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Abstract
The widely-used hydrological procedures for calculating events with T-year return periods from data that follow a Gumbel distribution
assume that the data sequence from which the Gumbel distribution is fitted remains stationary in time. If non-stationarity is suspected,
whether as a consequence of changes in land-use practices or climate, it is common practice to test the significance of trend by either of two
methods: linear regression, which assumes that data in the record have a Normal distribution with mean value that possibly varies with time;
or a non-parametric test such as that of Mann-Kendall, which makes no assumption about the distribution of the data. Thus, the hypothesis
that the data are Gumbel-distributed is temporarily abandoned while testing for trend, but is re-adopted if the trend proves to be not significant,
when events with T-year return periods are then calculated. This is illogical. The paper describes an alternative model in which the Gumbel
distribution has a (possibly) time-variant mean, the time-trend in mean value being determined, for the present purpose, by a single parameter
β estimated by Maximum Likelihood (ML). The large-sample variance of the ML estimate       is compared with the variance of the trend
βLR calculated by linear regression; the latter is found to be 64% greater. Simulated samples from a standard Gumbel distribution were given
superimposed linear trends of different magnitudes, and the power of each of three trend-testing procedures (Maximum Likelihood, Linear
Regression, and the non-parametric Mann-Kendall test) were compared. The ML test was always more powerful than either the Linear
Regression or Mann-Kendall test, whatever the (positive) value of the trend β; the power of the MK test was always least, for all values of β.
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Introduction
Much hydrological and meteorological practice is concerned
with the analysis of extremes. Four examples of variables
used in such analyses are (a) annual maximum discharge in
rivers; (b) annual minimum mean 10-day flows; (c) annual
maximum rainfall intensities over 5-minute, 10-minute, ....
durations; (d) annual extreme wind velocities. Analyses of
such variables form the basis of important decisions in
engineering practice (NERC, 1975), urban planning, and
the calculation of insurance risks, the objective being to
calculate the frequency of occurrence of extreme events.
Central to many such analyses is the use of observed
sequences of annual maxima (or minima) to fit an
appropriate Extreme Value (EV) probability distribution,
which can then be used to calculate the “return period” of
extreme events (Stedinger et al., 1993). It is commonly
assumed in all such analyses that the sequence of observed
annual maxima (minima) is stationary, with each observation
in the sequence drawn from an underlying EV distribution

that remains constant over time. But if changes in climate
(Vinnikov et al., 1990; Guttman et al., 1992; Groisman and
Easterling, 1994; Changnon and Kunkel, 1995; Olsen et al.,
1999; Douglas et al., 2000), or in land use (Bruijnzeel, 1990,
1996; Sahin and Hall, 1996), result in gradual changes in
the observed sequence, the assumption that the underlying
EV distribution remains constant becomes invalid, and the
task of predicting the frequency with which extreme events
will occur in the future becomes very much more
complicated. Furthermore, the report “Climate Change 2001:
Impacts, Adaptation and Vulnerability” by the
Intergovernmental Panel for Climate Change (IPCC, 2001)
warns of  climate change over the next century, envisaging
“changes in the variability of climate, and changes in the
frequency and intensity of some climate phenomena.” Such
forecasts,  now being made with ever-increasing confidence,
imply that the statistical stationarity necessary for many
hydrological analyses can no longer be assumed safely, and
the spatial and temporal availability of water resources must
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be expected to change as and when regional climate changes.
This is of crucial importance to a developing country like
Brazil, in which more than 90% of its energy is provided by
hydropower.

This paper is concerned with some aspects of the detection
and estimation of ”changes in the frequency and intensity
of some climate phenomena” referred to in the above quote
from the IPCC report. Two typical procedures for detecting
whether trend exists in a sequence of annual extremes are
(1) regression analysis (Salas, 1993), and (2) non-parametric
methods, often by means of Mann-Kendall test (Hirsch et
al.,1993). Neither method takes  account of the facts that
(a) where trend does not exist, hydrological and
meteorological extremes can be expected to follow a
distribution of EV type; (b) if trend does exist, it will be
superimposed on data from an EV distribution. In the case
of  (1),  data are assumed to be drawn from an underlying
Normal distribution when trend is absent, whilst  if trend is
present, this Normal distribution is assumed to have time-
variant mean. In the case of the Mann-Kendall test for trend,
no explicit form for the underlying distribution is assumed,
although where no trend is detected, it is common practice
for a distribution of EV type then to be assumed for the
purpose of estimating return periods of extreme events.
Therefore, neither regression analysis nor Mann-Kendall
tests  are logically satisfactory when trend, if it exists, is
superimposed on data from an EV distribution.

Two related papers (Clarke, 2002a, b) deal with the
detection and estimation of trends in annual extremes of
hydrological variables, where these are assumed, in the
absence of trend, to follow Gumbel or Weibull distributions.
The first paper casts the problem of estimating trend in data
with underlying Gumbel distribution in the form of a
Generalised Linear Model (GLM), and describes an iterative
procedure for estimating trend parameters; the second paper
modifies this iterative procedure to allow trends to be
estimated, and tested for significance, in data with an
underlying Weibull or a Generalised  Extreme Value (GEV)
distribution. The purpose of the present paper is to present
an analytical result, and results of some simulations, that
supplement and extend earlier results given for the Gumbel
distribution; a second paper will present corresponding
results for the Weibull distribution.

Although the emphasis of the present paper is on the
estimation of trend in Gumbel-distributed data, the results
have an important additional application in the analysis of
sequences of Gumbel data in which no time-trends exist,
but where it is required to explore relationships between a
Gumbel variate and other, concomitant variables which may
explain its behaviour. As an example,  consider a sequence
of annual maximum rainfall intensities each of one-hour

duration, with a (trend-free) Gumbel distribution; it may be
of interest to relate the observed intensities to meteorological
conditions – velocity and direction of wind – at the time at
which each maximum intensity occurred. The approach
given in this paper is relevant in this context also, the time-
variate denoted by t simply being replaced by (for example)
wind velocity V. The paper referred to above (Clarke, 2002a)
extends the analysis to any number of concomitant variates.

Variance of  regression estimate of
linear trend: data from a Gumbel
distribution
The case is taken where data in the absence of trend follow
the Gumbel distribution

fY(y; u, a) = a exp[ – a (y – u) – exp { – a (y - u)}]
– ∞ < y < ∞ (1)

with mean u+ γ / a, variance π2/6a2. With a linear trend
superimposed, this distribution is modified to give

fY(y; u, a, b) = a exp[–a (y – u – b t ) – exp {–a (– u–b t)}]
- ∞ < y < ∞                (1a)

where t denotes time, so that the mean of the Gumbel random
variable Yt is (u+ γ/a) + b t. The constant γ is Euler´s constant,
γ ≈ 0.57721... . Given N observations y1, y2, ...yN of Y at
times t =t1, t2, ... tN, the parameter β in (1a) is to be examined,
to determine whether its magnitude warrants rejection of
the hypothesis H0: β = 0 in favour of the alternative H1:
β ≠ 0.

When  β is estimated by linear regression to give
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it is readily found that for observations y1, y2, ...yN with
distribution (1a), the estimator (2)  is unbiassed, E[ LR

^
β ] = b,

and has variance

var[ LR

^
β ] = π2 /( 6a 2 S tt) (3)

where S tt is the denominator in (2). When  the observations
yt are observed in an unbroken sequence of years coded as
{1, 2 ... N}, Stt = N (N2 – 1) / 12. Where the three parameters
in (1a) are estimated by maximum likelihood (ML),
assuming independent observations yt, the large-sample
variance-covariance matrix – E[∂2ln L / ∂θ i ∂θ j ]

-1 of the
three parameters θ =[θ1, θ2, θ3 ] =[ a, u, β ] is the inverse of
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(4)

where

I1 =1 – γ,   I2 =π2/6 – 2γ + γ 2. With the year sequence coded
as {1, 2 ... N}, and denoting the ML estimator by     inver-
sion of this matrix gives the simple result

var[     ] = 12 / [a2N(N2 – 1)] (5)

Hence it is seen that

var[
LR

^
β ] / var[ ML

^
β ] = π2/6  = 1.64

approximately, so that in large samples, the variance of the
linear regression estimator of  the trend parameter β is 64%
greater than that of the ML estimator.

Since the value of var[ MLβ ] used to obtain this result is
appropriate for the large-sample case with N tending to
infinity, a question immediately arises concerning how well
ML estimates of β behave when the sequence of annual
extremes is of the size commonly encountered in practice,
for which asymptotic, large-sample results may not be
appropriate. In addition, since ML estimates are
asymptotically Normally distributed and Normal theory is
commonly used to derive confidence intervals for
parameters estimated by ML, it is of interest to explore
whether the assumption of Normality is also reasonable for
the samples met with in practice. The following sections
describe the simulation methods used to answer these
questions.

Method for comparing variances of  a
linear trend coefficient βββββ estimated by
(a) linear regression; (b) maximum
likelihood: sample sizes N = 30 and
N = 50
Samples of size N = 30 and N = 50 were generated from a
standard Gumbel distribution with u =0, a =1 in the
distribution (1) given above; these sample sizes were taken
as representative of the periods of hydrological record over
which trends might be expected to appear. In the absence of
trend, the variance of the standard Gumbel distribution is
σ2 = π2/6, so that the standard deviation is σ = 1.2825
approximately. The linear trends superimposed on the

simulated data were equal to increases of ½ σ, σ and 2σ,
distributed over the length N of artificial record. Thus for
N=50 and  σ = 1.2825, a linear trend with a linear trend
coefficient β=0.02565 was superimposed on the 50 values
from the standard Gumbel distribution (50 × 0.02565 =
1.2825). The three trends β = 0.01282, β =0.02565 and
β=0.0513 corresponding to ½ σ, σ  and 2σ, were therefore
in increasing order of magnitude (but differed for the two
cases N=30 and N=50 because the latter ‘record’ is longer).

Having generated samples with these characteristics, the
coefficients of linear trend β were estimated (a) by linear
regression (LR), and (b) by maximum likelihood (ML). With
only one trend parameter β to be estimated, it would be
possible to use any one of several well-known procedures
(such as Newton-Raphson, or simplex) to solve the ML
equation for this parameter; however, it is computationally
advantageous to cast the ML estimation procedure in the
form of a Generalised Linear Model (GLM), the parameters
of which are estimated by the Iteratively-Weighted Least
Squares (IWLS) algorithm described by McCullagh and
Nelder (1983) and Green (1984). A discussion of the
procedure in the context of trend parameter estimation, and
of the computational advantages to be gained from its use,
has been given elsewhere (Clarke, 2002a). It is sufficient to
note here that, with several trend parameters to be estimated,
convergence is more rapid where IWLS is used, and that
commercially-available software is available for using the
IWLS procedure and for testing hypotheses concerning the
trend parameters. Tables 1(a) and 1(b), discussed below,
present means and variances respectively of the sets of 600
samples generated for the two sample sizes (N = 30,
N = 50) and different values of the trend parameter β.

The Type II Errors of the tests, and hence their powers,
can be calculated differently from the method described
above. For the LR test procedure, the test statistic commonly
used is t = LR

^
β /√(var( LR

^
β )), this being compared with the

tabulated value of the t-statistic for N-2 degrees of freedom.
When simulated samples are generated with positive  trend
parameter β , the test statistic t can be calculated and the
proportion of samples for which the null hypothesis
H0: β = 0 is not rejected, estimates the Type II Error for the
test. Similarly for the ML procedure: the test statistic
u = /

^

MLβ √(var ML

^
β ) can be compared, using Normal theory,

with the tabulated values u = 1.645 and u = 1.96 for  one-
and two-sided tests respectively, using var ML

^
β  = 12 /

[a N(N 2–1)], in which a  is the ML estimate of the scale
parameter. For the non-zero values of β used to simulate
samples, the proportion of samples for which the null
hypothesis H0: β = 0 is not rejected, estimates the Type II
Error for the test. These alternative methods for calculating
Type II Errors, and hence the power of the tests, of the LR
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and ML test procedures were calculated, and are denoted
by LR2 and ML2, to distinguish them from the procedures
LR1, ML1 described above. Their characteristics are shown
in Table 2, indicating that the differences between the Type
II Errors for the LR1 and LR2 procedures, and between
ML1 and ML2 procedures, are enhanced.

To explore whether ML estimates of the trend parameter
β can reasonably be assumed to follow Normal distributions
when estimated from Gumbel-distributed data with sample
sizes N = 30 and N=50, quantile plots were calculated, in
which linearity indicates conformity with the Normal
hypothesis. These plots are shown in Figs. 1 and 2.

This section has described how the properties were
obtained of LR and ML estimates of the linear trend
parameter β. The non-parametric Mann-Kendall (MK) test
for trend, referred to earlier, provides a test for the statistical
significance of trend (not necessarily linear) without
providing an estimate of the trend magnitude. The following
section describes the procedures for comparing the powers
of  significance tests of the hypothesis H0: β = 0, against
the one-sided alternative H1: β > 0, and the two-sided
alternative H1: β ≠ 0, for the LR, ML and MK approaches.

Method for comparing powers of  (a)
ML, (b) LR, (c) MK tests of the
hypothesis ‘trend absent’ (βββββ= 0)
against the alternatives βββββ > 0 and
βββββ ≠≠≠≠≠ 0
The powers of the three tests were compared by simulation.
For the ML and LR tests, a 5% critical region was calculated
by simulating 600 samples, all from the distribution in (1)
for which  β = 0. Thus the size of the test was 0.05 in all
cases. For each sample generated, the estimated trend
coefficients MLβ and LRβ were calculated, together with
either the 95% quantile (where the alternative hypothesis
was H1: β > 0) or the 2.5% and 97.5% quantiles (where the
alternative hypothesis was H1: β ≠≠≠≠≠ 0). For the procedures
LR1 and ML1, these quantiles then defined regions for
which the Type I Error – that is, the error occurring when
the null hypothesis  H0: β = 0 is rejected, although true –
was known and equal to 5% (that is, in 5% of a very large
number of samples from the distribution (1), the estimate

^
β  of the linear trend coefficient would fall in the critical
region, leading to the conclusion that trend existed where it
did not). Having defined the critical regions, sets of 600
samples were again generated for known values of β, now
different from zero and given the values shown in Tables
(1a); the estimates         and       were calculated for each
sample generated, but this time the proportions (out of 600

samples) falling outside the critical regions were calculated.
These proportions estimate the Type II Errors – the
probabilities that randomly-selected samples from the
distribution (1a), with trend parameter β different from zero,
lead to estimates  MLβ , LRβ falling within the region of
acceptance for the null hypothesis H0: β=0, although that
hypothesis is false. Thus, the test size was fixed at 5%, but
the Type II Error could be, and was, different for the different
test procedures; and the Type II Errors are related to the
power of the test through the relation ‘power = 1 – Type II
Error’, so that the larger the Type II Error, the smaller is the
power of the test. Powerful tests have small Type II Errors,
but the magnitude of the Type II Error depends upon the
(true but unknown) value of β in the alternative hypothesis
H1.

For the LR2 and ML2 procedures, the critical values for
the tests were not determined by simulation, but were
determined by the appropriate tabulated values of the t-
statistic in the case of LR2, and from the appropriate values
of the standard Normal N(0,1) distribution, in the case of
ML2, as given in the preceding section. However the Type
II Error, and hence the power of each test, was determined
by simulating sets of 600 samples, and counting the
proportion that fell outside the critical region so determined.

For the Mann-Kendall test, the procedure was similar to
that used for LR2 and ML2, although the MK test gives no
estimate of the trend coefficient. In the MK test, a statistic
Z is calculated which, in the absence of trend and for the
sample sizes N = 30 and N= 50 used in this paper, has a
probability distribution that is well approximated by the
standard Normal N(0, 1) distribution. Thus for each of the
600 samples generated with β =0 (the distribution (1)) the
test statistic Z was calculated, and the quantiles obtained
that defined the 5% critical regions for the test.  When the
test statistic Z is compared with appropriate deviates from
the standard Normal distribution, the 5% critical regions
should be |Z| > 1.96 for the two-sided test (H1: β ≠ 0) and Z
> 1.645 for the one-sided test (H1: β > 0). In fact, the 600
samples from the distribution (1) gave, for the two-sided
tests,  critical regions  –1.76 < Z <1.94 and –1.924 < Z
<1.974 for sample sizes N = 30 and N = 50 respectively,
and for the one-sided tests, critical regions  Z > 1.647 and Z
> 1.601 for N = 30 and N = 50. As with the ML and LR test
procedures, sets of 600 samples with values of β shown in
Table 1(a) were used to establish the proportions out of the
600 samples generated, for which the MK test statistic Z
fell outside the critical region, this proportion being an
estimate of the Type II Error. Table 2 presents the Type II
Errors for N = 30 and N = 50, for one-sided and two-sided
alternatives H1, obtained for the five test procedures.

MLβ LRβ
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Fig. 1. Normal plots of Maximum Likelihood estimates of linear trend parameter β, calculated from 600 samples of size N = 30 drawn from a
standard Gumbel distribution (u = 0, a = 1) with superimposed linear trend: trend parameter β = 0, β = 0.02137, β = 0.04275, β= 0.0855.

Fig. 2. Normal plots of Maximum Likelihood estimates of linear trend parameter β, calculated from 600 samples of size N = 50 drawn from a
standard Gumbel distribution (u = 0, a = 1) with superimposed linear trend: trend parameter β = 0, β = 0.01282, β = 0.02565, β = 0.05130.
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Table 1(a). Means of 600 samples generated from a standard Gumbel distribution
(u =0, a=1) with superimposed trend  β  of magnitude shown.

N = 30.
Means of estimated trend parameter b (equal to increases in E[Y] of 0, ½σ, σ  and 2σ over
period of artificial record of length N = 30):

β = 0: β = 0.02137: β = 0.04275: β = 0.0855:
LR: – 0.0003789 + 0.02113 + 0.04276 + 0.08353

(± 0.02113) (± 0.02108) (± 0.02115) (± 0.02105)
ML: – 0.0009326 + 0.02106 + 0.04202 + 0.08368

(± 0.03929) (± 0.03888) (± 0.03974) (± 0.03869)
[Note the convention that 0.03869 = 0.000869 or 0.869 × 10–4]

N = 50.
Means of estimated trend parameter β (equal to increases in E[Y] of 0, ½σ, σ  and 2σ over
period of artificial record of length N = 50):

β = 0: β = 0.01282: β = 0.02564: β = 0.0513:
LR: + 0.0002929 + 0.01275 + 0.02583 + 0.05131

(± 0.03493) (± 0.03509) (± 0.03508) (± 0.03528)
ML: + 0.0002303 + 0.01282 + 0.02597 + 0.05125

(± 0.03399) (± 0.03405) (± 0.03409) (± 0.03407)

Table 1(b). Variances of 600 samples generated from a standard Gumbel distribution
(u =0, a=1) with superimposed trend  β of magnitude shown.

N = 30.
Variances of estimated trend parameter β (equal to increases in E[Y] of 0, ½σ, σ  and 2σ over
period of artificial record of length N = 30):

        β = 0: β = 0.02137: β = 0.04275: β = 0.0855:
LR:     0.037624  0.036999 0.037920 0.036623
ML:     0.035178 0.034731 0.035692 0.034527

Ratio,
LR/ML: 1.47 1.48 1.39 1.46

N = 50.
Variances of estimated trend parameter β (equal to increases in E[Y] of 0, ½σ, σ  and 2σ over
period of artificial record of length N = 50):

        β = 0: β = 0.01282: β = 0.02564: β = 0.0513:
LR: 0.031459 0.031554 0.031546 0.031672
ML: 0.049547 0.049835 0.031006 0.049926

Ratio,
LR/ML: 1.52 1.58 1.54 1.68
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Table 2. Type II Errors for the LR, MK and ML test procedures, all with Type I Error 5%, with one- and two-sided alternatives,
and two sample sizes N = 30 and N = 50. Figures in brackets are standard errors.

Alternative (one-sided) hypothesis H1: β > 0.

N = 30:
β = 0.02137: β = 0.04275: β = 0.0855:

LR1: 0.1800 0.4817 0.9100
(± 0.0157) (± 0.0203) (± 0.0117)

LR2: 0.1733 0.4783 0.9333
(± 0.0154) (± 0.0204) (± 0.0102)

MK: 0.0767 0.2217 0.8050
(± 0.0109) (± 0.0170) (± 0.0162)

ML1: 0.2350 0.5883 0.9850
(± 0.0173) (± 0.0201) (± 0.0050)

ML2: 0.2567 0.6167                 0.9850
(± 0.0178) (± 0.0198) (± 0.0050)

N = 50:
β  = 0.01282: β  = 0.02564: β  = 0.0513:

LR1: 0.3217 0.7367 0.9917
(± 0.0191) (± 0.0180) (± 0.0037)

LR2: 0.2767                  0.6667                0.9917
(± 0.0183) (± 0.0192) (± 0.0037)

MK: 0.1100 0.3313 0.9583
(± 0.0128) (± 0.0192) (± 0.0082)

ML1: 0.3317 0.8067 0.9983
 (± 0.0192) (± 0.0161) (± 0.0017)

ML2: 0.3583 0.8267 0.9983
(± 0.0196) (± 0.0154) (± 0.0017)

Alternative (two-sided) hypothesis H1: β ≠ 0.

N = 30:
β = 0.02137:  β = 0.04275: β = 0.0855:

LR1: 0.1267 0.3633 0.8550
(± 0.0136) (± 0.0196) (± 0.0144)

LR2:  0.1017                  0.3790 0.8650
(± 0.0123) (± 0.0198) (± 0.0140)

MK: 0.0683 0.1517 0.7150
(± 0.0102) (± 0.0146) (± 0.0184)

ML1: 0.1383 0.4483 0.9700
(± 0.0141) (± 0.0203) (± 0.0070)

ML2:  0.1717 0.5000 0.9700
(± 0.0154) (± 0.0204) (± 0.0070)

N = 50:
β  = 0.01282: β = 0.02564: β  = 0.0513:

LR1: 0.2317 0.6433 0.9867
(± 0.0172) (± 0.0196) (± 0.0047)

LR2: 0.1750 0.5133 0.9733
(± 0.0155) (± 0.0204) (± 0.0066)

MK: 0.0500 0.2217 0.9093
(± 0.0089) (± 0.0170) (± 0.0117)

ML1: 0.2533 0.7333 0.9967
(± 0.0178) (± 0.0180) (± 0.0023)

ML2: 0.2567 0.7383 0.9967
(± 0.0178) (± 0.0179) (± 0.0023)

Discussion
Tables 1(a) and 1(b) give the means and variances of
estimated values of the single linear trend parameter β
estimated by LR and by ML, for the two sample sizes N =
30 and N = 50, obtained by generating 600 artificial samples
in each case. Table 1(a) shows that for both sample sizes,
the ML estimates are effectively unbiassed (although for
N = 30 and β = 0, the mean of the ML estimates of β is well
over twice that of the LR estimates that were shown to be
unbiassed); for N =30 and positive values of β, the LR and
ML means are almost identical. However, Table 1(b) shows
marked differences in variances given by the two estimation

procedures; for both sample sizes N = 30 and N= 50, and
for all values of the trend parameter β, the variances given
by the ML procedure are substantially less than the variances
of the LR estimates, although for both sample sizes the ratio
var[ LRβ ] / var[ MLβ ] is less than its asymptotic value 1.64,
being approximately 1.45 for N = 30, and rather larger, about
1.58, for N = 50. This suggests that, when the record length
N is smaller than that for which asymptotic results can be
expected to apply, there is still a substantial gain in the
precision with which the trend parameter β is estimated by
ML, relative to the precision given by LR, but the reduction
in variance is proportionately smaller.
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A point of interest concerns the variances of LRβ and of
MLβ when the true trend is zero, β = 0. It was shown above

that var[ LRβ ] = π2 /( 6a2 S tt) = 2π2/[N(N2-1)] =
0.0373189 and 0.0315798 for N = 30 and N = 50 respectively,
when the t-values are equally spaced; the variances of  LRβ
obtained for the two sets of 600 simulated samples are close
to these values, 0.037624 and 0.031459 respectively.
Similarly for var[ MLβ ] = 12 / [a2N(N2 – 1) ]; for N = 30,  N
= 50 and α =1, this has values 0.034449 and 0.0496038,
and the variances of MLβ obtained in the simulations were
0.035178 and 0.049547 respectively.

With regard to the Normality of the ML estimates of β,
Figs. 1 and 2 show no evidence that it would be inappropriate
to assume that MLβ  is Normally distributed, even for
samples as small as N = 30.

Table 2, giving the Type II Errors for the LR, MK and
ML test procedures, shows that these errors are greatest for
the Mann-Kendall test, the difference between this and LR,
ML being especially marked as the trend coefficient β
increases. As expected, the Type II Errors are smaller for
N = 50 than for N = 30, more ‘data’ providing better
sensitivity; while for all three tests, the errors diminish with
increasing β, as expected. For all values of β and both sample
sizes, ML estimation has smaller Type II Errors than either
MK or LR test procedures,  the difference between ML and
LR is not very great when β is small, but is very substantial
for larger values of β.

Conclusion
The case has been discussed where sequences of
hydrological data can be expected to follow a Gumbel
distribution, possibly with time-variant mean. It has been
assumed that the time-trend in mean value is determined by
a single parameter β to be estimated by Maximum
Likelihood (ML). The large-sample variance of the ML
estimate MLβ  has been  compared with the variance of the
trend LRβ  calculated by linear regression; the latter was
found to be 64% greater. Simulated samples from a standard
Gumbel distribution were given superimposed linear trend
of different magnitudes, and the power of three procedures
for testing the existence of linear trend (Maximum
Likelihood, Linear Regression and the non-parametric
Mann-Kendall test) were compared. ML procedures were
always the most powerful; the MK test procedure was always
the least powerful by a substantial margin.
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