best in the case of three catchments, and fourth for
the other four catchments.

In the verification period, MLFFNN-1 has higher E value
than the other four MLFFNN in all of the eight test
catchments, with the exception of the Baihe catchment, for
which its E value is the lowest among the five MLFFNNs.
Likewise, the performance of the MLFFNN-2 form is ranked
second in the case of one catchment, third for three
catchments, fourth for two catchments and fifth for one
catchment. The performance of MLFFNN-3 is ranked
second for two catchments, third for three catchments, and
fourth for three catchments also. MLFFNN-4 has the highest
performance in the case of only one catchment while its
performance is ranked third and fourth for two catchments,
but for the remaining five catchments it has the worst
performance. The performance of MLFFNN-5 is ranked
second best for five catchments, while for the remaining
three its rank is either third or fourth. Figure 3 shows compar-
isons between the observed and the estimated discharge
hydrographs of MLFFNN-1 for some selected catchments.
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Table (3): E-efficiency values for the test catchments obtained using the five different Multi-Layer Feed-forward Neural
Networks.

CALIBRATION PERIOD
Catchment MLFFNN-1 Rank  MLFFNN-2 Rank MLFFNN-3 Rank MLFFNN-4 Rank MLFFNN-5 Rank Best of the  five

individual
rainfall –runoff
models

Sunkosi-1 93.71 1 93.24 3 93.29 2 92.98 5 93.18 4 91.96
Baihe 91.46 1 90.04 3 90.24 2 89.39 5 89.92 4 87.19
Bird Creek 91.34 3 88.29 5 91.35 2 91.40 1 88.34 4 88.69
Brosna 92.71 1 91.90 4 91.91 3 91.45 5 92.48 2 85.83
Halda 87.20 1 86.26 4 86.79 3 85.65 5 87.06 2 85.52
Kelantan 92.67 1 91.75 3 91.57 4 90.52 5 92.16 2 89.24
Shiquan-3 92.10 1 91.91 4 92.02 2 91.93 3 92.10 1 89.74
Yanbian 90.65 1 88.67 2 88.57 3 88.09 5 88.51 4 85.87

VERIFICATION PERIOD
Catchment MLFFNN-1 Rank  MLFFNN-2 Rank MLFFNN-3 Rank MLFFNN-4 Rank MLFFNN-5 Rank Best of the  five

individual
rainfall –runoff
models

Sunkosi-1 88.51 1 88.13 5 88.36 2 88.14 4 88.19 3 90.49
Baihe 66.59 5 76.36 3 70.39 4 79.86 1 77.42 2 73.17
Bird Creek 67.31 1 65.52 5 66.84 2 65.75 3 66.55 4 73.31
Brosna 91.60 1 90.61 4 90.68 3 90.01 5 91.43 2 85.39
Halda 84.58 1 84.42 3 84.08 4 83.06 5 84.55 2 84.55
Kelantan 50.33 1 48.23 3 47.97 4 47.71 5 49.06 2 50.55
Shiquan-3 76.59 1 75.96 4 76.33 3 75.49 5 76.54 2 79.01
Yanbian 88.15 1 86.80 2 86.76 3 86.06 5 86.59 4 83.93

Table 4 shows the Normalised Root Mean Squared Error
(NRMSE) of MLFFNN-1 (the best, on average, of the five
MLFFNN models) and the five rainfall models for the
different flow bands, low, medium and high. The discharge
values exceeded 95% and 10% of the time in the calibration
period are chosen subjectively as the upper limits of these
two flow bands, respectively. The NRMSE is obtained by
standardising the RMSE by the mean discharge of the
calibration period, Q . The NRSME is calculated according
to the following equation

Q
m

QQ

NRMSE

m

i
ii∑

=

−

=

1

2)ˆ(

(11)

where iQ̂  is the estimated discharge and m is the number of
data points in the corresponding flow band. An NRMSE
value of zero indicates a perfect model matching of the
observed discharges in the flow band. In general, the higher

the value of the NRMSE the worse is the model performance.
The NRMSE is used in this study to compare the
performances of the different models in reproducing the
discharge values in the different flow bands.

Examination of Table 4 shows that, in the calibration
period, MLFFNN-1 has a better performance than the five
individual rainfall-runoff models in the case of the medium
and the high flow bands in all of the eight test catchments,
except in the case of the Bird Creek and Halda catchments.
In the Bird Creek catchment, the performance of MLFFNN-
1 in the medium flow band is not significantly different from
that of the best of the five rainfall-runoff models. In the
Halda catchment, the performance of MLFFNN-1 in the
high flow band is better than those of the lowest four models.
However, in the case of the low flow band, MLFFNN-1
performs better than the five models in the case of three out
of the eight catchments, Sunkosi-1 Brosna and Yanbian. For
two out of the remaining five catchments, Baihe and
Shiquan-3, the performance of MLFNN-1 in the low flow
band is virtually the same as that of the best individual model.
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Table 4. NRMSE values for the MLFFNN-1 form and the five individual rainfall-runoff models.

CALIBRATION PERIOD

Catchment Flow Band Models
MLFFNN-1  SLM  LPM LVGFM CLS-Ts SMAR

Sunkosi-1 Low 0.05 0.12 0.09 0.13 0.11 0.15
Medium 0.25 0.39 0.28 0.36 0.33 0.32
High 0.80 1.15 0.91 0.93 0.82 1.01

Baihe Low 0.21 0.28 0.34 0.17 0.22 0.21
Medium 0.39 0.7 0.69 0.48 0.55 0.60
High 1.86 3.52 3.16 2.25 2.56 2.41

Bird Low 0.33 1.39 1.41 0.59 0.87 0.27
Creek Medium 0.79 2.10 2.03 1.15 1.95 0.79

High 5.36 10.22 9.51 6.32 9.59 6.41

Brosna Low 0.10 0.39 0.30 0.37 0.34 0.14
Medium 0.18 0.51 0.35 0.52 0.52 0.27
High 0.57 1.70 1.26 1.61 1.30 0.71

Halda Low 0.14 0.35 0.42 0.29 0.25 0.01
Medium 0.51 0.68 0.62 0.62 0.64 0.57
High 2.15 2.25 2.06 2.26 2.07 2.20

Kelantan Low 0.11 0.23 0.30 0.22 0.20 0.10
Medium 0.22 0.50 0.37 0.41 0.42 0.27
High 0.93 2.08 1.72 1.38 1.27 1.10

Shiquan-3 Low 0.32 0.99 0.86 0.40 0.73 0.32
Medium 0.47 1.16 1.09 0.69 1.10 0.65
High 3.32 5.29 4.69 3.88 4.91 3.45

Yanbian Low 0.06 0.15 0.33 0.12 0.10 0.08
Medium 0.35 0.59 0.45 0.55 0.51 0.39
High 1.18 1.97 1.63 1.75 1.57 1.63

VERIFICATION PERIOD

Catchment Flow Band Models
MLFFNN-1  SLM LPM LVGFM CLS-Ts SMAR

Sunkosi-1 Low N/A N/A N/A N/A N/A N/A
Medium 0.30 0.35 0.25 0.38 0.38 0.31
High 1.09 1.33 1.04 1.25 1.18 1.30

Baihe Low 0.24 0.33 0.33 0.15 0.26 0.27
Medium 0.56 0.86 0.82 0.59 0.91 0.76
High 5.34 3.27 3.11 5.82 3.77 3.61

Bird Low 0.03 0.31 1.20 0.10 0.18 0.00
Creek Medium 0.67 1.99 1.88 1.07 1.89 0.68

High 4.98 3.34 3.37 6.19 4.13 3.35

Brosna Low 0.05 0.36 0.15 0.39 0.31 0.08
Medium 0.23 0.58 0.29 0.58 0.51 0.30
High 0.74 1.89 1.40 1.80 1.58 0.97
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Halda Low 0.07 0.10 0.33 0.07 0.08 0.01
Medium 0.45 0.65 0.58 0.60 0.69 0.48
High 1.82 1.28 1.20 1.70 2.07 1.22

Kelantan Low 0.28 0.26 0.35 0.25 0.21 0.23
Medium 0.41 0.51 0.55 0.41 0.44 0.35
High 3.64 3.92 3.51 4.06 4.30 3.93

Shiquan-3 Low 0.30 0.90 0.79 0.31 0.44 0.32
Medium 0.81 1.59 1.53 1.02 1.60 1.17
High 6.44 7.51 7.52 5.47 7.38 7.02

Yanbian Low 0.07 0.29 0.26 0.17 0.14 0.07
Medium 0.37 0.57 0.46 0.61 0.53 0.39
High 1.58 1.99 2.17 1.70 1.62 2.01

For the other three catchments, Bird Creek, Halada and
Kelantan, the performance of MLFFNN-1 is worse than that
of the best of the five models, but still better than those of
the lowest four individual models.

In the verification period, MLFFNN-1 results are quite
variable. In the high flow band, MLFFNN-1 is at least better
than the second best model for five catchments, namely,
Sunkosi-1, Brosna, Kelantan, Shiquan-3 and Yanbian. In
the remaining three catchments, it is only better than that of
the worst individual model. In the medium flow band,
MLFFNN-1 performs better than the individual models for
six catchments. In the remaining two catchments, Sunkosi-
1 and Kelantan, its performance is either not significantly
different from or better than the second best model. In the
low flow band, MLFFNN-1 performs consistently better
than the second best model for all of the test catchments,
except the Kelantan catchment where its performance is only
better than worst individual model.

Possible links between the performance of MLFFNN-1
and the meteorological and hydrological characteristics of
the catchments were also investigated in this study. Table 5
shows the correlation between the model efficiency index
(E) of MLFFNN-1 and the coefficient of variation (CV) of
the rainfall, evaporation and discharge in the calibration

period. The table also shows the correlation between E and
the catchment area. For comparison, the corresponding
correlation coefficients of the SMAR model (the best, on
average, of the five individual models) are also included in
the table. The table shows that in MLFFNN-1, high E values
are associated with low rainfall CV values and high
evaporation CV values. In the case of the SMAR model,
high E values are associated with high discharge CV values
and small catchment areas. The correlation coefficients
shown in Table (5) are calculated on the basis of a small
sample (8 catchments) and thus may be affected by sampling
variability. Numerous catchments need to be used to
calculate these coefficients to confirm the adequacy of the
correlation patterns revealed in Table 5.

Conclusions
The effect on the overall performance of the Multi-Layer
Feed-Forward Neural Network (MLFFNN) of using
different transfer function types in the hidden and the output
neurons, when applied in the context of the river flow
forecast combination method, is examined. Five neuron
transfer functions are considered in this investigation,
namely, the logistic, bipolar, hyperbolic tangent, arctan and

Table 5. Correlation of the coefficient of Efficiency (E) of the MLFFNN-1 form and the SMAR model with
meteorological and hydrological characteristics of the catchment for the calibration period.

Correlation Coefficient
Model Rainfall CV Evaporation CV Discharge CV Catchment Area

E (MLFFNN-1) -0.58 0.42 -0.19 0.18
E (SMAR) -0.03 -0.22 0.25 -0.47
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Catchment: Sunkosi-1 (1/1/1979-31/12/1979) 
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Fig. 3. Comparison of the observed and the simulated discharge hydrographs of the MLFFNN-1 form in the
verification period for some of the test catchments.

Catchment: Brosna (1/4/1973-1/4/1974)

Catchment: Yanbian (1/1/1980-31/12/1980)
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