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Abstract

International agreements to reduce the emissions of acidifying pollutants have resulted in major changesin deposition of sulphur and nitrogen
in southern Scandinavia over the past 25 years. L ong-term monitoring of deposition and run-off chemistry over the past 12-25 years at nine
small calibrated catchments in Finland, Norway and Sweden provide the basis for analysis of trends with special attention to recovery in
response to decreased sulphur and nitrogen deposition in the 1980s and 1990s. During the 1980s and 1990s sul phate deposition in the region
decreased by 30 to 60%, whereas inorganic nitrogen deposition showed very little change until the mid-1990s. Deposition of non-marine
base cations (especially calcium) declined in the 1990s most markedly in southern Finland. Run-off response to these changes in deposition
has been rapid and clear at the nine catchments. Sulphate and base cations (mostly calcium) concentrations declined and acid neutralising
capacity increased. Occasional years with unusually high inputs of sea-salt confound the general trends. Trends at all the catchments show
the same general picture as that from small lakes in Scandinavia and in acid-sensitive waters elsewhere in Europe.
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Introduction

For more than 100 years, acid deposition resulting in
acidification of freshwaters and damage to fish populations
has been a major environmental problem in southern
Scandinavia. Research aimed at discovering the causes of
acidification and the terrestrial and aquatic processes
governing the rates of acidification and recovery has made
use of small calibrated catchments (e.g. Moldan and Cerny,
1994). Careful measurements of fluxes of water and
chemical components into and out of catchments reveals
processes in soils and water controlling acidification and
information on dose-response relationships. The strength
of such small catchmentsin environmental research has been
shown by such work asthe pioneering investigations at, for
example, the Hubbard Brook Experimental Forest (Likens
et al., 1977).

Calibrated catchments have become integral parts of
acidification monitoring programmes in Finland, Norway
and Sweden. These national programmes are carried out
under the auspices of the Finnish Environment Institute, the
Norwegian State Pollution Control Authority and the
Swedish Environmental Protection Agency. They also
provide input data for international networks such as the
International Co-operative Programme on Integrated
Monitoring (ICP-IM), a programme of the United Nations
Economic Commission for Europe's (UN-ECE) Convention
on Long-Range Transboundary Air Pollution (LRTAP).
Systematic monitoring of inputs and outputs at small
calibrated catchments in southern Scandinavia began in
1973-74 in Norway (three catchments), in 1981-1985 in
Sweden (four catchments) and in 1988 in Finland (two
catchments). Together, these nine catchments cover alarge
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geographic area and represent a diversity of natural
physiographic regimes of precipitation, vegetation, soilsand
geology.

International agreements to reduce the emissions of
acidifying pollutants (UN-ECE, 1994; UN-ECE, 1998; UN-
ECE, 1999) have resulted in major changes in deposition
of sulphur (S) and nitrogen (N) over the past 25 yearsin
southern Scandinavia (Barrett et al., 2000). Thesereductions
are intended to stop the acidification trend and allow
recovery from acidification in terrestrial and aquatic
ecosystems. Thelong-term records from the nine calibrated
catchments provide arobust dataset for evaluation of trends
in recovery. Harmonised analysis and synthesis of the data
has been undertaken as part of projects of the Nordic Council
of Ministers and the European Union (RECOVER:2010)
(Ferrier et al., 2001), as well as the national programmes.

Here, trends in deposition and run-off chemistry at these
nine calibrated catchments are investigated with special
attention to the recovery in response to decreased S and N
deposition during the 1980s and 1990s.

Thework complements and adds to the work of Skjelkvéle
et al. (2001) who conducted asimilar analysison small lakes
in the same region. The lakes were sampled much less
frequently (1-4 times per year) but data from many more
sites (344) are available. The catchment data presented in
thisstudy are from morefrequent sampling (usually weekly),

which allows calculation of input-output budgets and flow
weighting of annual concentrations.

The Nordic data from calibrated catchments (this paper)
and from small lakes (Skjelkvaleet al., 2001) comprise part
of a large European-wide assessment of trends in
acidification and recovery. The European overview isgiven
by Evanset al. (2001a), trendsin S are given by Prechtel et
al. (2001) and trendsin N are given by Wright et al. (2001).

Sites and methods

The data used in this work are from national monitoring
programmesin Finland, Norway and Sweden (Johannessen,
1995; Forsius et al., 1995; Wilander, 1998). The sampling
and analytical methods are similar in the three countries.
Site descriptions for the Norwegian catchments are from
Lydersen (1994). Key catchment parameters are summarised
in Table 1.

THE SITES
Norway

The Birkenes catchment islocated in southernmost Norway,
about 15 km north of Kristiansand (Fig. 1). The catchment
area is 0.41 km? and altitude ranges from 200-300 m.

Storgama

Birkenes. Ringsn‘obécken
[ )

Lommabicken
Gérdsjon
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Hietajirvi ®

Valkeakotinen
[

Fig. 1. Map of southern Scandinavia showing locations of the nine calibrated catchments.
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Table 1. Catchments characteristics

Country  Latitude Longitude Altitude Area(ha) Precipi- Runoff Temperature
N E m.a.s.l. tation(mm)  (mm) (°C)
Birkenes Norway  58%23 8°15 200-300 41 1530 1170 54
Storgama Norway  59°01 8°32 580-690 60 1210 950 5.1
Langtjern Norway  60°22° 939’ 510-750 480 860 610 3
Hietajarvi Finland  63°10° 30°43° 170-210 464 630 400 2
Valkeakotinen Finland  61°14° 25°04 150-190 30 650 200 3.1
Géardsjon F1 Sweden  58°03 12°01" 120-140 4 1100 550 6.3
Lommabacken  Sweden  58°42 14038 190-230 104 660 540 5.6
Nedre
Pipbéacken Sweden  57°03 12047 80-170 93 1010 514 6
Nedre
Ringsmobéacken Sweden  58°59 11045 180-250 112 780 320 54
Forest/vegetation ~ Geology Soil type Mean soil Data Key
depth (m) periods reference
Birkenes Mixed coniferous  Granite Podzols 0.4 1974-1999  Lydersen (1994)
Storgama Individual trees, Granite Rankers and 0.32 1975-1999  Lydersen (1994)
heather, moorgrass Podzols
Langtjern Mixed coniferous  Gneiss Podzals, 0.4 1974-1999  Lydersen (1994)
bedrock outcrops
Hietajarvi Pine/spruce Granitoides  Podzols, 0.85 1988-1999  Forsiuset al.,
Histosols (1995),
Valkeakotinen Pine/spruce/birch  Gneis Dystric Cambi- 15 1988-1999  Forsiuset al.,
sols and Histosols (1995),
Gérdsj6n F1 Spruce/pine Gneissic Podzols 0.43 1981-1999  Moldan (1999)
granodiorite
L ommabacken Pine/spruce Granite Histosols, 0.02 1985-1999  Lofgren and
Nedre bedrock outcrops Kvarnés (1995)
Pipbacken Nedre Mixed coniferous  Gneiss, Histosols, 0.69 1985-1999  Lofgren and
deciduous forest amphibolite  Podzols Kvarnas (1995)
Ringsmobéacken  Pine/spruce Gneiss Histosols, 0.01 1986-1999  Lofgren and
bedrock outcrops Kvarnés (1995)

Bedrock is biotite granite. Overburden is a thin layer of
ground morai ne upon which podsol s and peaty podsols have
developed. The vegetation is predominantly mature mixed
coniferous forest of Norway spruce (Picea abies L.) and
Scots pine (Pinus sylvestris L.) with some birch (Betula
pendulosa L.). The ground vegetation consists primarily of
heather (Calluna vulgaris L.) and blueberry (Vaccinium
myrtillusL.). The station for precipitation and air sampling
islocated about 500 m north of the catchment. The site was
instrumented in 1972 as part of the Norwegian SN SF-project
(Overrein et al., 1980).

The Storgama catchment is located in southernmost
Norway about 50 km north of Arendal (Fig. 1). The
catchment area is 0.6 km? and altitude ranges from 580—
690 m. Bedrock is granitic. Overburden is a thin layer of
ground moraine upon which podsolsand peaty podsolshave
developed. About 20% of the catchment is exposed bare
rock and 20% of the catchment covered by peat > 30 cmin
depth. Thevegetation is predominantly sparse unproductive
forest of Scots pine (Pinus sylvestris L.) and some birch
(Betula pendulosa L.). The ground vegetation consists
primarily of heather (Calluna vulgarisL.). The weir at the
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bottom of the catchment is at the outlet of a small pond.
Thestation for precipitation and air ssmpling islocated about
6 km east of the catchment at Treungen. The site was
instrumented in 1974 as part of the Norwegian SNSF-project
(Overrein et al., 1980).

The Langtjern catchment is located in southeastern
Norway about 100 km northwest of Oslo (Fig. 1). The
catchment area is 4.8 km? and altitude ranges from 510—
750 m. Bedrock isbiotite gneissand granite. Overburdenis
athinlayer of ground moraine upon which podsolsand peaty
podsols have developed. About 16% of the catchment is
exposed bare rock, 16% of the catchment covered by peat >
30 cm in depth and 5% is ponds and small lakes. The
vegetation is predominantly mixed forest of Norway spruce
(Picea abiesL.), and ( Scots pine (Pinus sylvestrisL.) and
some hirch (Betula pendulosa L.). The ground vegetation
consists primarily of heather (Calluna vulgaris L.) and
blueberry (VacciniummyrtillusL.). The weir at the bottom
of the catchment is at the outlet of the lake Langtjern
(0.26 km?; water retention time about two months). Until
1995 the station for precipitation and air sampling was
located about 6 km east of the catchment at Gulsvik and
then was moved a short distance to Brekkebygda. The site
was instrumented in 1974 as part of the Norwegian SNSF-
project (Overrein et al., 1980).

Since 1980, the Birkenes, Storgama and Langtjern
catchments have been part of the Norwegian Monitoring
Programme for Long-Range Transported Air Pollutants
(Johannessen, 1995).

Finland

The Valkeakotinen catchment is located in southernmost
Finland, about 140 km north of Helsinki (Fig. 1). The
catchment areais 0.30 km? and altitude ranges from 150 to
190 m. Bedrock is gneiss and granitoids. Overburden is
glacial drift upon which dystric cambisols have devel oped
with some peatlands (histosols). Thereisasmall lakewithin
the catchment and vegetation is predominantly mature mixed
coniferous forest of Norway spruce (Picea abies L.) and
Scots pine (PinussylvestrisL.) with somebirch (Betula sp.).

The Hietajarvi catchment is located in southeastern
Finland, about 80 km northeast of Joensuu (Fig. 1). The
catchment areais 4.64 km? and altitude ranges from 170 to
210 m. Bedrock is granitoids and gneiss. Overburden is
glacial drift with some small eskers upon which orthic
podsols have developed. There are also some peatlands
(histosols) and two small lakes in the catchment. The
vegetation is predominantly mature mixed coniferousforest
of Norway spruce (Picea abies L.) and Scots pine (Pinus
sylvestris L.) with some birch (Betula sp.).
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At both sites the atmospheric deposition and run-off have
been monitored, since 1988, by the Finnish Meteorol ogical
Institute and the Finnish Environment Institute as a part of
the Finnish ICP-IM Programme (Bergstrém et al., 1995).

Swveden

The Gardsjon catchment F1 is located in southwestern
Sweden, about 50 km north of Gothenburg (Fig. 1). The
catchment areais 0.04 km? and altitude ranges from 115 to
135 m. Bedrock is gneiss and granodiorite partly overlain
by glacial till upon which podsols, and inthevalley bottom,
histosols, have devel oped. The vegetation is predominantly
mature mixed forest of Norway spruce (Picea abies L.),
birch (Betula pendula and B. pubescens.) and Scots pine
(Pinus sylvestris L.). The ground vegetation consists
primarily of blueberry (Vaccinium sp.), grass (mainly
Deschamsia flexuosa), abundant mosses (mainly Dicranum
maius) and lichens (Hypogymnia physodes, Lepraria
incana). The site was instrumented in 1979 and has been
continuously operated by IVL Swedish Environmental
Research I nstitute since 1980 (Andersson and Olsson, 1985).

The Pipbacken Nedre catchment islocated in southwestern
Sweden, about 25 km northeast of Falkenberg (Fig. 1). The
catchment areais 0.93 km? and altitude ranges from 75 to
165 m. Bedrock is gneiss and amphibolite overlain mainly
by moraine upon which podsols have developed. The
vegetation is mature mixed forest of spruce (Picea abies),
pine (Pinus sylvestris), beech (Fagus sylvatica) and oak
(Quercus petraea). About 31% of catchment is covered by
peatland (L6fgren and Kvarnas, 1995). The catchment was
established asapart of the Swedish National Environmental
Monitoring Programme (Aastrup et al., 1996) and the
continuous data on precipitation and run-off are available
since 1986. The catchment is operated by the Swedish
University of Agricultural Sciences.

The Ringsmobécken catchment islocated in southwestern
Sweden, about 160 km north of Gothenburg in the Stora
Tresticklan area (Fig. 1). The catchment areais 1.12 knv
and altitude ranges from 180 to 245 m. Bedrock is gneiss
and about 80% isbedrock outcrop. Therest of the catchment
is covered by peatland and a small lake. The vegetation is
sparse consisting mainly of heather (Calluna vulgaris) and
a thin pine forest (Pinus sylvestris). The catchment was
established asapart of the Swedish National Environmental
Monitoring Programme (Aastrup et al., 1996) and
continuous run-off data are available since 1985.
Precipitation data were available for only four complete
years (1983, 1984, 1988 and 1989) and were complemented
by measurements at Gardsj 6n catchment. The catchment is
operated by the Swedish University of Agricultural Sciences.
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The Lommabécken Nedre catchment is located in the
Tiveden national park about 20 km northeast of Karlsborg
in southern Sweden (Fig. 1). The catchment areais 1.04 km?
and altitude ranges from 190 to 230 m. Bedrock is granite
and about 85% of the catchment areais bedrock outcrop. A
small lake and peatland cover about 11% of the catchment
area and the rest is covered by thin organic soil. The
vegetation isdominated by blueberry (Vacciniummyrtillus)
and thin mixed forest of pine (Pinus sylvestris), spruce
(Picea abies) and birch (Betula sp.) (L&fgren and Kvarnas,
1995). The catchment was established as a part of the
Swedish National Environmental Monitoring Programme
(Aastrup et al., 1996) and continuous run-off datasince 1985
are available. Precipitation was monitored at nearby station
Sjoéangen. The catchment is operated by the Swedish
University of Agricultural Sciences.

METHODS

Non-marinefractions of sulphate (SO,*) and calcium (Ca*)
are calculated under the assumptions that all chloride (Cl)
isof marineorigin (cyclic sea-salts) and is accompanied by
other ions in the same proportions as in sea water. Acid
neutralising capacity (ANC) is defined as the equivaent
sum of base cations (Ca + magnesium (Mg) + sodium (Na)
+ potassium (K) minus the equivalent sum of strong acid
anions (SO, + Cl + nitrate (NO,)) (Reuss and Johnson, 1986).
As a consequence of the ion balance (SO, + CI + NO, +
bicarbonate (HCO,) + OA) = (Ca+ Mg+ Na+ K+ hydrogen
(H) + auminium (Al), ANC can also be expressed as the
equivalent sum of (HCO + OA) - (H + Al). OA isorganic
anions. Aluminium is the sum of positively-charged Al
Species.

Trend analysisfor each stream and each relevant variable
were analysed with a non-parametric Seasonal Kendall tau
(SKT) test (Hirsch et al., 1982). One limitation of the SKT
isthat it detects only monotonic trends; trends need not be
linear, but they must proceed in only one direction
(increasing or decreasing) to be detectable.

In brief, the SKT analyses the data within blocks, and
comparestherank valuefor asingle observation to the rank
values of subsequent data from that same season. The signs
(indicating whether the second observation in each pair-
wise comparison is higher or lower than the first) for all
pair-wise comparisons within each block are summed and
aZ statistic calculated astheratio of the sum of signsdivided
by the standard deviation in the signs. The SKT does not
estimate the slopes of trends, but it has become customary
to associate slopes calculated according to the method of
Sen (1968), which estimates the slope by calculating the
median of all between-year differences in the variable of

interest. The trend analysis are performed on SO,’, NO,,
Ca*, ANC and H.

Results

DEPOSITION

Deposition of SO,* hasdeclined at all sites, with significant
decreasing trends in the 1980s and continuing in the 1990s
(Fig. 2). Inthe 1990s, the period for which dataare available
for the entireregion, SO,* deposition declined from 21% at
Treungen, Norway, to 37% at Sjéangen, Sweden, relative
to the average levels during the 1980s. Data from before
1980 are available only from the three Norwegian sites; these
show no changes prior to 1980. Dry deposition of S has
probably declined commensurately, as concentrations of
sulphur dioxide (SO,) gas have also declined in the region
during the 1980s and 1990s (Barrett et al., 2000).

Deposition of inorganic N compounds has changed very
little in Norway and Sweden whereas in Finland it has
declined during 1990s (Fig. 2). Concentrations in bulk
precipitation have been relatively constant during the 1980s
and show only about 20% decline, mostly as NO,, during
thelate 1990s at some sites (Barrett et al., 2000). Deposition
of non-marine base cations has decreased strongly in the
late 1980s and early 1990sin Finland, and to amuch lesser
extent in Sweden and Norway.

The magnitude of trends in precipitation concentrations
was separately analysed for three periods; 1974-1980,
1981-1990 and 1991-1999. The changes of the average
slope over these three periods showed clear differences.
During the 1970s, only the Norwegian siteswere monitored.
Non-marine sulphate and Ca* increased at two out of three
sites, and inorganic N increased at all three. In the 1980s,
Norwegian and Swedish sites were monitored. Non-marine
sulphate decreased at al sites as did, with one exception,
Ca*. Nitrate did not show any consistent pattern. In the
1990s there was a pronounced decrease in the SO,*
concentrations at seven of the eight sites for which
deposition data are available. Inorganic N decreased at all
siteswhereas Ca* did not show any consistent pattern (Fig.
2).

RUN-OFF

Thelong recordsfrom thethree Norwegian catchments show
that SO,* concentrations were high (peak) in late 1970s
and early 1980s (Fig. 3). Non marine sul phate concentrations
began to decline in the 1980s and the decline accelerated in
the 1990s (Table 2). This pattern is seen at all the nine
catchments. The overall decrease since 1980in Norway has
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Table 2. Average slopes in runoff trends divided into decades (1970s = 1974-80; 1980s = 1981-90; 1990s = 1991-1999)
and slope for the whole period, where only trends significant at p < 0.05 level are given. na= data not available for
whole period. NS= no significant trend detected. Units: peg L yr?.

SO4* NO3 Ca*
1970s 1980s 1990s all 1970s 1980s 1990s all 1970s 1980s 1990s all
years years years
Birkenes 29 48 49 43 09 0.7 -1.1 NS -12 -10 -17 -13
Storgama -23 -15 35 24 09 -0.1 -04 NS -20 09 -10 -12
Langtjern -11 -16 36 =22 02 0.0 -0.1 NS -23 -14 -15 -16
Valkeakotinen na na 22 =22 na na -0.1 NS na na -1.1 -11
Hietajérvi na na -18 -18 na na -01 01 na na 0.2 NS
Gardsjon F1 na 58 -152 -10.2 na 04 01 -03 na -20 23 =21
Ringsmobécken na -15 173 -11.0 na 02 02 -02 na -04 57 NS
Lommabackenn. na -08 -265 -16.2 na -04 -02 NS na -06 34 -23
Pipbéacken n. na 133 283 -101 na 0.6 0.6 0.6 na 2.8 -33 NS
ANC H+
1970s 1980s 1990s all 1970s 1980s 1990s Al
years years
-1.1 13 4.4 NS -1.4 02 -1.8 NS
-3.0 02 31 0.5 -07 02 -1.6 07
27 04 14 -01 0.0 0.3 -0.8 NS
na na 0.3 NS na na 0.7 0.7
na na 2.4 2.4 na na 0.0 NS
na 9.0 206 145 na 0.3 -34 NS
na -49 20.7 NS na 2.4 -28 0.8
na 45 221 114 na 3.9 -29 02
na =177 222 NS na 35 -33 NS

been about 72% (27% in the 1980s and afurther 45% in the
1990s). The records for Finland cover only the 1990s and
here, SO,* declined by 28%. In Sweden, the decline was
24% in the 1980s and 50% in the 1990s.

Nitrate accounted for by far thelargest portion of inorganic
N in run-off; NH, concentrations are negligible in streams
draining non-agricultural catchments (datanot shown). Most
of the inorganic N in deposition was retained in the
catchment. Nitrate is a minor acid anion compared to SO,.
Concentrations of NO, in run-off at the nine catchments
showed very few trends over time. The exception was
Pipbécken Nedrein southern Sweden, which had the highest
absolute concentration of NO, of the nine catchments and
showed significant increases in concentrations during the
1990s (Fig. 3, Table 2).

The decreased concentrations of anions (mainly SO,*)
must be accompanied by decreased concentration of one or
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more cation or compensated by increased concentration of
another anion. Some of the decline in SO,* has been
accompanied by decline in concentrations of base cations,
mostly Ca* (Fig. 3).

Increased ANC compensates for the rest of the declinein
SO,*. The pattern is clearest at the three Norwegian
catchments. Here, acidification continued until the early
1980s (declining ANC), at which time the decline stopped,
turned around and ANC began to recover, with the largest
increases in the 1990s. The changesin ANC are comprised
of decreased Al, decreased H (in sites with substantial H,
that is, pH < 5), and increased HCO, (at higher pH sites).

Thisgeneral pictureisconfounded in part by year-to-year
variations in sea-salt inputs. In southwestern Norway
(Hindar et al., 1994), and in Sweden (Gustafsson and
Hallgren-Larsson, 2000) the winter of 1993 had unusually
severe storms, with high inputs of sea-salts. As aresult of
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Fig. 2. Volume-weighted annual mean concentrations of SO,*, inorganic N (NO_+NH,) and Ca* in

bulk precipitation sampled at three sites in Norway (data from Aas et al., 2000), two in Finland and

three in Sweden. Triangles: Birkenes, NO, Hietajarvi, Fl, and Gardsjon, SE. Crosses: Langtjern, NO,

Valkeakotinen, FI, and Pipbacken Nedre, SE. Circles: Storgama, NO, and Lommabacken Nedre, SE.
Units: peq L.

this, run-off that year had abnormally high concentrations
of Cl. Dueto cation exchange in the soil, some of the base
cations in this sea-salt input were exchanged with acid
cations (H and Al) in the soil and caused a temporary
decreasein ANC (Hindar et al., 1994). In Sweden, thewinter
of 1989 was similar, with high inputs of sea-salts in the
southwestern parts of the country (Hultberg and Grennfelt,
1992).

Discussion

Sulphate concentrations and fluxes in run-off responded
rapidly to the changes in S deposition at all sites. The
catchment F1 at Gardsionillustrateswell the role of the soil
in delaying and modifying changes in deposition. The
decline of SO, concentrations in stream water output from
F1 catchment was delayed relative to the decline in S
deposition (Figs. 2 and 4). In terms of chemical budgetsthe
deposition input is exceeded by the run-off output and there
was a net release of previously stored SO, from the
catchment. Desorption of SO, and mineralisation of

organically bound S from the catchment soils are two
mechanismswhich might cause alag in the run-off response.
Intherelatively young soilsin Scandinaviadevel oped from
parent materia after the last glaciation, adsorbed SO, is
typically only a small fraction of the total S present in the
soil. Most of the store of Sisincorporated in soil organic
matter (Morth et al., 1999).

Thedynamics of the Srelease from the soil isan important
factor that needsto be considered when predicting the future
development of recovery of soils and surface waters from
acidification. Desorption of SO, involvesrelease of acidity
in nearly stochiometric proportion (Gustafsson, 1995). Soils
with large amounts of adsorbed SO, might, therefore, remain
acidified for years or even decades after a substantial
decrease in S deposition (Beier et al., 1995). Release of
organically bound Sfrom the soilsmight potentially prolong
the lag in recovery in soils and surface water for decades
(Lofgren et al., 2001).

Thedelay inresponse dueto the bleeding of “old” Sfrom
the nine Scandinavian catchments was generally less than
about five years. This rapid response is characteristic for
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Fig. 3. Volume-weighted annual mean concentrations of SO,*, inorganic N (NO_+ NH,), Ca*, ANC
and pH in run-off sampled at three catchments in Norway (data from SFT, 1998), two in Finland and
four in Sweden. Symbols: Triangles: Birkenes, NO, Hietajarvi, Fl, and Gardsjon, SE. Crosses:
Langtjern, NO, Valkeakotinen, FI, and Pipbéacken Nedre, SE. Circles: Storgama, NO, and
Lommabécken Nedre, SE. No symbols: Ringsmobacken, SE. Units: peq L except for pH.

young and well-drained soils developed since the last
glaciation; such soils have low SO, adsorption capacity. In
contrast, at sites with old and highly weathered soils the
response in SO,* in run-off can be delayed by decades or
more (Harrison et al., 1989; Johnson, 1984; Johnson et al.,
1980).

The Scandinavian catchments examined herefit well into
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the general picture of Sresponsein therest of Scandinavia.
All catchments showed statistically significant decreasesin
SO,* concentration during the 1990s, as is also the picture
shown by annual surveys of 344 small lakes in Finland,
Norway and Sweden (Skjelkvaeet al., 2001). Indeed, these
trends have occurred in acidified surface waters generally
in Europe (Prechtel et al., 2001).
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Fig. 4. Cumulative net flux of SO, and base cations for F1 catchment at Gérdsjon, Sweden.

The lack of a statistically significant trend in NO,
concentrations and fluxes at eight of the nine catchments
also is consistent with the results from small lakes in the
region (Skjelkvéle et al., 2001) and with trendsin NO, in
surface waters elsewhere in Europe (Wright et al., 2001).
Therefore, there is no evidence of N saturation at these
catchments (with the possible exception of Pipbécken Nedre
in southern Sweden) over the past 12-25 years, despite the
fact that the catchments retained > 90 % of inorganic N
inputs.

The declinein SO,* was accompanied in part by decline
in base cations, mostly Ca*. Thisisthe same picture asfound
inthe Nordic lakes (Skjelkvaeet al., 2001) and in acidified
surface waters in Europe in general (Evans et al., 2001a).
The response of base cations is most probably due to the
“salt effect” ; cations must decrease simply asaconsequence
of reduced anions (Reuss and Johnson, 1986). In southern
Finland and, to alesser extent, in southern Sweden, however,
decreased deposition of base cations may be a factor
contributing to declining run-off concentrations of base
cations, as has been postulated at Hubbard Brook, USA
(Likenset al., 1996). The decreasein base cation deposition
in Finland is related to the reduced emissions of dust and
fly ash from cement factories and power plantsinthe Baltic
countries and adjacent areas of Russia. Over decadal time
frames, a gradual increase in base cation concentrationsin
run-off should occur as the pools of exchangeable base
cations in soil are replenished by weathering in the “ post-
acidification” eraof the future.

At catchment F1 (Gards6n, Sweden), the cumul ative mass
balances illustrate the general picture for SO, and the sum
of base cations (SBC) (Fig. 4). For SO, every year the output
(run-off) was subtracted from the input (throughfall) and
the flux was accumulated. In the case of SBC, the output
was run-off and estimated net uptake to the trees and the

input was estimated deposition plus weathering.

For thefirst ten years, theinput and output were, for most
of thetime, in approximate SO, balance (Fig. 4). From 1980
to 1990 about 100 meq m of SO, were lost from the sail,
most of it in the first measured year. Since 1990, however,
the catchment started to lose SO, almost every year with
exception of the extremely dry year of 1995. The total 1oss
was about 250 meq m2. For the base cations, the picture is
the opposite; up to 1990 a slight loss (c. 50 meg m?, even
though there were some ups and downs). Since then, the
soils retained about 250 meq m of base cations (Fig. 4).

A fraction of the reduced SO,* concentration has been
compensated for by increased ANC in run-off at the nine
Scandinavian catchments. Thisis consistent with the pattern
found in the Nordic lakes (Skjelkvéle et al., 2001) and in
acid-sensitive waters in Europe as a whole (Evans et al.,
20014). For Europe generally about 50% of the decreasein
SO, * was compensated by decreased base cations and about
50% by increased ANC.

Theincreased ANC meansthat water chemistry conditions
have improved for aquatic organisms such as fish and
invertebrates. Concentrations of toxic inorganic Al species
have decreased and pH hasincreased. Again thisisthe same
general picture as found in the lakes in Scandinavia
(Skjelkvale et al., 2001) and in acid-sensitive waters in
Europe generally (Evans et al., 2001a).

The sea-salt-rich years of 1989 in Sweden and 1993 in
southwestern Sweden and southern Norway confound the
picture by causing temporary decreases in ANC thus
delaying recovery. The sea-salt effect (temporary
acidification due to episodic inputs of sea-salts) has been
well-documented in Norway (Hindar et al., 1994; Wright
etal., 1988) aswell asintheeastern US (Heath et al., 1992).
These episodes of sea-salt inputsgenerate noiseinthesignal
of long-term trends, and thus larger monotonic changes over
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longer time periods are required to obtain statistically
significant trends (Wright and Jenkins, 2001). Sea-salt
deposition may be cyclic over several years, due to such
things as regular changes of the North Atlantic Oscillation
(Evans et al., 2001b) and, therefore, any given period of
several years might be influenced by consistently declining
or increasing sea-salt, which also complicates the picture.
For example, at the nine Scandinavian catchments the
increasein ANC during the 1990s was often larger than the
decrease in SO,* (Table 2) due to the decreasing Cl
concentrationin run-off (aftermath of the high sea-salt years
early in the decade).

The present analysis of the nine catchments in southern
Scandinavia extends in time previous trend analyses that
have included surface waters in the Nordic countries. The
patterns of recovery for the early 1990s documented by the
| CP-Waters network (Stoddard et al., 1999) (part of the UN-
ECE LRTAP convention) have continued through the decade
and are now quite clear and consistent at acid-sensitive
surface water sitesin Scandinaviaand el sewherein Europe.
There have been no systematic trends in NO, in run-off,
strong decreasesin SO,*, accompanied by decreasesin base
cations and increases in ANC. Continued long-term
monitoring at these sitesis essential to document that large
investments in emission control pay off in terms of a better
environment and that water chemistry returns towards
ecologically acceptable levels as the protocols of the UN-
ECE Convention on Long-Range Transboundary Air
Pollution are implemented (UN-ECE, 1999).
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