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Abstract
Regional-scale catchments are characterised typically by natural variability in climatic and land-surface features. This paper addresses the
important question regarding the appropriate level of spatial disaggregation necessary to guarantee a hydrologically sound consideration of
this variability. Using a simple hydrologic model along with physical catchment data, the problem is reconsidered as a model parameter
identification problem. With this manner of thinking the subjective nature as to what to include in the disaggregation scheme is removed and
the problem reconsidered in terms of what can be supported by the available data. With such an approach the relative merit of different
catchment disaggregation schemes is viewed in terms of their ability to provide constrained parameterisations that can be explained in terms
of the physical processes deemed active within a catchment. The outlined methodology was tested for a regional-scale catchment, located in
eastern Australia, and involved using the quasi-distributed VIC catchment model to recover the characteristic responses resulting from the
disaggregation of the catchment into combinations of climate, soil and vegetation characteristics. A land-surface classification based on a
combination of soil depth and land cover type was found to provide the most accurate streamflow predictions during a 10-year validation
period. Investigation of the uncertainty associated with the predictions due to weakly identified parameters however, revealed that a simpler
classification based solely on land cover actually provided a more robust parameterisation of streamflow response. The result alludes to the
hydrological importance of distinguishing between forested and non-forested land cover types at the regional-scale, and suggests that given
additional information soil-depth / storage considerations may also have proved significant. Improvements to the outlined method are discussed
in terms of increasing the informative content available to differentiate between competing catchment responses.
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Introduction
Regional-scale catchments are important integrators of many
physiographic and climatic forces. It is well known that the
spatial distribution of soil water and the production of runoff
are dependent on catchment topography, soil and vegetation
(or land cover) patterns. Adequately accounting for this
spatial heterogeneity within catchment models has long been
considered a prerequisite for improving water and energy
flux predictions.

In this paper the appropriate level of spatial complexity
necessary to guarantee a hydrologically sound consideration
of regional heterogeneity is considered. At present there
are no standard procedures for deciding what disaggregation
scheme to adopt. Fully-distributed and lumped land surface
representations represent contrasting modelling extremes.
Lumped land-surface descriptions have been shown to be
capable of reproducing the dynamics of a regional catchment
hydrograph (e.g. Chiew et al., 1993). As a consequence of
the spatial averaging however, the physical soundness of

the process description is lost, and model parameters,
although often well identified, behave only as “tuning
variables”. At the other modelling extreme, fully-distributed
land surface representations have attempted to include as
much spatial detail as the model and computational demand
will allow. This paradigm has gone hand-in-hand with the
development of complex distributed modelling approaches
that invariably require specification of numerous parameters
to account explicitly for observed catchment variability. A
well-documented example of this approach is the Système
Hydrologique Européen (SHE) model (Abbott et al., 1986).
Notwithstanding the considerable data and computational
requirements of these fully-distributed approaches, the main
difficulty that has arisen is in the calibration and validation
of the model structure. At the heart of the problem is
information, or rather lack of it.  With streamflow, typically
the only observed catchment response available for
calibration, there is insufficient information to identify fully
model structure and associated parameters (Beven, 1995).
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Such poor parameter identification manifests itself in
considerable uncertainty in hydrologic flux predictions, and
perhaps more importantly, makes virtually impossible
attempts to regionalise model parameters for the purpose of
application to ungauged catchments, or to investigate land-
use change scenarios.

The modelling dilemma that faces hydrologists can be
described as follows: the simple lumped land-surface
representation has parameters that are identifiable by
calibration, yet their lack of physical relevance means that
they cannot be relied upon to make meaningful extrapolative
predictions. On the other hand the spatially detailed,
distributed representations may have the potential to be used
for extrapolative predictions but, because of information
constraints that result in poorly identified parameters, are
unable to realise it. It is clear that the need for improved
understanding of the causative links between physical
catchment characteristics, parameter variability and
ultimately catchment response still remains.

To address this modelling dilemma, “semi-distributed”
approaches have been suggested. Semi-distributed methods
attempt to account implicitly for spatial variability by making
use of observable patterns of organisation in terrain, soil
and vegetation properties. The occurrence of these
observable patterns may be identified at specific scales, and
has been documented over a long period of time (e.g. Currie
and Pacquin, 1987; Moore et al., 1993). Selective
disaggregation of regional-scale catchments into distributed
entities or “hydrotypes” of similar hydrological response,
thus attempts to capture the hydrological dynamics of
specific soil-vegetation-terrain sequences without the need
to specify individual interactions or the interaction between
neigbouring hydrotypes (e.g. advection effects, etc.). The
difficulty lies in deciding which land-surface features have
hydrological characteristics that are sufficiently distinct to
warrant their being modelled separately. Although more
parsimonious in comparison to fully-distributed
disaggregation schemes, adequately parameterising the
“dominant” response from regional hydrotypes may not be
obvious, as the parameters may not be measurable directly.

This paper revisits the problem of parameter identifiability,
with particular emphasis on the utility of physical catchment
data (e.g. topography, soil and vegetation), and its
organisation in space, in providing insight into dominant
land-surface types within regional-scale catchments whose
unique responses can be retrieved from a streamflow
response. The issue is addressed through a regional-scale
modelling methodology that links a simple hydrologic
model, that contains only minimal suppositions about its
structure, with regionalised “hydrotypes” that are uniform
in terms of hydrological behaviour. The motivation is to

develop spatial land-surface parameterisations whose
characteristics are traced directly to the data.

Catchment regionalisation
“HYDROTYPE” CLASSIFICATION: PROGRESS AND

PROBLEMS

The advent of improved spatial data sources and tools to
handle this type of information has enabled a number of
authors to suggest various combinations of land-surface
characteristics that can be utilised to defined areas of similar
hydrological response. Kite and Kouwen (1992) describe a
catchment disaggregation approach that involves
subdivision of a regional-scale catchment into a number of
hydrotypes with similar land-use characteristics such as
grassland, coniferous forest, etc. Liang et al. (1994) also
describe a catchment disaggregation approach based on
distinct vegetative characteristics.

Flügel (1995) incorporated additional complexity into the
hydrotype delineation process by classifying areas
containing unique combinations of slope, aspect, soil and
land-use. High sensitivity was found for parameters
describing the water-holding capacity of unsaturated
storages, which were defined in terms of the rooting depth
of vegetation. It was concluded that the incorporation of
land-use in the hydrotype delineation process was essential
in regionalising heterogeneity in regional-scale catchments.

Mitchell and DeWalle (1998) utilised elevation and land-
use information for predicting streamflow in a regional-scale
catchment, where snowmelt was known to dominate. To
account for climatic variation with elevation the catchment
was first divided into four elevation zones. The elevation
zones were then further divided into forested and non-
forested areas. The results indicated that the accuracy of
streamflow predictions was improved with the use of
combined elevation and land-use zones compared to the
standard elevation zones. Jain et al. (1998) also divided a
GCM scale catchment into a number of hydrotypes
according to elevation and land cover information. Rather
than having unique combinations of land cover and elevation
zones, each hydrotype contained a number of different land
covers. The basic requirement of the hydrotype was that
the distribution of land covers and elevations were known
and that the hydrotype contributed runoff to a definable
stream channel.

Krysanova et al. (1998) applied a three-level
disaggregation scheme to model streamflow and sediment
transport within a mesoscale catchment. The disaggregation
process involved subdividing the mesoscale catchment into
regional-scale sub-catchments. Hydrotypes or elementary
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units were then delineated within each sub-catchment based
on land-use and soil types.

Becker and Braun (1999) considered up to nine different
areal disaggregation schemes based on land-use, land cover
(vegetation), soil-type and slope class for a small-scale river
basin. A sensitivity study of predicted streamflow showed
that four hydrotypes needed to be modelled separately:
(i) sealed areas; (ii) shallow ground water areas; (iii) forested
areas with deep ground water tables; and (iv) arable land
with deep ground water tables.

From the studies cited above it is evident that the
hydrotype-disaggregation method can overcome the critical
effects of averaging associated with lumped land-surface
representations, as well as being more realistic in terms of
data requirements and computational time as compared to
the distributed modelling approach. Nummerous key
questions, however, still remain unanswered. Firstly, it is
not clear on which land-surface characteristics can best be
used as adequate (dominant) parameters in the
disaggregation process at particular scales. Secondly,
concerns have been raised that by obtaining an integrated
response from the aggregation of hydrotypes, the question
of scale has been sidestepped by ignoring the natural
heterogeneity of parameters and processes within the
individual hydrotypes (e.g. Band and Moore, 1995; Bonta,
1998).

This paper will attempt to address both of these hydrotype-
disaggregation issues. The issue of small-scale variability
within individual hydrotypes is accounted for implicitly with
a probability density function (PDF) methodology, while
the link between dominant catchment characteristics and
similarity in hydrological response is explored with a
parsimonious model and qualitative reasoning. Whereas
previous hydrotype disaggregation has to some extent been
subjective and required a priori specification of model
parameters, the method outlined in this paper is novel in
that it allows the informative content of regional rainfall-
runoff records to dictate the appropriate level of spatial
complexity necessary to model regional-scale catchments.

PROBABILITY DENSITY FUNCTION (PDF)

MODELLING APPROACH

As the modelling scale increases to contain a sufficient
sample of the small-scale variabilities in soil, vegetation
and topographic characteristics for a region, it is no longer
necessary to take account of the pattern of those
characteristics, but only their statistical characterisation (e.g.
Moore and Clarke, 1981; Entekhabi and Eagleson, 1989;
Avissar, 1992). Such statistical characterisation can be
approximated by continuous analytical functions, or
probability density functions (PDFs). The PDF approach

considers the frequency of occurrence of variables of certain
ranges without regard to the location of a particular
occurrence within the area. Such an approach thus allows
for the fact that the underlying variability may still be
important in controlling hydrological fluxes, but that the
pattern is less important.

The representative elementary area (REA) work of Wood
et al. (1988) was an initial attempt to determine the scale, if
any, at which small-scale organisation in catchment
characteristics is no longer important. Using a hypothetical
study of the effects of variable topography, soils and rainfall
and, at least for short rainfall correlation lengths, Wood et
al. (1988) showed that the REA for runoff generation
predicted by their particular model and catchment
characteristics was of the order of 1 km2. Subsequent
research has shown that it may be, for some conditions, that
there is no scale at which the variance in runoff response
reaches a minimum, whereas in general it should be expected
that if an REA scale exists, it might vary between
environments and processes (Blöschl et al., 1995).

Even if it is difficult to define an REA scale unequivocally,
Beven (1995) and others have suggested that it may still be
possible to use an approach based on the distribution
functions of variables (or parameters) to provide realistic
predictions of discharge and evapotranspiration fluxes
within heterogeneous terrain. What is actually required is
the distribution of hydrological responses in the landscape.
The problem is how to define an appropriate distribution or
distributions to reflect, in a realistic way, the hydrological
responses at a particular scale.

The quasi-distributed Variable Infiltration Capacity (VIC)
hydrological model (Wood et al., 1992) was developed in
an attempt to reproduce succinctly larger-scale hydrological
response. The VIC model incorporates the saturation–
overland flow mechanism with a continuous PDF to describe
the relationship between soil moisture content and
saturation, with relevant hydrological quantities determined
by integration over this distribution. In essence, the
distribution allows different parts of the catchment to have
different significance in terms of runoff generation potential.
It also takes into account that the relationship between
different catchment areas may change with wetting and
drying.

The advantage of the PDF modelling approach lies in its
ability to reproduce catchment response with a smaller
number of physically meaningful parameters than the more
traditional distributed models. This reduction in parameters
is in line with the principle of parsimony that requires the
modeller to seek the simplest model parameterisation
consistent with available evidence (Jakeman and
Hornberger, 1993).
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Variable infiltration capacity (VIC) model
The following section provides a summary of the quasi-
distributed Variable Infiltration Capacity (VIC) hydrological
model initially proposed by Wood et al. (1992) and
subsequently modified by Kalma et al. (1995) and Sivapalan
and Woods (1995). The VIC model adopts a statistical
distribution of storage elements across the catchment to
allow for the fact that small-scale variabilities of soil,
vegetation and topography will cause different parts of the
catchment to have different soil moisture storage. To account
for this natural variation, the scaled storage capacity, s, is a
random variable with cumulative distribution

[ ]β)1/()1(1)( minsssFs −−−= (1)

where s
min

 and b are model parameters. Storage capacity at
any point in the catchment is defined as the maximum depth
of rainfall that can infiltrate at that point. The scaled storage,
s, is the local storage capacity divided by the largest storage
capacity for any point in the catchment. If z is the soil depth
at any point, with maximum value z

max
 and soil porosity Dq

is constant throughout the catchment, then s = (zDq)/(z
max

Dq).
The soil moisture status for the entire catchment at a

particular time can be described by the scaled soil moisture
variable, v, which represents the actual scaled soil moisture
in storage at every point in the catchment (see Fig. 1).
Antecedent soil moisture status is indicated by v

0
, which is

constant throughout the catchment. If all soil water in the
catchment is assumed to be held in saturated soil, then the
scaled soil moisture can be written as v

0
 = y

0
/z

max
. This is

taken to mean that the soil profile is saturated effectively to
a depth y

0
 (above bedrock), except in those parts of the land-

surface where the depth of soil is less than y
0
, in which case

the land-surface is already saturated. For a given v, the
fraction of land surface which is saturated is denoted by a,
and the total soil moisture volume stored in the catchment
is denoted by w. Given values of b and s

min
, and any one of

v, w, or a is sufficient to define the moisture status of the
entire catchment (Kalma et al., 1995).

The quickflow runoff generated within the VIC model is
closely related to the saturation excess mechanism. Those
points on the land surface with s<v

o
 are considered to be

saturated before any rain begins. If v
o
<s

min
, then no part of

the catchment is saturated. With the addition of a scaled
depth of rainfall over a specified time period pDt (i.e. scaled
by z

max
Dq), the level of soil moisture rises above v

o
, and the

saturated area expands (Da). Any rain falling on the
saturated area generates immediate surface runoff (q

s
Dt),

consistent with the saturation excess mechanism of runoff
generation, while the remaining rainfall infiltrates and fills
some of the available storage under the s curve. The
subsurface (slowflow) runoff, q

b
Dt, is modelled as a linear

function of the average value of the total soil moisture
storage, w.

For the current study the evaporation was calculated using
the method of Sivapalan and Woods (1995), in which a
point-scale model of evaporation (which depends on local
soil moisture conditions) is integrated over the distribution
of soil moisture conditions for the whole catchment, giving
a catchment-scale evaporation estimate.

Table 1 describes the five model parameters that require
calibration, namely b, s

min
, k

c
, y

c
 and h. They can be broadly

categorised into parameters that control the effective
catchment storage capacity (b, s

min
) and parameters that

control the rate of removal of water from that storage (k
c
,

y
c
, h).

Table 1. Description of VIC model parameters

b Parameter controlling the curvature of the storage
distribution

s
min

Minimum storage required for saturated area
formation

h Evaporation exponent; property of soil and
vegetation types

y Capillary fringe thickness
k

c
Baseflow recession coefficient Case study: Williams
River catchment
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Fig. 1. Schematic diagram of the VIC model (after Kalma et al.,
1995).
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Case study: Williams River catchment

DESCRIPTION OF THE STUDY AREA

Combination of the quasi-distributed VIC hydrological
model within a regional hydrotype-disaggregation
framework was tested for the 1260 km2 Williams River
catchment, located in the lower Hunter Valley Region,
N.S.W., Australia (Fig. 2). The catchment is well suited to
investigation of regionalisation issues, as the hydrological
regime of the catchment is strongly affected by substantial
heterogeneity both in land-surface characteristics and
meteorological conditions.

The upper Tillegra and Chichester Dam subcatchments
are characterised predominantly by steep forested slopes,
rising to 1500 m (a.s.l.) in the northern-elevated areas. The
lower sub-catchments draining to Glen Martin and Seaham
Weir are characterised by rolling hills, with the majority of
the vegetation cleared for cattle grazing.

The catchment is characterised by duplex soils that contain
a sandy/silty A horizon on top of a heavier clay B horizon.
The clayey B horizon is less permeable and gives rise to
subsurface runoff at the interface between the A and B
horizons. The underlying geology of the region includes
both sedimentary and volcanic rocks, which allow only slow

groundwater movement and small groundwater yields. The
limited extent of deep subsurface flow areas within the
catchment indicates that the bulk of the observed “slow
flow” response in the catchment is a result of “interflow”
processes.

The area has a warm, temperate climate. Orographic
enhancement results in the highest rainfall totals occurring
in the northern ranges where the average annual rainfall is
approximately 1600 mm. The lowest annual rainfall occurs
over the central part of the catchment. Further south,
maritime influences reverse the rainfall gradient and annual
rainfall increases to approximately 1100 mm at Seaham.

HYDRO-CLIMATIC DATA

Daily rainfall records for the period 1966-1996 were
available from 28 rainfall gauges within the catchment. To
account for the large spatial variability in daily rainfall, and
apparent data deficiency in the northern elevated region of
the catchment, an interpolation strategy was developed
utilising thin plate smoothing splines and altitudinal
zonation. The development of the interpolation strategy as
outlined in Wooldridge et al. (in press) resulted in three
rainfall zones for which within-zone variability of daily
rainfall was negligible compared to the variability that
existed between neighbouring zones. Figure 3 represents

Fig. 2. Williams River catchment above Seaham Weir indicating the
four main subcatchments.

Fig. 3.Spatial extent of the upper, lower, and middle rainfall zones
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the spatial extent of the three rainfall zones. The lower
rainfall region captures the coastal influence on rainfall
volumes within the catchment. The middle region represents
the moderate rainfall parts of the catchment, whereas the
upper region captures the higher volumes related to
orographic enhancement. The different rainfall regimes for
the rainfall zones are demonstrated by the cumulative
monthly rainfall distributions for the period of interest (Fig.
4).

Daily potential evapotranspiration estimates within
individual rainfall zones were considered uniform and
derived from four climatic stations within the region using
the Penman-Monteith equation (Smith et al., 1990).
Streamflow measurements were available at three locations
within the catchment. The Tillegra and Glen Martin sub-
catchments contained daily flow gauge estimates. Despite
not having a flow gauge, inflow into Chichester Dam could
be estimated by undertaking a water balance based on daily
reservoir levels, rainfall inputs, evaporative losses and
pumping abstractions. Unfortunately no streamflow
measurements were available for the Seaham Weir
subcatchment.

Methods
HYDROTYPE CLASSIFICATION

Five unique hydrotype-disaggregation strategies were
investigated. Classification of the land-surface into the five
hydrotypes, along with the determination of their spatial
extent was facilitated within the ARC/INFO GIS software
package.

Lumped catchment (Method 1)
The lumped catchment representation involved modelling
the catchment as a single, lumped land surface. Catchment

boundaries and the channel network were delineated from
a 100 m grid cell digital elevation model (DEM) of the region
using ARC/INFO hydrologic modelling functions. The
depressionless DEM was prepared with the ANUDEM
(Hutchinson and Dowling, 1991) package using 10 m
contour intervals and drainage network information obtained
from 1:25 000 scale digital topographic maps.

Land-use classification (Method 2)
A detailed land-use datalayer obtained from Landsat
multispectral scanner data was available for the catchment.
Inspection of the areal extent of the land cover classes
showed that for hydrological considerations land cover could
be appropriately reclassified into forested and non-forested
areas (Fig. 5a). The forested areas are dominated by dry
and wet eucalypt forests. The non-forested areas on the other
hand consist mainly of grassland, with isolated areas devoted
to cropping, urban settlement and mining.

Soil classification (Method 3)
A soil landscape map was available to partition the
catchment into dominant soil types. Because the physical

Fig. 4. Cumulative monthly rainfall distribution (1966-1996) for
each rainfall zone.

Fig. 5. Spatial extent of the hydrotype-disaggregation strategies
based on; (a) land-use, (b) soil-depth, and (c) annual soil moisture.
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composition of the soils within the region was considered
reasonably similar, soil depth was chosen as surrogate for
the impact of soil characteristics on hydrological response.
Soils were classified as either shallow (<1.5m) or deep
(>1.5m) based on soil-landscape information (Fig. 5b). A
more detailed classification was not considered warranted
due to the uncertainty associated with the soil depths within
the different soil landscapes.

Soil / land-use classification (Method 4)
In an effort to further constrain hydrological response a
combined soil / land-use disaggregation strategy was also
adopted. The classification resulted in four regionalised
hydrotypes based on shallow and deep soils and forested
and non-forested land cover types. The four hydrotypes were
denoted by; shallow_forest, deep_forest, shallow_non-forest
and deep_non-forest.

Moisture regime (Method 5)
To account implicitly for possible co-occurrences of soil
and land-use sequences, without the additional parameter
expense of modelling the two variables separately, a

disaggregation strategy based on annual moisture regime
was considered. Classification based on moisture regime
aimed to investigate possible synergistic evolution of soil-
vegetation-topography sequences as a result of their
formative climatic conditions, similar to ideas postulated
by Eagleson (1982).

Spatial estimates of annual moisture status was provided
by the Thornthwaite moisture index (I

m
) (Mather, 1978),

defined by:

( )[ ]1/100 −= PEPI m
(2)

using spatial rainfall (P) and potential evapotranspiration
(PE) estimates (Fig. 5c). Positive values of the index indicate
a “humid” climate with a water surplus, whereas negative
values indicate an “arid” climate with a water deficit. A
moisture index of zero indicates that annual precipitation is
just sufficient to satisfy the climatic demand for water.

The annual rainfall surface was created by spatial
interpolation of long-term rainfall records for the 28 rainfall
stations within the study region. The spatial interpolation
was achieved using tri-variate thin plate smoothing splines

(b) Soil depth classification (c) Annual moisture classification
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of latitude, longitude and elevation as implemented in the
ANUSPLIN package (Hutchinson, 1995). The annual
potential evapotranspiration surface required a two-step
process. Firstly, a net radiation surface was created using
the grid-based solar radiation modelling program SRAD
(Mckenney et al., 1999). The net radiation surface created
by SRAD was then combined with spatial temperature data
to create potential evapotranspiration surfaces using the
Priestley-Taylor equation (Priestley and Taylor, 1972).
Several simplifying assumptions were needed to apply the
equation. A uniform 10% reduction in net radiation was
applied to account for losses to subsurface heat flow. A
spatially uniform value of 1.26 was also utilised for the
Priestley-Taylor empirical coefficient. Further details of the
application of SRAD and the development of spatial
potential evapotranspiration estimates within the Williams
River catchment are being prepared for publication.

HYDROTYPE - MODEL INTEGRATION

Disaggregation of the catchment into three rainfall regions,
along with hydrotype-disaggregation (1-4 regions) required
that VIC daily water balance calculations be undertaken
concurrently for up to 12 possible rainfall-hydrotype
combinations. To achieve this, it was necessary to determine
the fractional coverage of each hydrotype within each
rainfall region. Outlet streamflow for the internal
subcatchments or the entire catchment could then be
obtained as the areal weighted accumulation of individual
rainfall-hydrotype combinations. Because variations in
precipitation input result in different soil moisture status, it
was also necessary to account for variations in antecedent
moisture conditions within each rainfall-hydrotype class at
the start of each model run.

Despite the fact that up to 12 rainfall-hydrotype
combinations were required to obtain an accumulated
streamflow output, only parameter variations due to the
hydrotype classification were modelled, such that the end
result was a unique parameter set for each hydrotype class.
Using the forested and non-forested land cover classification
as an example, these considerations can be formalised. For
a time step, t, with number of rainfall zones, n, the catchment
model can be described by the multiresponse regression
model

( ) ( )[ ] tForestedNonntForestednt

n

t xfxfq εθθ ++∑= −,, ),(),(   (3)

where q
t
 is the combined runoff  total at a particular point;

f(      ) represents the VIC model conceptualisation; x
(t,n)

 is
the vector of measured rainfall zone inputs; q

Forested
 represents

the parameter vector for the forested response; q
Non-forested

represents the parameter vector for the non-forested

response; and e
t
 is a random error. The random error

represents the effects of measurement error in q
t
 and x

(t,n)
 as

well as model error.

MODEL CALIBRATION AND TESTING

Optimisation of VIC parameters
Investigation of the soil landscape map for the Williams
River catchment suggested appropriate values of 2.5 m and
0.35 m3 m–3 for z

max
 and Dq respectively. Without further

information both parameters were fixed at those values prior
to calibration and were considered spatially uniform for the
entire catchment, except when applying the soil-depth
classification, when a shallow depth criterion of 1.5 m was
also utilised.

The optimisation strategy adopted to identify the five VIC
model parameters for the different hydrotype-disaggregation
strategies involved running the model for the entire daily
rainfall and potential evapotranspiration record, and then
optimising parameters based on weekly aggregated
streamflows totals using the nonlinear regression software
NLFIT (Kuczera, 1994). Previous calibration to forested
and non-forested land cover types has shown that
optimisation at the weekly time-scale is capable of
constraining VIC model parameters that control the
dynamics of predicted runoff (Wooldridge et al. in press).
Optimisation at the weekly time-scale also eliminates the
need for overland or within stream routing.

The parameter search strategy employed by NLFIT is the
robust shuffled complex evolution (SCE) method of Duan
et al. (1992). With the current calibration the number of
complexes was set equal to the number of fitted parameters.
A warm-up period of five months was used to minimise the
effects of the initial moisture store contents on the parameter
estimates. Optimisation of parameters was then based on
minimising the objective function defined by:

( ) ( )[ ]∑ −−−=
=

−−
n

t
tttt QQQQ

6

2

11
ˆˆ)( λλλλ φβψ (4)

where Qt
 and $Qt

 denote observed and computed weekly
runoff at time t, l  is a transformation constant (Box and
Cox, 1964), and f  denotes the parameter of a first-order
autoregressive process. Fixed values of f  = 1, and l  = 0.5
were utilised for all optimisations. The Box-Cox lambda
value of 0.5 results in a square root transformation, and
accounts for the observed growth in residual variance with
increasing runoff.

The three measured streamflow records available within
the Williams River catchment were utilised to provide
multiple conditioning of optimised parameters, following
previous work within the catchment by Wooldridge et al.
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(in press). The joint calibration strategy was performed
within the NLFIT modelling framework, and incorporated
the assumption that the random error for each response were
cross-correlated with the random errors of the other
responses following the work by Kuczera (1983).

In the calibration the two parameters controlling water
removal via catchment evapotranspiration, namely, y

c
 and

h, displayed strong correlation, which is indicative of an
evapotranspiration routine that is ill-posed with respect to
streamflow data. The calibration strategy therefore involved
fixing the scaled capillary fringe thickness y

c
 (scaled by

z
max

Dq), to a value of 0.005 m m–1 based on information from
Sivapalan and Woods (1995) and then optimising h based
on the rainfall-runoff data.

Hydrotype evaluation
The classical split-sample strategy was adopted to evaluate
the performance of the different hydrotype-disaggregation
schemes. The first 20 years of the streamflow record (1966–
1986) were employed for hydrotype-parameter optimisation,
and the remaining ten-year period (1986-1996) reserved for
an independent check of streamflow predictive ability.

The accuracy of streamflow predictions in both calibration
and validation was tested using two performance statistics;
the coefficient of efficiency (E2), and the residual mass
coefficient (M). The E2 error criteria of Nash and Sutcliffe
(1970) is given by

( )
( )∑ −

∑ ∑ 


 −−−
=

2

22
2

obsQobsQ

predQobsQobsQobsQ
E          (5)

where Q
obs

 is the observed discharge,obsQ is the mean of
the observed discharge, and  Q

pred
 is the predicted discharge.

The coefficient of efficiency (E2) compares both the shape
and size of the hydrographs. The efficiency E2 varies from
-     to 1. The efficiency value of 1 indicates perfect
agreement. The efficiency value of zero means that the error
model is as good (or bad) as setting the simulated value
constantly to the mean runoff.

The residual mass coefficient (M) is given by

( ) ( )
( )∑ −

∑ ∑ −−−
=

2

22 ˆ

DD

DDDD
M (6)

where D,      and       are the departure and the mean departure
from the mean observed residual mass curve, and the
departure from the mean for the estimated residual mass
curve, respectively. If a flow sequence contains systematic
errors then the M statistic should indicate their presence.

Systematic errors occur when the sign of the error tends to
persist over a series of time intervals (Aitken, 1973). A value
of M equal to 1 indicates perfect agreement.

The diagnostic output of NLFIT provides estimates of
the E2 and M statistics. The output summary also provides
approximations of the mean and standard deviation of fitted
parameters along with an indication of parameter
interactions. The estimated standard deviation (s) divided
by the mean of a fitted parameter (x ) can be used to
determine its coefficient of variation, CV.

x

s
CV = (7)

The CV is a dimensionless measure of parameter uncertainty.
The lower the CV, the more precise the value determined by
the optimisation, and hence the lower the uncertainty. As a
guide, a CV value of 0.25 or less indicates “sensitive”
parameters (Mein and Brown, 1978).

Results and discussion
Table 2 summarizes the most probable parameter values
along with their approximate coefficient of variation (CV)
obtained for the 20-year calibration period for the five
hydrotype-disaggregation strategies. Table 3(a) lists the E2

and M performance statistics for each strategy for the three
independent streamflow observations employed during the
calibration period. Table 3(b) displays the corresponding
statistics for the different hydrotype-disaggregation
strategies using the parameters from Table 1 for the ten-
year validation period.

LUMPED PARAMETER APPROACH (METHOD 1)

The lumped parameter approach provided parameter
estimates that are well constrained from the streamflow
record. Despite providing constrained parameter values the
inferior predictive statistics within the validation period,
compared to the spatial hydrotype approaches, emphasizes
the limitation of lumped parameter models in predicting
catchment response in periods outside the calibration
conditions.

The fact that the identified value of a number of the
parameters for the lumped land-surface description are
approximately the average of those obtained for several of
the alternative spatial hydrotype strategies, alludes to the
main reason for the relatively poor predictive capability of
the lumped hydrotype (i.e. that a lumped response is forced
to compromise or average hydrological extremes). The
inferior values of the M statistic confirms this fact and

8

D D̂
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Table 2. Most probable parameter estimates, along with approximate coefficient of variation (CV) for the five hydrotype-
disaggregation strategies.

Method 1: Lumped
Parameter Most probable CV
b 3.542 0.048 ……….. ………..
s

min
0.072 0.052 ……….. ………..

k
c

0.005 0.038 ……….. ………..
h 0.961 0.041 ……….. ………..

Method 2: Land-use classification
Forested Non-forested

Parameter Most probable CV Most probable CV
b 2.421 0.075 5.204 0.078
s

min
0.114 0.053 0.061 0.055

k
c

0.010 0.041 0.002 0.073
h 1.500 0.055 0.485 0.081

Method 3: Soil-depth classification
Deep Soil (>1.5m) Shallow Soil (<1.5m)

Parameter Most probable CV Most probable CV
b 1.331 0.072 4.921 0.094
s

min
0.064 0.081 0.058 0.081

k
c

0.008 0.058 0.005 0.074
h 0.672 0.042 0.046 0.092

Method 4: Soil/Land-use classification
Deep_Forest Shallow_Forest

Parameter Most probable CV Most probable CV
b 1.686 0.139 1.338 0.228
s

min
0.130 0.198 0.143 0.239

k
c

0.015 0.138 0.007 0.167
h 1.044 0.149 2.081 0.239

Deep_Non-forest Shallow_Non-forest
Most probable CV Most probable CV

b 4.521 0.128 5.821 0.155
s

min
0.090 0.156 0.067 0.219

k
c

0.005 0.111 0.003 0.173
h 0.523 0.232 1.112 0.268

Method 5: Moisture regime
Humid Arid

Parameter Most probable CV Most probable CV
b 2.921 0.081 3.423 0.091
s

min
0.105 0.092 0.053 0.088

k
c

0.007 0.088 0.003 0.084
h 1.232 0.125 0.863 0.101

suggests that the lumped representation systematically
under- and over-predicts the streamflow response.

LAND-USE CLASSIFICATION (METHOD 2)

Distinct parameterisations were achieved for forested and

non-forested hydrotypes within the catchment, highlighting
that the characteristic response for each land cover type was
detectable from the regional-streamflow records. On the
whole the CVs for the fitted parameters were marginally
inferior to those achieved for the lumped representation,
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and can be attributed to the additional parameter complexity.
Investigation of the E2 and M statistics for both the
calibration and validation period however, highlights the
superior predictive ability of the forested and non-forested
land-surface representation as compared to the lumped
representation.

The relative improvement of the dual land-use
representation over the lumped land-surface representation
is best illustrated by comparing the uncertainty prediction
limits associated with the simulated streamflow response
for each case. Prediction limits represent the predictive
uncertainty in simulated response arising from both
parameter uncertainty and the inherent noise in the data and
model. For the present application the prediction limits were
generated using a Monte Carlo scheme that utilised the
Metropolis algorithm (Metropolis et al., 1953). Figure 5(a)
represents an observed streamflow sequence obtained during
the calibration period along with the 90% prediction limits
associated with the lumped and dual land-use
representations. It can be seen that the 90% prediction limits
are considerably more constrained for the land-use
representation, especially for the peaks, which show a
reduction in predictive uncertainty in the order of 25%. The
result highlights the fact that although the increased
parametric complexity of the land-use distinction results in
less well identified parameters, the ability to distinguish
between the dual responses actually reduces the uncertainty
in model predictions.

The parameterisations associated with the forest and non-
forest regions are explainable in terms of the physical
processes deemed active in the Williams River catchment.
The larger value of s

min
 and smaller value of b for the forested

regions compared to the non-forested regions confirm that
the forest areas are associated with larger water storage,
and produce a much less “peaky” runoff response, with
reduced surface runoff or “quick-flow” contributions. The
larger value of the recession constant, k

c
, for the forested

areas is also consistent with greater contributions to the
“slow-flow” runoff component, resulting from increased
lateral water movement due to forest litter and soils loosened
by tree roots.   The smaller value of s

min
 and larger value of

b  for the non-forest areas are linked with less water storage
and a more “all-or-nothing” response to runoff, with
dynamic formation and depletion of zones of saturation. The
relative values of the evapotranspiration parameter (h) also
suggest that for a given catchment wetness, greater evapo-
transpiration will occur from the forested areas. The
simplicity of the evapotranspiration routine makes it difficult
to draw conclusions about the exact nature of the
evapotranspiration variation (e.g. rooting depth, canopy
effects, etc.). The addition of a more physically based yet
parsimonious evapotranspiration routine is the subject of
on-going research.

SOIL CLASSIFICATION (METHOD 3)

The hydrotype-disaggregation strategy based on a shallow

Table 3. Streamflow predictive statistics (E2 and M) for, (a) the calibration period (1966-1986) and (b) the validation period
(1986-1996), at the Tillegra, Chichester and Glen Martin streamflow gauges.

Simulation HYDROTYPE-DISAGGREGATION
Catchment Statistic Lumped Land-use Soil Soil/land-use Moisture

(a) Calibration Period (1966-1986)
Tillegra E2 0.86 0.87 0.87 0.87 0.87

M 0.32 0.82 0.72 0.79 0.59
Chichester E2 0.79 0.82 0.81 0.82 0.79

M 0.42 0.73 0.65 0.67 0.59
Glen Martin E2 0.83 0.84 0.84 0.85 0.84

M 0.63 0.87 0.81 0.92 0.80

(b) Validation Period (1986-1996)
Tillegra E2 0.75 0.83 0.79 0.84 0.77

M 0.27 0.86 0.71 0.75 0.46
Chichester E2 0.71 0.75 0.73 0.76 0.73

M 0.35 0.74 0.67 0.71 0.57
Glen Martin E2 0.74 0.84 0.83 0.85 0.80

M 0.57 0.83 0.76 0.85 0.69
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and deep soil classification resulted in a parameterisation
that displayed similar predictive ability to the land-use
strategy during calibration, but which was slightly inferior
during validation. Comparison of the soil derived parameters
with equivalent parameters identified for the land-use and
lumped land-surface representation reveal some interesting
features resulting from the soil depth classification. The
distinguishing feature is that the only parameter that shows
a significant difference between the shallow and deep
classification is b. The relative values of b indicate the
expected physical variation in response associated with
shallow and deep soil. The shallow soil with presumably
lower storage capacity has a higher value of b indicating a

much quicker and more dynamic runoff response. In contrast
the deeper soil has a lower value of b reflecting the increased
storage capacity. It is interesting to note that the values
identified for b in both the soil and land-use classifications
are very similar, which begs the question as to the extent to
which the parameter is influenced by soil or land-use
(vegetation type). The fact that there is a correlation of deep
soil with forested land surface types makes answering the
question difficult given the available information.
Comparison of the other calibrated model parameters s

min
,

k
c
, and h, shows that there is little distinction made between

the deep and shallow derived values. The result suggests
that these model parameters are relatively insensitive to soil

Fig. 6. Comparison of 90% streamflow prediction limits resulting from (a) land-use and lumped hydrotypes, and
(b) land-use and combined soil/land-use hydrotypes.
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depth, or at least the classification scheme utilised for this
exercise. Comparison of the most probable value of s

min
, k

c
,

and h for the two soil depths along with the equivalent values
identified for the lumped classification confirm this
suggestion as they all have similar values. This suggests
that the soil classification is in effect only extracting the
equivalent lumped value to represent: (i) surface runoff
initiation; (ii) subsurface recession; (iii) evapotranspiration
response. The result reaffirms the importance of the
distinction between forest and non-forest vegetation types
in constraining regional hydrological response.

SOIL/LAND-USE CLASSIFICATION (METHOD 4)

The combined soil and land-use hydrotypes required the
identification of 16 model parameters from the regional-
streamflow records. The CV statistic for all parameters was
below the 0.25 criterion of Mein and Brown (1978). On
average however the model parameters for this method were
associated with higher uncertainty than the other methods.

Despite the associated parameter uncertainty, in terms of
predictive ability during the validation period as described
by the E2 statistic the combined soil/land-use hydrotypes
were the superior disaggregation strategy. The question must
be asked however, whether the improvement in prediction
simply results from the increased degrees of modelling
freedom associated with the method. Calculation of the 90%
prediction limits resulting from the combined soil/land-use
hydrotypes and comparing them to the land-use hydrotypes
(Fig. 5b) show that the predictive uncertainty for both
methods is similar. This result is likely to be attributed to
the fact that the uncertainty associated with the parameters
for the soil/land-use hydrotypes offsets the improvement in
predictive ability resulting from the constraining of the
distinct hydrological responses. In terms of robust
parameterisations therefore, the sole use of the land-use
parameterisation would most likely be advocated. This is
not to say that soil-depth is not important in constraining
hydrological predictions, only that the information content
of the data is such that the soil-depth induced response
cannot be distinguished significantly from that of the land-
use response. It is extremely likely that the land-use
classification actually incorporates implicitly soil-depth
information due to correlation between the two variables.

Despite the uncertainty, inspection of the most probable
parameters is insightful in alluding to links between model
parameters and physical catchment characteristics. It is
evident that, irrespective of the soil depth, forested and non-
forested areas are associated with unique values of b. This
suggests that within the Williams River catchment land cover
characteristics act as a conceptual surrogate for catchment
storage, and the resulting partitioning of rainfall into its

quick and slow flow components.  The s
min

 parameter
controlling the initiation of surface runoff also seems to be
most strongly influenced by land cover type, with more
water required to initiate surface runoff for the forested areas.
This alludes to the possibility that the s

min
 parameter is

accounting for interception storage. The slow-flow recession
parameter, k

c
, also shows a tendency to be most affected by

land cover type, with higher values for the forested areas,
highlighting the increased slow-flow contributions for this
land cover type. The h evapotranspiration parameter is
interesting. Consistent with the land cover hydrotypes, for
a given catchment wetness a quicker rate of evaporation
results from the forested areas.  Surprisingly however, a
quicker rate of evapotranspiration is expected for the shallow
areas as opposed to deep. This result can be rationalised,
however, upon consideration of the assumptions within the
evaporation routine of the VIC model. Because a uniform
wetness depth is assumed, and actual evapotranspiration is
calculated as a function of the residual between this wetness
level and the variable soil surface (as described by Eqn. 1),
then it is clear that a shallower soil will have smaller residuals
and therefore higher evaporative rates. The failure of the
evaporation routine to account explicitly for the ability of
forest vegetation to extract deep soil water via its root system
is seen as an area in which the model can be improved.

MOISTURE REGIME (METHOD 5)

The calibration or retrieval of model parameters for arid
and humid regions resulted in a parameterisation that was
not significantly different between the two classes. It is
evident that there is a deterioration of the parameter CV for
b compared to land-use and soil classifications and as well
as a deterioration of h compared to the land-use
classification. A reduction in predictive ability compared
to methods 2 and 4, especially for the validation period is
also evident. A likely conclusion from these observations
is that the link between soil-depth and vegetation is not
sufficiently ordered to be useful for retrieval of distinct
hydrological responses. A possible reason for this
conclusion is the fact that significant anthropogenic clearing
of the catchment has occurred, especially within the Tillegra
subcatchment. Inspection of the spatial moisture
classification (Fig. 5c) shows that, in terms of similar soil
(Fig. 5b) and land-use (Fig. 5a) combinations, it is really
only the Tillegra subcatchment that fails to follow the general
pattern of humid areas being associated with forested land
cover and deep soils, and arid areas being associated with
non-forested land cover and shallow soils. Using logic
gained from previous parameterisations, it can be understood
that loss of forested areas from the lower parts of the Tillegra
subcatchment is likely to cause a smoothing of the b and h
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parameters between the arid and humid classification, and
lead to values that approximate the lumped parameterisation.

Conclusions and future work
Regional-scale catchments are characterised typically by
natural variability in climatic and land-surface features. In
this paper, the important question regarding the appropriate
level of spatial disaggregation necessary to guarantee a
hydrologically sound consideration of this variability has
been addressed. Examination of previous attempts to answer
this question, reveal the common trend of subjectively
grouping land-surface features into quasi-homogeneous
“hydrotypes”, assigning a priori “averaged” parameters, and
then evaluating model performance against some arbitrary
“goodness-of-fit” measure. Such an approach however
sidesteps the question of scale by ignoring the natural
heterogeneity of parameters and processes within the
individual hydrotypes. An implicit assumption is also made
that large-scale response can be obtained from the
aggregation of essentially point processes.

In this paper, determination of what types of land-surface
features need to be modelled separately to constrain
hydrological prediction was considered as a model parameter
identification problem. This manner of thinking meant the
subjective nature as to the appropriate level of spatial
complexity was removed and the problem reposed in terms
of what could be supported by the available data. This shift
in thinking meant that instead of assigning a priori
parameters for selected hydrotypes, parameters were
required to be retrieved from rainfall-runoff records. The
extracted parameterisations therefore permit an attempt to
represent large-scale process controls, as opposed to the
aggregation of small-scale responses. The merit of different
hydrotype-disaggregation schemes could thus be viewed in
terms of their ability to provide constrained
parameterisations that could be explained in terms of large-
scale processes deemed to be active.

The methodology outlined was tested within the 1260 km2

Williams River catchment, and involved using the quasi-
distributed VIC catchment model to provide the
characteristic responses for individual hydrotypes. The
selection of the model was in line with the mentality of
seeking the simplest model parameterisation consistent with
the available evidence, and utilised the minimum possible
suppositions about its structure. The model is based on a
simple quick-flow and slow-flow conceptualisation, but
utilises a distribution approach to account for within
hydrotype variability in hydrological response associated
with natural small-scale variabilities of topography, soils
and vegetation. Accounting for this natural variability is seen

as a positive step in addressing the scale issue associated
with the hydrotype-disaggregation approach. Intuitively, the
model assumptions regarding runoff formation (i.e. uniform
antecedent wetness level) are strengthened when applied to
areas of similar hydrological regime. To account for this a
regional partitioning of climatic inputs was implemented.
By constraining the likely variance in runoff response
resulting from contrasting hydrological regimes, the ability
to extract the influence of land-surface features was
strengthened.

Four hydrotype-disaggregation strategies based on soil-
depth, land-use, combined soil-depth and land-use, and a
moisture index were investigated and compared to the
lumped land-surface representation. For the catchment
features investigated, it was found that land-use, based on a
forested/non-forested classification, was the most dominant
feature influencing hydrological response. Parameterisation
of both forest and non-forest areas resulted in significant
constraining of predictive uncertainty as compared to the
lumped representation as well as providing parameter
estimates that were well identified from the regional
streamflow records, and that were consistent with the
physical processes deemed active. Combining land-use with
soil depth information resulted in the most accurate
streamflow predictive tool during a ten-year validation
period. The increased number of parameters necessary to
describe the combined influences of soil-depth and land-
use however resulted in parameter estimates that were
associated with increased uncertainty. This parameter
uncertainty when propagated through to an estimate of
streamflow predictive uncertainty showed that the combined
soil/land-use hydrotypes were no more useful as a predictive
tool than the land-use hydrotypes alone. This is not to say
that soil-depth is not important in constraining hydrological
predictions, only that the information content of the data
was such that soil-depth induced response could not be
significantly distinguished above that of the land-use
response. A contributing factor to this result is the fact that
the land-use classification actually incorporates implicitly
soil-depth information due to correlation between the two
variables. Attempts to utilise these correlations with an
annual moisture classification were largely unsuccessful
when compared to the land-use classification.
Anthropogenic forest clearing, resulting in a disturbance in
the soil-vegetation-topographic sequence was seen as a
possible contribution to this result.

The results of this study have highlighted the limitation
of streamflow, being an integrated value, to identify spatial
parameter distributions. Distinguishing between contrasting
hydrological responses resulting from forested and non-
forested areas successfully allowed eight model parameters
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to be identified. Efforts to incorporate additional parameters
to include the soil-depth description were hampered by
reduced parameter identification. The apparent improvement
in the number of parameters that could be defined from the
streamflow record above that previously reported (i.e. 4–5
according to Jakeman and Hornberger, 1993) was
considered to be a combined result of: (i) the improved
representation of the functioning of the catchment resulting
from the disaggregation process; (ii) the additional
informative content available to constrain parameters
resulting from the multiple streamflow gauges used in
calibration. The improved informative content from the
streamflow records is unlikely to be related solely to the
number of gauges, but rather to the fact that each gauge
was measuring the integrated response resulting from unique
combinations of the various hydrotypes.

It is evident that further refinement of the outlined
modelling strategy, through the addition of a greater number
of modelled hydrotypes or additional model complexity, can
only proceed with the incorporation of additional data
sources. For regional-scale catchments, the use of localised
time-series of evapotranspiration and groundwater
measurements, is unlikely to provide significant
improvement in the information content available to identify
model parameters and structure (Seibert, 1997; Kuczera and
Mroczkowski, 1998). What is required are commensurate
estimates of the key modelled variables (e.g. soil moisture,
regional evapotranspiration and saturated areas). Saturated
area estimates in particular would seemingly provide a very
rich data source, as they reflect the integrated response of a
number of catchment processes, and have the advantage of
a very high space resolution as opposed to a very high time
resolution of time series such as hydrographs. By
conditioning to saturated areas, the ability to constrain the
gross internal functioning of the model between the two
competing runoff formation processes (i.e. baseflow and
overland flow) should be improved. Research in the
microwave remote sensing domain has offered some promise
of delivering distributed data sets of moisture data, but to
date the accuracy of retrieved estimates has been
complicated by a number of factors (for a brief summary
see, Van Oevelen et al., 1996). Recent findings by Franks
et al. (1998) suggest that even where accurate quantitative
data of catchment-scale saturated areas are unavailable,
uncertain estimates of an expected saturated area from partial
field knowledge may be utilised to improve the conditioning
afforded by discharge time series alone. Future research with
the outlined methodology will attempt to focus on the utility
of such suggestions.
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