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Abstract
The scaling behaviour of landscape properties, including both morphological and landscape patchiness, is examined using monofractal and
multifractal analysis. The study is confined to two neighbouring meso-scale catchments on the west coast of the South Island of New Zealand.
The catchments offer a diverse but largely undisturbed landscape with population and development impacts being extremely low. Bulk
landscape properties of the catchments (and their sub-basins) are examined and show that scaling of stream networks follow Hack’s empirical
rule, with exponents ~0.6. It is also found that the longitudinal and transverse scaling exponents of stream networks equate to lv  ≈  0.6 and

wv ≈ 0.4, indicative of self-affine scaling. Catchment shapes also show self-affine behaviour. Further, scaling of landscape patches show
multifractal behaviour and the analysis of these variables yields the characteristic parabolic curves known as multifractal spectra. A novel
analytical approach is adopted by using catchments as hydrological cells at various sizes, ranging from first to sixth order, as the unit of
measure. This approach is presented as an alternative to the box-counting method as it may be much more representative of hydro-ecological
processes at catchment scales.  Multifractal spectra are generated for each landscape property and spectral parameters such as the range in α
(Holder exponent) values, and maximum dimension at α 0, (also known as the capacity dimension Dcap), are obtained. Other fractal dimensions
(information Dinf and correlation Dcor ) are also calculated and compared. The dimensions are connected by the inequality Dcap ≥  Dinf ≥  Dcor.
Such a relationship strongly suggests that the landscape patches are heterogeneous in nature and that their scaling behaviour can be described
as multifractal. The quantitative parameters obtained from the spectra may provide the basis for improved parameterisation of ecological and
hydrological models.
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Introduction
Many terrestrial processes are modified or influenced by
the interaction of landscape patterns with the process. For
example, hydrological response to rainfall depends on,
amongst other factors, the variability of landscape properties
such as vegetation cover, soil types and the underlying
geology of the terrain. The nature of this variability is scale-
dependent and affected by a variety of landscape properties
that are the sources of the variability. To understand this
variability, heterogeneity must be investigated and quantified
with respect to scale. In a previous study (Nikora et al.,
1999) “bulk” landscape patterns were examined for the
North and South Islands of New Zealand using landscape
data on soils, vegetation, hydrogeology and topography.
Fractal analysis revealed scaling at two structural levels:

(i) individual patch level and  (ii) mosaics (sets) of patches,
and furthermore, the scaling properties of individual patches
influence those for mosaics of patches, and vice versa.

Patch shapes showed self-similarity at smaller scales but
increasing self-affinity at larger scales. Scaling is said to be
self-similar if rescaling is equal in all directions (isotropic),
but self-affine if the objects scale differently in the horizontal
and transverse directions (anisotropic).

In this study, the focus is on the “catchment” scale and
the aim is to characterise the fractal and multifractal scaling
properties of the same landscape properties but in the context
of hydrological catchments. The additional information
provided by this study should lead to an improvement of
hydrological and ecological model predictions. The need
for such quantitative descriptions of landscape heterogeneity
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was highlighted in earlier hydrological and ecological
studies (Pearson, 1995; Milne et. al., 1992; Gardener et al.,
1987). Many physically-based hydrological models use
spatially distributed information on soils, vegetation and
topography. However, there are limits to what can be
measured in the field. Data are often interpolated or
extrapolated to provide a representation of field conditions
as input to these models. Many of these efforts result in
only marginally better and sometimes worse correspondence
with measured values, partly due to the variability of such
input data. It is believed that if the nature of this variability
is understood and quantified appropriately then model
predictions would improve (Seyfried and Wilcox, 1995;
Puigdefabregas and Sanchez, 1996). Therefore, the aim of
this study is to quantify each landscape property examined
previously and to investigate how it changes with scale from
the smallest catchment (sub-basin), enclosing “single”
streams, to the largest catchment of the river system. Two
river systems of the west coast of the South Island of New
Zealand were chosen — the Grey and Buller catchments —
each draining several thousand square kilometres.
Landscape data derived from a national land resource
database (Newsome, 1992) were analysed using different
fractal methods. The analysis begins by examining the
scaling behaviour of “bulk” properties using a monofractal
approach, following the hypothesis that landscape properties
demonstrate fractal scaling within the context of catchments,
in a similar way to a previous study of landscape patchiness
in New Zealand (Nikora et al., 1999). Next, the hypothesis
that scaling is more likely to be multifractal than monofractal
is examined. Strong hints of non-monofractal behaviour
were suggested in the previous study, and further, it is known
that cascading terrestrial processes can possess an infinite
number of singularities (many dimensions) on a given
substrate (which may also have its own and separate fractal
dimension).

Recent studies ( Rinaldo et al., 1992; Rigon and Rinaldo,
1993) show that such behaviour is exhibited by important
hydrological variables such as slopes, contributing areas,
width functions, etc. It would therefore be expected that
other terrain properties would also show such behaviour.

Data
CHANNEL NETWORK AND CATCHMENT
BOUNDARY EXTRACTION

Two neighbouring catchments, the Buller (6370 km2) and
the Grey (3910 km2), located in the northern part of the
west coast of the South Island of New Zealand (Fig. 1) were
chosen for this study. The basins were chosen not for a

comparative study of their properties but rather to illustrate
and study their heterogeneity. The two examples offer unique
landscapes for study because they have remained largely
untouched by anthropogenic effects. Large variations in
landform are found in these basins, and are the result of
wide-ranging lithology, vegetative cover, and an annual
rainfall that is one of the highest in New Zealand. The
geomorphology of the basins is determined largely by their
tectonic setting, to the west of the Southern Alps and the
Alpine Fault (SW to NE orientation). Fault lines also splay
onto areas of the Buller basin. The lithology ranges from
granite to greywacke, passing into schist, which becomes
increasingly metamorphosed at the Alpine Fault. The
proximity of the basins to the mountainous divide results in
high rainfall, brought by prevailing warm westerlies.
Rainfalls as high as 8000 mm per annum have been recorded
in this region. Typically, for the Buller the range is from
1500 to 6000 mm yr–1 and 2000–5000 mm yr–1 for the Grey.
The high rainfall and mild year-round temperatures have
resulted in luxuriant vegetative cover of both native and
planted forests up to an elevation of 1000 m, with scrub and
mountainous vegetation above that. Pockets of other
vegetation are found in the flatter coastal areas. The rivers
are large and steep, and the landscape is characterised by
steeply sloping hillsides that drain into gravel riverbeds.

Catchment (sub-basin) boundaries for the two basins were
extracted, firstly by processing 20 m contours (Land
Information New Zealand, 1999) into a 30 m DEM using
TOPOGRID which is available within the GIS Arc/Info
(ESRI, 1992). Once the DEM was obtained and pit filled
(i.e.  areas of cells that are completely surrounded by cells
of higher elevation are raised to the elevation of their lowest
neighbour), it was processed further using software provided
by D.G. Tarboton (Utah State University). The simplest and
most common method for defining flow directions is based
on the use of a single support area threshold, combined with
a D8 flow direction method. More recently, methods that
involve partitioning of the flow between multiple
neighbouring cells (Tarboton, 1997) have been used,
together with alternative methods of thresholding (e.g. using
slope and contributing areas, Montgomery and Foufoula-
Georgiou, 1993), and by using a threshold obtained from
locally upward curved grid cells (Peuker and Douglass,
1975). For the two basins in this study it was found that the
best river networks are obtained by using the Peuker-
Douglass upward curved grid cells approach (Tarboton and
Shankar, 1998). This was done by examining slope-area
plots and statistics of elevation drops in Strahler-ordered
streams, and further by subjective comparison of contour
crenulations. Once the channel network was obtained from
the DEM it was imported into Arc/Info, and ordered using
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Fig. 1. Map showing the location of the catchments studied.

the Strahler ordering system. Sub-basin boundaries were
delineated at every node intersection (i.e. where two or more
channels meet) and the resulting catchments assigned stream
orders based on the main channel segment within each
boundary.

Landscape properties for New Zealand are available from
the New Zealand Land Resource Inventory (NZLRI)
(Newsome, 1992). Use of the data and extraction of relevant
properties for study were described in a previous paper
(Nikora et al., 1999) and are listed in Table 1. In the earlier
study the spatial distribution of these patches was examined
within the context of New Zealand as a whole whereas, here
within catchment, patch distributions are examined for the
two catchments. Sub-basins of the catchments were
extracted, ranging from first order to sixth order for the
Buller and first to fifth order for the Grey. Using the GIS,
basins were overlaid on the derived channel network and
landscape patches. A total of 8555 sub-basins in the Buller
and 4878 sub-basins in the Grey, ranging from 0.5 km2 to
981 km2, were analysed. The number of patches analysed
for each landscape property (Table 1) ranged from 11 800
for “minimum porosity” of soil for the Grey to 28 000 for
the slope category for the Buller.  The sub-basin properties
determined are listed in Table 2 and illustrated
diagrammatically in Fig. 2.

Method
Intuitively, one would expect the movement and distribution
of freshwater on land to be influenced by the myriad of
landforms and the heterogeneous nature of landscape
patterns. Indeed, hydrological and ecological studies in the
past have highlighted this influence and the need to
incorporate the heterogeneity in both spatial and temporal
studies of these processes (Pearson, 1995; Seyfried and
Wilcox, 1995; Becker and Braun, 1999). To characterise
landscape heterogeneity questions such as: “what landscape
properties are responsible for the apparent heterogeneity
observed in landscapes, and how and at what scales do they
manifest themselves?” should be addressed.

One approach is fractal analysis (Mandelbrot, 1977;
Goodchild and Mark, 1987; Milne, 1991), which offers a
means by which landscape properties can be quantified and
characterised. Rodriguez-Iturbe et al. (1994) used self-
organised criticality (SOC) concepts to show that landscape
evolution through erosive and diffusive processes gives rise
to modelled landforms which show fractal and multifractal
(characterised by a hierarchy of fractal dimensions)
behaviour. This is reflected in the fractal scaling properties
exhibited by stream lengths (Nikora et al., 1996; Tarboton
et al., 1988 ) and accumulated areas (Nikora et al., 1999;
Rinaldo et al., 1992 ). Multifractal behaviour was shown
by Rodriguez-Iturbe et al. (1994) to be the result of spatially
variable field properties, which reflect the interaction of the
soil mantle with, for example, geology and climate amongst
other factors. In an earlier study of landscape scaling
properties (Nikora et al., 1999) it was found that patches of
landscape properties (for example soils, vegetation,
hydrogeology and topography) showed scaling behaviour
that was fractal in nature. Similarly, mosaics of these patches
also showed fractal scaling in patch area and boundary
distribution, and further, this scaling behaviour was
influenced by individual patches and vice versa.

This study therefore attempts to answer these questions
through the following investigations:
(1) scaling of all catchment properties (both morphometric

and landscape);
(2) scaling at increasing sub-basin orders, and finally;
(3) a multifractal analysis of all properties.

SCALING IN CATCHMENT PROPERTIES

(a) Morphometric parameters

The scaling behaviour of channel networks is studied using
previously established methods (Nikora and Sapozhnikov,
1993a; Nikora et al., 1996). The method uses relationships
which connect longitudinal (l) and transverse (w) scales of

Buller/
Grey
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Table 1.  Description of landscape patch types and classes.

Patch type Class Description Patch type Class Description

Slope 1 0-3 deg Erosion 1 negligible
2 0-3 deg and dissected 2 slight (1-10% of land affected)
3 0-3 deg mixed 3 moderate (11-20%)
4 4-7 deg 4 severe (21-40%)
5 4-7 deg and dissected 5 very severe (41-60%)
6 4-7 deg mixed 6 extreme(>60%)
7 8-15 deg Hydrogeological 1 very low
8 8-15 deg and dissected properties 2 low
9 8-15 deg mixed 3 high low
10 16-20 deg 4 medium
11 16-20 deg and dissected 5 high medium
12 16-20 deg mixed 6 high
13 21-25 deg 7 medium high
14 21-25 deg and dissected 8 very high
15 21-25 deg mixed Soil drainage 1 very poorly drained soil
16 26-35 deg 2 poorly drained
17 26-35 deg and dissected 3 imperfectly drained
18 26-35 deg mixed 4 moderately well drained
19 >35 deg 5 well drained
20 >35 deg and dissected 6 high-excessively drained
21 >35 deg mixed 7 excessively drained

Depth weighted 1 1-3% volume
Vegetation 1 bare land macroporosity 2 4-6%

2 short grass of soil 3 7-9%
3 long grass 4 10-12%
4 short crops 5 13-15%
5 tall crops 6 16-20%
6 short scrub 7 >21%
7 tall scrub Minimum 1 1-3% volume
8 exotic forest porosity of soil 2 4-6%
9 native forest 3 7-9%
10 short weeds 4 10-12%
11 tall weeds 5 13-15%

6 16-20%
7 >21%

a channel network with the total length (L) of the network
through scaling exponents vl (longitudinal) and vwl
(transverse).  Further, by use of a simple law proposed by
Mandelbrot (1977), the main river length (L) and the total
length (L) of a drainage network can also be related to its
area (A) by:

γAL   ∝ (1)

                   (2)

where γ and ε  are scaling exponents.
By combining and rearranging equations (Nikora and

Sapozhnikov, 1993a) it can be shown that:

(3)

where vli is similar to vl and relates the main channel length
L to the straight line projection between ends:

lilL ν/1∝ (4)L εA∝

L )(//)/(1/ )( lwllillillwllil AA νννννννννν ++ =∝/1 lilL ν ∝∝
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Exponents γ and ε can be equated as follows:

(5)

(6)

and evaluated from the regression slope of a log-log power
law plot between river lengths and catchment (and sub-
basin) area. Scaling exponents vl  and vli are calculated from
(5) and (6).  In these and subsequent equations the inequality
in dimensions between both sides of the equation is
addressed by the introduction of a proportionality constant.
The slope of the regression lines provide the dimensions
that reflect the scale independent repetitions of pattern
complexity and structure, which is the focus of this study.

(b) Catchments

The scaling properties of catchments are examined using a
modified form of Hack’s Law (Ijjasz-Vasquez et al., 1993;
Rigon et al., 1996). Here  maximal catchment length lt  is
related to its area  by A:

                     γAlt ∝ (7)

and γ (the same scaling exponent as in Eqn. 1) evaluated.
Since area scales with length and width then:

(8)

where w is the catchment width (orthogonal to lt ) and H is
the scaling exponent that is related to the shape of the
catchment (shape is determined by the ratio w / lt ). When
H=1 the scaling is described as self-similar, and when H < 1
self-affine (shape changes with scale lt ).

(c) Landscape patches

Scaling relationships of landscape patches are investigated
by testing the relationship:

(9)

where Vi  is the value of a landscape measure (for e.g. the
total area of a forest patch within a sub-basin boundary, or
the total perimeter of all forest patches inside that boundary).
Table 1 lists the properties studied.

Table 2.  Description of catchment (sub-basin)  geometrical
properties extracted

Description Symbol

1. length of the longest channel inside a basin   L
2. the straight line distance between the ends of

the channel projection    l
3. total length of the channel network projection   L
4. geometric length, which is the straight line

length from the outlet to the source
(indicated by the crenulations of the contour)    lg

5. link length, which is the longest upstream
path from a stream junction to the end of
the network    ln

6. basin area    A
7. the basin perimeter   P
8. maximum basin elevation   sh
9. minimum basin elevation   oh
10. maximal length of a basin, measured from

its outlet   tl
11. maximal width of a basin, orthogonal to 

tl   w
12. area of a patch for landscape property i ;

j represents its class;  ijA
13. perimeter of a patch  ijP
14. total number of patches within a basin  N.

Fig. 2. Sketch showing the catchment(sub-basin) parameters used in
the fractal and multifractal analysis. L, is the length of the longest
reach in the network from source to outlet; l, the straight line
distance between source and mouth of longest reach; L, the total
length of the channel network in a basin; lt , maximal straight length
of a basin measured from its outlet; w, maximal width of a basin
orthogonal to the maximal length; A, basin area; Aij, area of a patch,
i represents a sub-basin property and j the class within that property
(eg. vegetation type - native forest, scrub etc.).
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SCALING AT INCREASING (CUMULATIVE) SUB-
CATCHMENT ORDERS

Landscape patch size and frequency are related through the
following probability distribution (Nikora et al., 1999):

(10)

This expression is known as Korcak’s law ( Mandelbrot,
1983), where a is the patch area which is greater than some
limiting area A, and β is the Korcak exponent, which is
usually interpreted as half of the patch fractal dimension
(D). Hastings and Sugihara (1993) present examples of this
approach in describing vegetation patches.

MULTIFRACTAL ANALYSIS OF CATCHMENT
PROPERTIES

Previous studies (Nikora et al., 1999; Rodriguez-Iturbe et
al., 1994; Goodchild and Mark, 1987) have demonstrated
that many landscape properties show a multifractal scaling
relationship, with the scaling behaviour described by a whole
family of different exponents.

The frequency distribution of the density of a landscape
measure (property) can be related to the size of the i-th box
covering the property through:

(11)

Here the normalised probability density pi(ε), scales with
size ε, (where ε = r/R, r is the box size and R is the region
size). ε provides a measure of the proportion of the variable
within a box (e.g. how much mass) and α is a non-integer
exponent known as the crowding index or Lipschitz-Holder
exponent. Although α depends on the actual position on
the fractal, there are usually many boxes with the same index.
In general, the number of such boxes scales with ε  as:

(12)

where f(α) is the fractal dimension of the subset of boxes
characterised by the same α value. The function f(α) , which
is called the multifractal spectrum, gives a full description
of any fractal object, including any uniform fractals. The
f(α)  spectrum for the latter is simply a single point on the
f – α  plane.

The function f(α) is directly connected with the so called
generalised fractal dimension Dq (Hentschel and Procaccia,
1983) which follows from the relation:

(13)

where quantity χq(ε) is the sum over all boxes of the q-th
power of box probabilities (quantities),             The
quantity p in Eqn. (13) is a density or probability and can
be substituted by any correctly scaled variable, e.g. it can
be replaced by sub-basin mainstem channel length provided
this is scaled by the mainstream length for the whole
catchment that includes the sub-basin. The function
(Grassberger and Procaccia, 1983):

(14)

is also a quantitative characteristic of multifractal objects,
like f(α). When q=0, DDq ≡=0 , which is the fractal
dimension of the support set of the variable being studied.
At the limits when ∞→q  minα=∞D  and  αmax.  The latter
two variables establish the extent of heterogeneity for a
particular property and is often used as a measure of
heterogeneity. The function  f(α) is the Legendre transform
of the function (Meneveau and Sreenivasan, 1991):

(15)

where

The direct application of the above through the traditional
box-counting method is not necessarily appropriate for
studying catchment processes because of the arbitrary size
of cells of scale ε and the presence of distinct boundaries in
the data, e.g. a ridge line. Box-counting has its drawbacks,
particularly with respect to curves with intricate details
(Longley and Batty, 1989).  For the method to be more
relevant to hydrology, the use of a special hydrological cell
is proposed. This cell is a river catchment derived for all
orders of the stream network. Equation 13 can be rewritten
for the quantity Q (which is a measure of a landscape
property such as vegetation class, slope, land-use or soil
type etc.) as:

(16)

where Lt is the global length for the whole catchment (all of
the Grey or Buller) and lt  is an individual catchment (sub-
basin) length. To make Eqn. (16) workable it is modified
to:

(17)

where j is the catchment order, and tjl  is the average length
of catchments of order j. Equation (17) can be used to
investigate any quantification of heterogeneity relevant to

β−∝> AAaF )(

αεε ∝)(ip

)()( α
α εε fN −∝

qDqqq
iq p )1()()()( −∝∝= ∑ εεεεχ τ

.∞<<∞− q



Heterogeneity in catchment properties: a case study of Grey and Buller catchments, New Zealand

173

hydrology, the main output being the generalised dimensions
Dq or the multifractal spectrum f(α). If the exponent α,
defined in (11) spreads over a range of values, and for each
α the scaling Eqn. (12) holds then the landscape properties
can be said to show multifractal behaviour. If α does not
vary, then only monofractal or simple scaling behaviour is
said to be displayed. In this case, both τq and Dq will show a
constant value for different values of q.

Results and discussion
SCALING OF MORPHOLOGICAL PARAMETERS

The scaling relationship of catchment morphometry is
examined by plotting the main river lengths and total
network lengths against the corresponding catchment areas
(log-log plots). These are shown in Figs. 3 and 4, for both
the Buller and Grey catchments. A straight line is obtained
by fitting linear regression lines to all data from catchments

of order 3 and above. Two scaling regions are clearly
distinguishable, one at areas below 1 km2 and the other above
1 km2. These results are similar to previous findings of the
Hutt River study, in New Zealand (Nikora et al., 1996), and
confirm the notion that river networks scale fractally with
catchment area. The region below 1 km2, largely confined
to first order catchments, shows a large distribution of values
and no discernible scaling is apparent until what appears to
be a critical area. Is this indicative of multiple scaling?
Results on multifractals below provide some clues.

The first set of graphs (Figs. 3, 4) give γ = 0.59 for the
Buller and γ = 0.58 for the Grey in Eqn. (1) , which is close
to the exponent in Hack’s empirical rule L = kAγ, where k is
typically 1.4 and γ is between 0.57-0.59 (Gray, 1961). The
plot of total river length against catchment area also shows
the expected value of  near unity for ε (Nikora et al., 1996).
Figure 5 demonstrates the relationship livlL /1 ∝ . A linear
relationship with a value liv ≈ 1.0, is similar to the value

Fig. 3. Relationship of (a) main river length, and (b) total network
length to catchment area for Buller.

Fig. 4. Relationship of (a) main river length, and (b) total network
length to catchment area for Grey.
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Fig. 5. Relationship of  main river length with the straight line
distance between ends of channel projection for (a) Buller and (b)
Grey.

Fig. 6. Relationship between (a) catchment maximal length and
catchment area, and (b) catchment width and maximal length for
Grey.

reported elsewhere (Nikora et al., 1996, Nikora and
Sapozhnikov, 1993a). Combining these values and using
Eqns. (5) and (6) vl is estimated as ≈  0.6 and and vwl    0.4
suggesting self-affinity (different scaling exponents in the
longitudinal and transverse directions). The two values are
close to those obtained in the previous study of the Hutt
River and well within the range of values reported for other
regions of the world (Nikora and Sapozhnikov, 1993b). For
self-similar networks Dvv lwl /1== , where D is the channel
fractal dimension. In the case where self-affinity lwl vv ≠  is
shown, the fractal dimension DG, also known as the
lacunarity dimension (Turcotte, 1997), is calculated as
DG = 2/(vl + vwl) ≈  2. This suggests a space filling network,
which can also be interpreted as a geologically unconstrained
(Phillips, 1993) network. The Hurst exponent,  H = vwl +vl,

which is also a measure of self-affinity in different directions
is calculated to be 0.67, close to reported values. The
behaviour of the stream network in both of these catchments,
at least at the larger scales (>1 km2), suggests fractal scaling
with a degree of self-affinity. However, this does not
preclude different scaling relationships for values below the
threshold of 1 km2.

SCALING OF CATCHMENT SHAPE

Figure 6a shows a linear relationship when log lt (catchment
length) is plotted against log A (area). A value of γ = 0.51
(Eqn. 7) is obtained for both basins. This is consistent with
data obtained for basins in the United States (~ 0.52 by Rigon

≈
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et al., 1996), and establishes that catchments in this study
indeed scale fractally. Furthermore, the scaling is self-affine
as indicated by a value of 0.87 (Figure 6b) for H (Eqn 8).
This is also consistent with previous studies (Maritan et al.,
1996; Rodriguez-Iturbe et al., 1997) and indicates that the
shapes of catchments are determined by different scaling
exponents in the transverse and longitudinal directions and
suggests a tendency for elongation as the catchment gets
larger.

SCALING OF LANDSCAPE PATCHES

A similar test of scaling relationships following relationship
(9) above is shown in Fig. 7. Here total area of vegetation
patches inside respective catchment boundaries is plotted
against catchment area. A linear regression line through the
points produces a poor fit with an r2 ≈ 0.3. This was found
to be true with every landscape property investigated in
Table 1. The spread of data was too wide for a reasonable
straight line to be drawn through them suggesting that
scaling may be more appropriately analysed by multi-scaling
or multifractal techniques. Previous studies of scaling of
landscape patches (Nikora et al., 1999) has shown that a
threshold occurs at about 1 km2 below which scaling of
landscape patches is less readily defined than those of larger
catchments using the monofractal approach.

SCALING AT INCREASING SUB-CATCHMENT
ORDERS

The possibility that landscape scaling exponents may be
distributed over a range of values is also investigated. Patch
areas are ranked first by sub-dividing the landscape
properties into their respective classes and then plotting the
logarithm of the number of patches (N) in each class against
the logarithm of the catchment area (A), as per Eqn. (10),
where N is the number of sample exceedances of area A.
Figure 8 shows a plot of the cumulative probability
distribution of N against catchment area for vegetation
classes between 1 and 11. (Note that in the Grey catchment
only 8 of the 11 possible vegetation classes occur and these
are the ones given in the figure legend). A power law
distribution, as in Eqn. (10) appears to be followed at the
middle ranges of the dataset (1 km2 to 100 km2), but not
for all of the data. Scaling at intermediate regions yield β
(Korcak’s exponent) values between 0.70 ± 0.25 and 0.88
± 0.13. Previously reported values are in the range 0.64 to
0.75 (Nikora et al., 1999) for landscape patches spread over
the whole of New Zealand. One difference between the two
sets of values may be because catchments are used as the
largest limiting area as opposed to the coastline of the North
or South Island of New Zealand. These results indicate that
(i) landscape patches demonstrate fractal scaling behaviour
and (ii) different types of patches scale differently within a
catchment.
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Fig. 7. Graph shows the scatter in data when areas of vegetation
patches are plotted against the catchment area for the Buller.

0.00 0.00 0.01 0.10 1.00 10.00 100.00 1000.00 10000.00

Patch area A, km2

1.00

10.00

100.00

1000.00

10000.00

N
um

be
r (

a>
A)

Grey Vegetation class
2.short grass
3.long grass
6.short scrub
7.tall scrub
8.exotic forest
9.native forest
10.short weed
11.tall weed

ß =  0.88±0.13

ß =  0.70±0.25

Fig. 8. An example showing the scaling relationship of Grey
vegetation patch size (a) at increasing catchment areas for a range
of vegetation types. This is a plot of log of  the number of patches
exceeding a catchment of area A. A best fit line was drawn in the
region of intermediate catchment areas (1-100km2) and slopes
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MULTIFRACTAL ANALYSIS

Following Eqn. (17), the log normalised areas or perimeters
of landscape properties were plotted against log normalised
values of catchment(sub-basin) length (normalisation is with
respect to whole catchment value), i.e.

log
q

i
i

i

i

jQ
jQ∑ ∑ 
















)(
)( versus log

t

tj

L
l

, where , ∑
i

i jQ )(  is the total

area or perimeter of the whole catchment and Lt  is the
maximal catchment length (see Fig. 2). Qi (j)  represents
areas or perimeters of patches of a particular class of slope,
vegetation etc. (Table 1), at every sub-basin of order j, or
network morphometric parameters such as the main length,
total length, minimum and maximum elevation etc.(Fig. 2).
Double log plots show a linear relationship between the
landscape property and the normalised catchment length.
By fitting straight lines through the points for each series
derived for the qth. scaling moment (Fig. 9) τq can be
obtained (Eqn. (17)), for q ranging from –10 to +10.  A
non-linear relationship is observed as shown in Fig.10a.

The generalised fractal dimension Dq is obtained next by
using Eqn. (14). Plots of both τq and Dq against q are shown
for an analysis of drainage area for the Buller catchment
(Fig. 10). Here τq (Fig. 10a) and Dq (Fig. 10b) plot as non-
linear curves with increasing q, suggesting a multifractal
relationship with increasing scaling moments. If only simple
scaling (monofractal), or non-invariant scaling was involved
then a linear relationship would be observed between τq and
q in Fig. 10a and Dq would show a constant value in Fig.
10b.

Equation (15) shows that α (the Holder exponent) can be
determined from the slope of τq versus q plots. The α values
are obtained by estimating the tangent to the curve for a
range of q values. The intercept of each tangent line with
the τq axis gives f(α) values, by Eqn. (15). Both quantities
are determined objectively using a cubic-spline or quadratic
curve (where appropriate) fitting software routine, which
produced f(α) and α values as outputs. Examples of the
resulting plots are shown in Figs. 10c and 11. In Fig. 11
curves were drawn over the resulting points to produce
parabolas known as multifractal spectra for a range of river
morphometric variables for the Grey catchment (Eqn. (11a))
and vegetation patches in the Buller catchment (Eqn. (11b)).
For each curve the maximum value corresponds to the fractal
dimension  f(α0) of the support (the geometric space in which
the multifractal is embedded), i.e. where q = 0. The right
hand side of the curve shows values corresponding to scaling
moments when q < 0 and the left hand side corresponds to
values when q > 0. If the landscape property or variable
under study scales simply (monofractal) then all values of
Dq will be the same for all q as stated earlier, and both α and
f(α) values will plot as a single point on the graph.

The validity of the multifractal spectrum and the inherent
errors from the different numerical procedures have been
highlighted and discussed by others (Veneziano et al., 1995;
Rodriguez-Iturbe et al., 1997). However, it is generally
agreed that the quantities αmax, αmin, f(α0) characterise the
multifractal property of a measure and carry valuable scaling
information.

Multifractal curves are calculated for the catchment
morphometry variables and catchment landscape properties
using the above procedure. The graphs for morphometry
appear to be in two distinct groups, one set belonging to
river network measures such as straight line length, total
length and geometric length and the other set characterising
catchment maximal length and width. Both graphs peak at
values close to 2 (“space filling” or Euclidean support
dimension), but their αmax and αmin values differ significantly.
The former result is also close to the data reported recently
by De Bartolo et al. (2000) for river networks extracted
from Calabrian basins. In that study, (multifractal spectra
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for statistical moments(q) ranging from –10 to +10. The value at
each catchment(sub-basin) order is marked. A slope,τq, was
determined for each line.
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Fig. 10. Scaling of fractal dimensions. (a) shows the relationship of slope τq with q (we would expect a linear relationship if only simple scaling
was observed), (b) shows the scaling of generalised fractal dimension Dq with moment q, and (c) demonstrates a multifractal spectrum, showing
the relationship of the computed f(α) values against α (Holder exponent). Example is for Grey vegetation type 7 (tall scrub).

were obtained using a box-counting technique) the
Lipschitz-Holder exponent, α, was found to be between 1.43
and 1.86, and the support dimension, f(α0), between 1.76
and 1.89. In contrast to catchment morphometry, landscape
patch spectra here show peak values (corresponding to f(α0))
that ranged from 0.61 to 1.91 and α values between 0.1 and
3.8. There are also significant differences between each class
of landscape property. This is also reflected by the range of
β values determined by examining the patch area
exceedances, as described earlier and shown in Fig. 8. The
physical distribution of patches on a landscape can be
quantified by the range in α values (i.e. αmax – αmin). The
larger the range in α, the greater the heterogeneity. This is
because the left hand side of the spectrum emphasises the
highly packed (by patches) regions and the right hand side
emphasises the regions where there are gaps. When the
distribution is more even, a narrowing of the curve is
observed with the f(α0) value getting closer to the space

filling Euclidean dimension of the support. Tables 3 and 4
list the values of αmax, αmin, α0, f(α0)(= Dcap), f(α1)(= Dinf ),
and f(α2)(= Dcor ) for the Grey and Buller catchments
respectively. αmax and αmin were obtained by interpolation at
the f(α) = 0 cutoff in the graphs (these limits approximate
the α values at ±   , see Eqn. 14); both α0 and f(α0) are
obtained at q=0,  at q = 1 f(α1), and at q = 2 f(α2). The last
three fractal dimensions are also known as the capacity
dimension, Dcap, information (entropy) dimension, Dinf, and
correlation dimension, Dcor, respectively (Grassberger and
Procaccia , 1983; Moon, 1987). When these are connected
by a set of inequalities such that Dcap ≥  Dinf ≥  Dcor , the
landscape properties are distributed heterogeneously
(Grassberger and Procaccia, 1983). The homogeneous
condition is observed when the dimensions are equal, i.e.
Dcap= Dinf = Dcor. These results show consistently that the
inequality condition is true.

The magnitude of the difference between Dcap, Dinf and

∞
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Dcor may serve as a measure of heterogeneity of the landscape
properties. Further, the information (entropy) dimension,
Dinf  , which describes the information content of the measure
(a value of 2 corresponding to a completely uniform spread),
can be used to characterise the distribution of the measure
in geometric space.

The range of α and f(α) values observed suggest large
differences in the interaction of each class with the support.
In the example shown in Fig. 11, native forest shows a
significant departure from the other classes. Here, the former
is more densely and evenly distributed than other types of
vegetation, as shown in the map in Fig. 12. This can also be
seen from the value of Dinf , which is closer to 2 than say
weeds or scrub which drop down to values of around 1.
Exotic forest is in the extreme at around 0.66 for the Buller

and 0.95 for the Grey, reflecting its almost negligible
presence in the catchments. A more significant result is the
comparison of patch types that are present in nearly similar
quantities in the catchment but differ in their distribution.
For example, in the Buller catchment, the differences in the
distribution of short grass (500 km2) and long grass
(612 km2) is shown in strong contrast when the range in α
(αmax – αmin) is compared with and Dcap  values. The range is
1.83 for the former, and 0.99 for the latter. Dcap values are
1.41 and 1.55, respectively. Hence, the influence of
landscapes with tall grass will be quantitatively different to
those occupied by short grass. A much broader comparison,
which may provide insights into landscape properties of
catchments on a regional scale, can also be made between
the two catchments. Figure 13 summarises plots of (i) the
range in α values (width of the spectra), which quantifies
the overall spatial variability of the measure in the domain,
and (ii) the information dimension, Dinf , which characterises
how information increases with increasing spatial resolution,
for catchment morphometry and vegetation of  the two
catchments. The comparisons show that both spatial
variability and information content are very similar for every
class of morphological or landscape parameter examined.
This should not be surprising as the catchments are both
adjacent to each other and largely undisturbed by any
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Fig. 12. Map showing the distribution of vegetation types for the
Buller catchment.
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anthropogenic activity. The observed landscape patterns are
the result of shaping by similar climatic conditions and the
the underlying hydrogeology of the area.

Hence, the method described here can provide a tool for
assessing the impact of landscape patches on hydro-
ecological processes within catchments and potentially the
quantitative comparison of catchment properties.

Conclusions
In this paper, the scaling properties of morphological and
landscape variables are examined within the context of
hydrological catchments using a  range  of landscape
properties and by using both monofractal and multifractal
techniques. The initial hypotheses that fractal scaling are
exhibited by landscape properties within catchments, and
that scaling is likely to be more multifractal than
monofractal, are supported by the study.

Monofractal anlaysis shows that channel networks inside
catchments scaled fractally, at least for the larger range of
scales. Further, this scaling also shows a degree of self-

affinity. Catchments also show similar behaviour, but are
self-affine as found in previous studies. The observed scaling
is well defined in the regions above 1 km2. At smaller scales
(<1 km2) the spread of D values is much greater, although
the points still cluster around the fitted line. Landscape
patches on the other hand could not be fitted to a straight
line and it is evident that scaling is more complicated in this
case. When patch areas for different properties are plotted
on an exceedance probability plot of area versus the number,
scaling relationships for the intermediate regions (ranging
between 1 km2 and 100 km2 ) are observed, suggesting that
some form of multiscaling exists for landscape patches. The
novel method of using hydrological cells as “boxes” in the
multifractal technique has been successful. Furthermore,
multispectral curves have been derived and plotted for
different properties (both morphological and landscape
patches) demonstrating that multiple or multifractal scaling
is indeed present. The inequality shown by the capacity,
information and correlation dimensions ( Dcap ≥  Dinf ≥  Dcor)
is a reflection of the heterogeneity (spatial variability of
properties), at the scales investigated. A range of parameters
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Table 3.  Characteristics of landscape properties – Buller catchment

amin amax a0 Dcap= f(a 0) Dinf Dcor a min a max a 0 Dcap= f(a 0) Dinf Dcor

MORPHOMETRY EROSION

Main length 1.42 2.72 2.03 1.94 1.85 1.75 1 0.89 3.00 1.82 1.50 1.32 1.14
Geom. length 1.44 2.76 2.02 1.94 1.86 1.77 2 1.22 3.52 2.12 1.84 1.70 1.58
Total length 1.38 2.52 2.02 1.94 1.85 1.74 3 1.10 3.30 2.01 1.72 1.57 1.41
Link length 1.52 2.84 2.06 1.95 1.87 1.79 4 1.20 2.86 1.77 1.55 1.50 1.46
Area 1.38 2.36 1.87 1.95 1.80 1.65 5 1.00 2.70 1.60 1.41 1.34 1.28
Perimeter 1.64 2.07 1.86 1.95 1.83 1.71 6 0.94 2.95 1.67 1.38 1.28 1.19
Cat. length 1.62 2.07 1.95 1.95 1.94 1.92
Cat. width 1.60 2.40 1.96 1.95 1.92 1.89
Min. elevation 1.60 2.80 1.97 1.95 1.90 1.85
Max elevation 1.64 2.84 1.99 1.95 1.90 1.85

SLOPE HYDROGEOLOGY

1 0.66 2.68 1.64 1.31 1.06 0.81 1 1.28 2.88 1.80 1.85 1.76 1.61
3 0.47 1.90 1.24 0.98 0.77 0.55 2 0.60 2.15 1.21 0.92 0.83 0.76
4 0.62 2.10 1.39 1.21 1.03 0.83 4 1.28 2.95 1.75 1.64 1.58 1.53
5 0.41 1.33 0.86 0.76 0.65 0.53 6 0.75 2.55 1.41 1.17 1.04 0.92
6 0.72 2.14 1.32 1.14 1.01 0.87 7 0.82 1.95 1.18 0.99 0.98 1.00
7 0.44 0.83 0.63 0.83 0.64 0.48 8 0.82 2.88 1.90 1.57 1.32 1.07
8 0.29 1.45 0.81 0.61 0.46 0.32
9 0.62 2.25 1.26 1.00 0.87 0.76 DRAINAGE

10 0.50 1.62 0.94 0.79 0.72 0.65 2 0.75 1.95 1.31 1.18 1.05 0.91
12 0.48 2.46 1.29 0.87 0.68 0.52 3 0.92 1.95 1.14 1.17 1.15 1.09
13 0.87 2.18 1.41 1.29 1.18 1.07 4 0.95 1.80 1.14 1.45 1.07 0.69
15 0.80 2.65 1.49 1.28 1.18 1.08 5 1.30 3.50 1.99 1.95 1.84 1.68
16 1.12 3.28 1.97 1.64 1.53 1.45
18 1.20 3.45 2.05 1.81 1.69 1.57 DEPTH WEIGHTED POROSITY

19 1.10 2.63 1.66 1.53 1.44 1.33 2 0.30 1.5 1.05 1.02 0.69 0.29
21 0.90 2.62 1.59 1.40 1.31 1.20 4 1.02 2.25 1.51 1.29 1.26 1.25

5 1.20 3.10 1.92 1.64 1.55 1.49
VEGETATION 6 1.10 2.40 1.58 1.51 1.43 1.33
1 0.14 1.10 0.56 0.36 0.26 0.17 7 1.30 3.80 2.11 1.90 1.82 1.72
2 0.80 2.63 1.65 1.41 1.26 1.11
3 1.10 2.09 1.58 1.55 1.50 1.44
6 0.81 2.56 1.43 1.19 1.12 1.05 MIN. POROSITY

7 0.95 2.82 1.64 1.34 1.24 1.18 1 0.32 1.50 1.05 1.01 0.68 0.27
8 0.45 2.63 1.41 0.83 0.66 0.56 3 0.95 2.50 1.55 1.27 1.24 1.23
9 1.35 3.85 2.19 1.94 1.81 1.69 4 1.10 3.20 1.98 1.65 1.52 1.42
10 0.99 2.86 1.61 1.37 1.27 1.20 5 1.35 3.75 2.13 1.90 1.82 1.73
11 0.75 2.52 1.36 1.06 0.98 0.92 6 1.05 3.00 1.77 1.57 1.43 1.30

is obtained from the calculation of the multifractal spectra
for each property is summarised in Tables 3 and 4.
Parameters such as αmax , αmin , α0 , Dcap and Dinf provide a
quantitative measure of the heterogeneity of each property
and also provide a means of identifying and ranking the
predominance (and possibly the influence) of each landscape
property on various landscape processes. Dinf , which

describes the information content and hence the statistical
distribution of the patches, could be a useful index for
categorising vegetation cover, soil or geology for studies
such as regional flood frequency estimation and regional
classification of river systems (which is being used more
commonly today as a tool for management of land
ecosystems).
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Table 4.  Characteristics of landscape properties – Grey catchment.

a min a max a 0 Dcap= f(a 0) Dinf Dcor a min a max a 0 Dcap= f(a 0) Dinf Dcor

MORPHOMETRY EROSION

Main length 1.41 3.00 2.07 1.95 1.84 1.72 1 1.15 3.40 2.06 1.75 1.61 1.49
Geom. length 1.40 2.85 2.05 1.95 1.84 1.73 2 1.40 2.88 1.90 1.85 1.81 1.76
Total length 1.45 2.65 2.01 1.95 1.87 1.78 3 1.05 3.00 1.91 1.61 1.46 1.30
Link length 1.40 3.05 2.07 1.96 1.87 1.78 4 0.95 2.88 1.60 1.40 1.31 1.21
Area 1.48 2.23 1.86 1.96 1.81 1.65 5 0.60 2.40 1.24 1.08 0.91 0.71
Perimeter 1.65 2.08 1.88 1.96 1.85 1.73
Cat. length 1.58 2.25 1.97 1.96 1.94 1.91
Cat. width 1.62 2.25 1.96 1.96 1.95 1.93
Min. elevation 1.75 2.85 1.96 1.96 1.93 1.88
Max elevation 1.75 2.85 2.02 1.96 1.89 1.83

SLOPE HYDROGEOLOGY

1 0.90 2.42 1.71 1.53 1.39 1.24 1 1.30 3.05 1.73 1.77 1.71 1.62
2 0.62 2.30 1.30 0.99 0.85 0.74 2 1.10 2.22 1.37 1.42 1.38 1.30
3 0.90 3.20 1.69 1.25 1.15 1.12 4 1.42 3.20 1.78 1.62 1.68 1.76
4 0.82 2.80 1.61 1.34 1.21 1.09 6 0.65 1.95 1.33 1.27 1.07 0.81
5 0.45 1.82 1.00 0.83 0.67 0.50 7 0.88 2.85 1.59 1.36 1.23 1.10
6 0.70 2.00 1.22 0.99 0.91 0.84 8 1.20 3.45 2.13 1.76 1.64 1.55
7 0.80 1.40 1.10 1.15 1.05 0.94
8 0.35 1.51 0.84 0.64 0.52 0.42 DRAINAGE

9 0.90 2.20 1.21 1.26 1.21 1.13 1 0.45 2.20 1.31 0.83 0.65 0.54
10 0.78 1.38 0.92 1.10 1.01 0.87 2 1.05 2.65 1.83 1.62 1.49 1.34
12 0.80 2.30 1.46 1.28 1.16 1.02 3 0.95 1.40 1.17 1.42 1.13 0.84
13 1.10 2.25 1.33 1.24 1.26 1.28 4 0.95 3.20 1.79 1.56 1.36 1.16
15 0.80 2.65 1.49 1.20 1.24 1.12 5 1.50 3.60 2.11 1.93 1.86 1.79
16 1.15 2.85 1.76 1.58 1.49 1.40
18 1.25 3.10 1.94 1.75 1.68 1.61 DEPTH WEIGHTED POROSITY

19 0.95 2.45 1.38 1.27 1.25 1.22 2 0.72 1.78 1.30 1.24 1.08 0.88
21 0.95 2.80 1.54 1.24 1.16 1.11 3 0.62 2.55 1.48 1.15 0.93 0.74

4 1.10 2.62 1.67 1.54 1.43 1.30
VEGETATION 5 1.30 3.30 2.00 1.73 1.68 1.66
2 1.00 2.78 1.70 1.40 1.29 1.21 6 0.97 1.38 1.17 1.48 1.17 0.87
3 1.18 2.20 1.50 1.58 1.53 1.44 7 1.30 3.10 1.88 1.79 1.72 1.63
6 1.05 1.75 1.40 1.42 1.34 1.25
7 0.70 2.55 1.48 1.20 1.05 0.87 MIN. POROSITY

8 0.80 2.60 1.46 1.05 0.95 0.92 1 0.82 1.82 1.32 1.29 1.15 0.99
9 1.60 3.90 2.11 1.92 1.88 1.86 3 0.95 1.35 1.15 1.44 1.12 0.81
10 0.82 2.25 1.32 1.13 1.03 0.94 4 1.25 3.55 2.08 1.79 1.70 1.63
11 0.90 3.00 1.63 1.28 1.21 1.17 5 1.30 3.10 1.88 1.79 1.72 1.63

6 0.98 3.55 1.89 1.54 1.34 1.15

Hence, this type of information may be used to:

(i) develop mathematical models of ecological processes
where landscape patchiness or heterogeneity is of
importance (King, 1991; Milne et al., 1992; Wu and
Levin, 1997). For example, King (1991) describes a
variety of methods for extrapolation of model

predictions. Local fine-scale models are extrapolated
across heterogeneous areas by calculating an expected
value of the model output from landscape area and a
probability density function that describes the larger
scale heterogeneity of local spatial variables. Potentially,
multifractal spectra can be used to estimate this
probability density function.
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(ii) develop better methodology for translating models
across scales in landscapes (King, 1991; Wu and Levin
1997). The recent work of Becker and Braun (1999) is
such an example. They showed that scaling laws can
be applied to modelling lateral flows for both small and
large basins using both simple and multifractal scaling,
and demonstrated the close relationship of the scaling
laws to the fractal nature of river networks.

(iii) improve methods for estimating hydrological and
ecological variables within catchments by better
accounting of catchment scale and heterogeneity. For
example, in the recent work by Reggiani et al.(1999)
on scale balance equations for Representative
Elementary Watershed (REW) models, it was suggested
that improved parameterisation of constitutive equations
is possible through better methods for estimating spatial
variability . The distribution curves provided by
multifractal spectra can play a significant role in
providing such quantitative input to the parameterisation
of the equations, especially at scales smaller than the
REW.
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