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Abstract

Sivakumar et al. (2000a), by employing the correlation dimension method, provided preliminary evidence of the existence of chaos in
the monthly rainfall-runoff process at the Géta basin in Sweden. The present study verifies and supports the earlier results and
strengthens such evidence. The study analyses the monthly rainfall, runoff and runoff coefficient series using the nonlinear
prediction method, and the presence of chaos is investigated through an inverse approach, i.e. identifying chaos from the results of
the prediction. The presence of an optimal embedding dimension (the embedding dimension with the best prediction accuracy) for
each of the three series indicates the existence of chaos in the rainfall-runoff process, providing additional support to the results
obtained using the correlation dimension method. The reasonably good predictions achieved, particularly for the runoff series,
suggest that the dynamics of the rainfall-runoff process could be understood from a chaotic perspective. The predictions are also
consistent with the correlation dimension results obtained in the earlier study, i.e. higher prediction accuracy for series with a lower
dimension and vice-versa, so that the correlation dimension method can indeed be used as a preliminary indicator of chaos. However,
the optimal embedding dimensions obtained from the prediction method are considerably less than the minimum dimensions
essential to embed the attractor, as obtained by the correlation dimension method. A possible explanation for this could be the
presence of noise in the series, since the effects of noise at higher embedding dimensions could be significantly greater than that at

lower embedding dimensions.
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Introduction

The recent shift in complex hydrological problems, such as
real-time flood and drought forecasting, management of
water resources, pollution transport and soil water infiltra-
tion, necessitates accurate modelling of the rainfall-runoff
process in a region. Even though, the past few decades
witnessed the proposal of a wide variety of approaches and
the development of a large number of models to understand
the dynamics of the rainfall-runoff process, a unified
approach to the problem is still missing. This is due to,
(1) the considerable temporal and spatial variability
exhibited by the rainfall-runoff process; and (2) the
limitation in the availability of ‘appropriate’ mathematical
tools to exploit the dynamics underlying the rainfall-runoff
process.

The considerable spatial and temporal variability ex-
hibited by the rainfall-runoff process is due to the various
physical mechanisms (acting on a huge range of temporal
and spatial scales) that govern the dynamics of the process.

The rainfall-runoff process depends not only on the space-
time distribution of the rainfall occurrence, but also on the
kind and the state of the basin, which, in turn, depend on
climatic conditions and vegetation states. Therefore, what is
really important is a unified description of the complex
behaviour of the dynamical system arising from the
coupling of all its components. Although not all components
are complex in themselves, the size of the space-time
domain, the number of individual processes involved, and
the fact that almost all of them present some degree of

‘nonlinearity, make the total resulting rainfall-runoff process

highly complicated. For such a complex system, the only
possibility for realistic modelling seems to be that only a few
of the various mechanisms become prevalent in the process,
so that the system dynamics are simplified with a
corresponding reduction in the number of the effective
degrees of freedom. Therefore, the notion of chaos theory,
i.e. seemingly complex behaviour could be the result of
simple determinism influenced by only a few nonlinear
interdependent variables, and the related methods of
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nonlinear dynamics could contribute to an understanding of
the rainfall-runoff dynamics.

Applications of chaos theory to understand the dynamics
of hydrological processes, particularly rainfall and runoff,
have been gaining momentum (e.g. Hense, 1987; Rodri-
guez-Iturbe et al., 1989, 1991b; Sharifi ez al., 1990; Islam ez
al., 1993; Tsonis et al., 1993; Berndtsson et al, 1994;
Jayawardena and Lai, 1994; Georgakakos et al, 1995;
Koutsoyiannis and Pachakis, 1996; Porporato and Ridolfi,
1996, 1997; Puente and Obregon, 1996; Sangoyomi et al.,
1996; Liu et al., 1998; Wang and Gan, 1998; Sivakumar,
2000; Sivakumar e al., 1999a, b, 2000b, c; Stehlik, 1999;
Krasovskaia et al., 1999; Jayawardena and Gurung, 2000).
Though the primary objective of those studies was to
investigate the existence of chaos in the processes, attempts
were also made for prediction (e.g. Jayawardena and Lai,
1994; Porporato and Ridolfi, 1996, 1997; Liu ez al., 1998;
Sivakumar et al., 1999a, b, 2000c; Jayawardena and Gurung,
2000), noise reduction (e.g. Porporato and Ridolfi, 1997;
Sivakumar ez al., 1999b; Jayawardena and Gurung, 2000)
and disaggregation (e.g. Sivakumar ez /., 2000b).

Past studies investigating chaos in rainfall and runoff
processes have been limited either to the rainfall process
alone (e.g. Hense, 1987; Rodriguez-Iturbe er al, 1989;
Sharifi et al., 1990; Islam ez al., 1993; Tsonis et al., 1993;
Berndtsson et al., 1994; Jayawardena and Lai, 1994;
Georgakakos e¢r al., 1995; Koutsoyiannis and Pachakis,
1996; Puente and Obregon, 1996; Sivakumar ez /., 1999a, b,
2000b) or to the runoff process alone (e.g. Jayawardena and
Lai, 1994; Porporato and Ridolfi, 1996, 1997; Liu ez al.,
1998; Wang and Gan, 1998; Stehlik, 1999; Krasovskaia ez
al., 1999; Jayawardena and Gurung, 2000; Sivakumar ez al.,
2000c), but not to rainfall-runoff processes as a whole in a
basin. As a result, none of these studies provides
information regarding the possibility of the existence of
chaotic behaviour in the joint rainfall-runoff process in a
basin.

Sivakumar et al. (20002) investigated the possibility of
understanding the dynamics of the joint rainfall-runoff
process from a chaotic dynamical perspectivé. Monthly
rainfall and runoff series observed over a period of 131 years
(January 1807-December 1937) at the Gota basin in
Sweden were analysed separately and jointly (using the
runoff coefficient). The underlying assumption behind
investigating the two series separately was that the indi-
vidual behaviour of the dynamics of the rainfall (input) and
the runoff (output) processes could provide important
information about the behaviour of the dynamics of the joint
rainfall-runoff process. The runoff coefficient (given by the
ratio of runoff to rainfall) was considered as a parameter
connecting rainfall and runoff and, therefore, to represent
better the rainfall-runoff process as a whole. The correlation
dimension method (e:g. Grassberger and Procaccia, 1983a,
b), one of the fundamental methods developed in the field of
chaos theory, was employed to investigate the existence of
chaos. The finite correlation dimensions obtained for the
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rainfall, runoff and runoff coefficient series indicated the
presence of chaos, providing preliminary evidence regard-
ing the possible existence of chaos in the dynamics of the
rainfall-runoff process (see below for details).

It is important to note, however, that the observation of
the finite correlation dimension can be taken only as a
preliminary indicator of the presence of chaos and not as
strong evidence, because finite correlation dimensions could
be observed even for linear stochastic processes (e.g.
Osborne and Provenzale, 1989). On the other hand,
insufficient data size and presence of noise can also influence
significantly the correlation dimension estimation. For
example, a small data set may result in a significant
underestimation of the correlation dimension, whereas the
presence of noise may overestimate the dimension. There-
fore, the results obtained using the correlation dimension
method must be verified and the existence (or non-
existence) of chaos must be substantiated with additional
evidence. The present study is aimed at verifying the earlier
results and, hence, strengthening the evidence regarding the
existence of chaos in the rainfall-runoff process, by
employing a very promising chaos identification method,
the nonlinear prediction method, to the above three time
series. '

Regarding the limitations of the correlation dimension
method, a detailed discussion of the important issues in the
application of the method to hydrological time series, e.g.
data size, noise, delay time, etc., has been made in a study by
Sivakumar (2000). Also, Sivakumar ez al. (2000c) investi-
gated the reliability of the correlation dimension estimation
in short hydrological (runoff) time series, by evaluating its

accuracy using the prediction results obtained from two

methods: (1) the phase-space reconstruction method; and
(2) the artificial neural networks technique. The results
reveal that the accuracy of the correlation dimension
depends primarily on whether the length of the time series
would be sufficient to represent the changes that the system
undergoes over a period of time, rather than the data size in
terms of the number of values in the time series, suggesting
that the correlation dimension could be a reliable indicator
of low-dimensional chaos in short hydrological time series.
The authors believe that the rainfall and runoff series
analysed in the present study, with a 131-year monthly
record, is sufficient to represent the changes in the system
with time.

The organization of this paper is as follows: Firstly, a
brief account of the driving forces behind the application of
chaos theory to understand. the dynamics of the rainfall-
runoff process is presented, by providing a qualitative
discussion on why and where deterministic components
could be expected in the rainfall-runoff system. Secondly,
some preliminary evidence, including the results presented

o by Sivakumar ef al. (2000a), regarding the existence of chaos

in the rainfall-runoff process is provided. Thirdly, the
nonlinear prediction analyses of the rainfall-runoff process
are given and the results discussed. Finally, the conclusions
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drawn from the present study and the scope for further
research are presented.

Rainfall-runoff dynamics:
determinism versus stochasticity

The system governing rainfall-runoff process may be seen
as made up of a cascade of coupled components, each
determining in some way the state of the others. When a
great number of variables is involved in a system, a high-
dimensional dynamics (practically indistinguishable from a
purely stochastic system) is usually expected. In this case
the system dimension, i.e. its number of active degrees of
freedom, is so high as to preclude practically any kind of
deterministic description. However, the intensification of
the relative importance of some mechanisms may allow an
accurate low-dimensional deterministic description. The
successes obtained by hydrologists with physically-based
models of the rainfall-runoff process support this possibi-
lity. Furthermore, recent developments of dynamical
system theory have shown that also for systems governed
by infinite dimensional (i.e. partial differential) equations
the dynamics may develop in a lower, finite dimensional
attractors (Cross and Hohenberg, 1993), and phenomena of
generalised synchronisation may take place in systems made
up of interacting nonlinear sub-systems (e.g. Carroll and
Pecora, 1993). All these observations suggest that a low
dimensional deterministic description of the rainfall-runoff
dynamics may be possible. Hence, a brief qualitative
discussion is provided below as to why and where
deterministic components could be expected in the rain-
fall-runoff system.

Climate produces the input of the rainfall-runoff
transformation and also determines in many ways the state
of the basin with a sort of “parametric forcing” on
vegetation cover, soil saturation, etc. Many studies have
suggested the possible presence of low-dimensional deter-
ministic components in the dynamics of the global climate
and its external forcing (e.g. Matsumoto ez a/., 1995). Other
works have conjectured that low-dimensional chaotic
- dynamics can originate from the nonlinear interaction of
climate and large water bodies, e.g. oceans, land with its
relative soil moisture content and large ice-masses (e.g.

Salzman, 1983; Nicolis, 1989; Tsonis and Elsner, 1990,

1997). The interaction between climate and river basins is
not uni-directional. Due to the land-atmosphere coupling,
the basin exerts a feedback on the climate through its
orography, soil moisture content, vegetation cover, etc.
Recent studies have reported clues of low-dimensional
dynamics in the response of large basins where connections
with the local climate are likely to be present (e.g.
Sangoyomi ez al., 1996). Interaction between soil-moisture
and atmospheric dynamics are able to produce chaotic
behaviour on different time scales by feedback mechanisms
related to the recycling of soil moisture through evaporation

(Rodriguez-Iturbe et al, 1991a, b). For basins having
hydrological regimes influenced alse by snowmelt or by
perennial glaciers additional delays and feedbacks with the
climate dynamics are present. Even if the actual dynamics of
the atmosphere at a meteorological time-scale is more likely
of the kind .of spatio-temporal chaos of a quite high
dimension, the coupling with the basin with its various
feedbacks could also give rise to recurrent low-dimensional
components.

Once these mechanisms have produced the input (i.e.
rainfall) to the system, the final step of the process is the
complex synthesis performed by the basin during the
rainfall-runoff transformation. The strong low-pass filtering
action of the basin, while smoothing out some of the space-
time complexity of rainfall, could also indicate the low-
dimensional components originating from both climate and
rainfall-runoff transformation. Low-dimensional compo-
nents are introduced by the very action of the basin; in
addition to the influence of climate and meteorological
dynamics, runoff time series bears the fingerprint of the
basin characteristics (topography, geology, channel-network
geometry, vegetation, human actions, etc.). For example,
groundwater systems behave as a nonlinear dissipative
system with a few degrees of freedom (e.g. Brandes et al.,
1998), and recession curves usually show quite simple
behaviour (Tallaksen, 1995); Chiu and Huang (1970)
successfully proposed a low-dimensional (2nd order) non-
linear ODE for the falling limbs of the hydrograph, which
reproduced measurements closely.

Preliminary evidence of chaos in
rainfall-runoff dynamics

DATA USED

Monthly rainfall and runoff series observed at the Gota
basin in Sweden are analysed separately and jointly (using
the runoff coefficient) to investigate the possible existence of
chaotic behaviour in the rainfall-runoff process. The Gota
basin, located in the south of Sweden between 55° and
60°N and 12.9° and 16 °E, is about 50132 sq. km in extent,
with a lake percentage of 18.6%. The climate in this region
varies between boreal and more temperate, without fre-
quently recurring permanent-snow cover during winter.
Rainfall and runoff time series observed over a period of
131 years (January 1807-December 1937) are investigated.
The runoff represents runoff from natural and unregulated
conditions. The runoff coefficient is calculated as the ratio of
runoff to rainfall with-a concentration time of 6 months.

- Possible reasons for choosing a concentration time of as long

as 6 months are (1) the large size and the flat nature of the
basin; (2) the presence of a large percentage of lakes; and (3)
the occurrence of snow and ice over a 34 month period.
(The autocorrelation functions obtained for the rainfall and
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Fig. 1. Time Series Plot: (a) monthly rainfall series from Géta River;
(b) monthly runoff series from Géta River; and (c) monthly runoff
coefficient series from Géta River.

runoff coefficient series also support the selection of a
concentration time of 6 months).

Figures 1(a) to 1(c) show the variations in the monthly
rainfall, runoff, and runoff coefficient series observed at the

Gota basin, and Table 1 presents some of the important
statistics for the three series. Though a visual inspection of
the three series indicates significant peaks every few years,
the seemingly irregular behaviour of the three series does
not indicate anything regarding the presence (or absence) of
chaotic behaviour and, therefore, additional tools are
required. In regard to the runoff coefficient, several values
of the runoff coefficient have values greater than 1.0 (Figure
1(c)) and the (long-term) mean is greater than 1.0 (Table 1).
This certainly contradicts the acceptable definition of runoff
coefficient, which should always be less than 1.0. Though
one reason for the above problem could be an inappropriate
selection of the concentration time, it is important to note
that similar observations are also made when several other
concentration times are used. A cross—-correlation analysis
between rainfall and runoff also indicates a concentration
time of about 6 months. On the other hand, the median,
which describes the data better than the mean, is less than
1.0 (about 0.74). Therefore, the problem seems to lie
inherently with the resolution of the original data
considered. With a low-resolution monthly series, with a
basin that is large and flat with a large percentage of lakes
and also the occurrence of snow and ice over a 3—4 month
period, such a problem may occur, irrespective of the
concentration time used. Therefore, it may be necessary to
find another parameter, connecting rainfall and runoff, to
represent better the joint rainfall-runoff process.

AUTOCORRELATION FUNCTION AND PHASE-SPACE
DIAGRAM

Before employing any specific chaos identification tech-
nique, such as the correlation dimension method or the
nonlinear prediction method, useful information regarding
the possible presence of chaos in the rainfall, runoff, and
runoff coefficient series can be obtained by looking at, for
example, the autocorrelation function plot and the phase-
space diagram. Figure 2 shows the variation of the auto-
correlation function against the lag time for the monthly
rainfall, runoff, and runoff coefficient series observed at the
Gota basin. The figure indicates that the runoff series shows

Table 1. Statistics of rainfall, runoff and runoff coefficient data observed at the Géta River

basin.

Statistic Rainfall Runoff Runoff Coefficient
Number of data 1572 1572 1567

Mean 45.61 mm 30.53 mm 1.12

Standard deviation 28.81 mm 6.15 mm 1.37

Coefficient of variation 0.63 0.20 1.22

Maximum value 192.50 mm 46.30 mm 23.62

Minimum value 1.00 mm 15.40 mm 0.11

Number of zeros 0 0 0
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Fig. 2. Autocorrelation Function for monthly rainfall, runoff, and
runoff coefficient series from Gota River.

some kind of exponential decay in the autocorrelation
function up to a lag time of about 20 months, whereas those
for the rainfall and runoff coefficient series fall off somewhat
abruptly with lag times between 3 and 6. The exponential
decay of the autocorrelation function observed for the
runoff series may be an indication of chaotic behaviour of
the runoff process. With respect to the rainfall and the
runoff coefficient series, the delay, though small in the
autocorrelation function seems to indicate that the two
series are not stochastic (Sivakumar ez al., 2000a).

With regard to the study of the attractor (a geometric
object which characterises the long-term behaviour of a
system in the phase-space), a useful tool of analysis is the
projection of the attractor of the (scalar) time series X,
where =1, 2, ..., N, reconstructed in a (suitable)
embedding dimension (m), using the method of delays,
according to

( )(]4-1'7 j+2Ty *Xj+(m—l)r) (1)

where j=1, 2, ..., N — (m — 1)t/At; m is the dimension of
the vector Y}, also called the embedding dimension; and 7 is
a delay time taken to be some suitable multiple of the
sampling time Ar (Packard er al, 1980; Takens, 1981).
Figures 3(a) to 3(c) show, respectively, for the rainfall,
runoff, and runoff coefficient series, the phase-space plots
constructed in two-dimensions (m = 2) with 7 =1, i.e. the
projection of the attractor on the plane {X;, X; i}. The
projection yields a well-defined structure for the runoff
series, whereas those for the rainfall and runoff coefficient
series are, in order, less and less clear, suggesting that the
runoff series might yield the lowest dimension, followed by
rainfall and runoff coefficient series, respectively. This is
verified below using the correlation dimension results.

CORRELATION DIMENSION METHOD

The correlation dimension is estimated by employing the
Grassberger-Procaccia algorithm (Grassberger and Procac-
cia, 1983a, b), which uses the reconstruction of the phase-
space according to Eqn. (1). For an m-dimensional phase-
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Fig. 3. Phase-space Plot: (a) monthly rainfall series from Gita River;
(b) monthly runoff series from Gita River; and (c) monthly runoff
coefficient series from Gota River.

space, the correlation function C(r) is given by

C(r) = lim

Jm o L He-EY) @

(l<;<_7<N)

where H is the Heaviside step function, with H(x) =1 for
#>0,and H(u) =0 for u <0, where u =7 —|Y; = Y}, r is
the radius of sphere centred on Y; or Y; and N is the
number of data points. If the time series is characterised by
an attractor, then for positive values of 7, the correlation
function C(r) and radius r are related according to

C(r) ~ ar’ 3)
r—0
N—oo
where  is constant; and v is the correlation exponent or the
slope of the log C(r) versus log r plot. If the correlation
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exponent saturates with an increase in the embedding
dimension, then the system is generally considered to
exhibit chaos (e.g. Fraedrich, 1986). The saturation value of
the correlation exponent is defined as the correlation
dimension of the attractor. The nearest integer above the
saturation value provides the minimum number of phase-
space or variables necessary to model the dynamics of the
attractor. If the correlation exponent increases without
bound with increase in the embedding dimension, then the
system under investigation is considered as stochastic.

The correlation functions and the exponents are
computed for the monthly rainfall, runoff, and runoff
coefficient series. The delay time for the phase-space
reconstruction is computed using the autocorrelation
function method, and is taken as the lag time at which the
autocorrelation function first crosses the zero line (e.g.
Holzfuss and Mayer-Kress, 1986). The first zero value of
the autocorrelation function is at lag times 3, 20, and 3
respectively for the three series (Fig. 2) and, therefore, these
values are used in the phase-space reconstruction (see
Sivakumar (2000) for details on the selection of the delay
time).

Figure 4 shows the correlation dimension results, i.e. the
relationship between the correlation exponent values and
the embedding dimension values, obtained for the three
series (Sivakumar ez al., 2000a). For all the three series, the
correlation exponent value increases with the embedding
dimension up to a certain value, and then saturates beyond
that value. The saturation of the correlation exponent

beyond a certain embedding dimension value is an indi-
cation of the existence of deterministic dynamics. The
saturation values of the correlation exponent for the rainfall,
runoff, and runoff coefficient series are 6.4, 5.5, and 7.8
respectively, (Table 2.) The finite correlation dimensions
obtained for the three series indicate that they may exhibit
chaotic behaviour. The existence of chaos in the rainfall
(input) and runoff (output) series suggests that the rainfall-
runoff process may also exhibit chaotic behaviour. The
existence of chaos in the runoff coefficient (a parameter
connecting rainfall and runoff) supports the above.

The correlation dimension estimates obtained above
indicate that the minimum number of variables essential
to understand and model the dynamics of the rainfall,
runoff, and runoff coefficient processes is 7, 6, and 8
respectively. On the basis of the dimension results and,
hence, the number of variables essential to model the
dynamics of the three processes, the prediction of the runoff
process may be easier and better compared to the rainfall
and runoff coefficient processes. With the encouraging
results obtained using the correlation dimension analysis
regarding the existence of chaos in the three series analysed
above, an attempt is made to test the possibility of (accurate)
predictions. To this effect, the nonlinear prediction method
is employed and is discussed below.

Nonlinear prediction method

INTRODUCTION

The role of nonlinear prediction in the study of dynamical
systems is two-fold. Firstly, it is linked to the practical
possibility of making reliable (short-term) forecasts in
complex systems. Within nonlinear deterministic dynamics,
nonlinear prediction enables better forecasts than those
obtained with - statistical methods, e.g. autoregressive
methods, autoregressive moving average methods (e.g.
Jayawardena and Lai, 1994; Jayawardena and Gurung,
2000), because of its capacity to pinpoint the nonlinear
aspect of the phenomenon. Secondly, it is an important
investigative tool for the dynamics of a natural phenomen-
on, in particular, for detecting the presence of deterministic
chaos because the possibility to make forecasts on a time

Table 2. Correlation dimension and Nonlinear prediction results: Monthly rainfall, runoff and
runoff coefficient data observed at Gota River basin.

Statistic Rainfall Runoff Runoff Coefficient
Correlation dimension 6.4 5.5 7.8

Correlation coefficient 0.785 0.995 0.567

Root mean square error 20.204 mm 0.668 mm 0.682 mm
Coefficient of efficiency 0.447 0.985 0.220

Optimal dimension 3 2 6
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series is connected with the type of dynamics which
generated the time series. The identification of chaos using
the prediction results themselves can, therefore, be termed
as an inverse approach.

The application of the nonlinear prediction method in the
present study, therefore, is two-fold: (1) to investigate
whether the dynamics of the rainfall-runoff process could be
predicted reliably using a method based on the concept of
chaos theory; and (2) to detect the possible presence of
chaos in the rainfall-runoff process using the prediction
results themselves. The former assumes that the dynamics
of the rainfall-runoff process exhibits chaotic behaviour, and
in the latter the validity of such an assumption is verified.
One advantage of the nonlinear prediction method to the
rainfall, runoff, and runoff coefficient (or any other
hydrological) series is that it does not require a large data
size and can provide reasonably good results even when the
data size is small. Another advantage lies in the fact that the
inverse approach allows one not only to detect the presence
of chaos but also to verify the results obtained using other
methods. For example, the optimal embedding dimension
obtained from this method can be compared to the
minimum number of dimensions essential to model the
dynamics (the nearest integer higher than the correlation
dimension), as obtained using the correlation dimension
method.

METHODOLOGY

The nonlinear prediction method uses the concept of phase-
space for reconstructing the attractor of the time series
(using its past history). For a scalar time series X, where
1=1,2, ..., N, the phase-space can be reconstructed using
the method of delays according to Eqn. (1). Once the
attractor has been correctly reconstructed in phase-space of
dimension m, it is possible to interpret the dynamics in the
form of an m-dimensional map f7, that is,

Yiir =fr(Y;) “4)

where Y;and Y, rare vectors of dimension m, describing
the state of the system at times ;j (current state) and j+ T
(future state), respectively (In real situations, however, the
optimal embedding dimension for reconstruction is not
known 4 priori and, therefore, different embedding dimen-
sions have to be used and the optimal dimension should be
chosen based on the prediction results).

The problem then is to find an appropriate expression for
Jr (e.g. Fy). There are several possible approaches for
determining F7, broadly divided into. two categories: (1)
global; and (2) local. By means of the first, an attempt is
made to approximate the map (Eqn. 4), working globally on
all the attractor and seeking a map Fr valid at every point of
it. Local approximation (e.g. Farmer and Sidorowich,
1987), on the other hand, entails the subdivision of the f7
domain into many subsets, each of which identifies some

approximations Fr, valid only in that same subset. In this
way, the dynamics of the system are described step by step
locally in the phase-space. This choice leads to a consider-
able reduction in the complexity of the representation Fr,
without lowering the quality of the forecast, to the point
that, for the very short term, it generally provides better
results than those obtainable by global methods.

In the present study, the local approximation approach is
employed for the prediction of the three time series
considered. The identification of the sets in which to
subdivide the domain can be done in several ways; the usual
one entails fixing a metric || ||, then, given the starting point
Y, from which the forecast is initiated, identifying
neighbours Y?, p =1,2,...,k, with j* <j, nearest to ¥},
which constitute the set corresponding to the point Y;. With
this, the local functions can then be built, which take each
point in the neighbourhood to the next neighbourhood: Yf
to Y}’ e The local map F7, which does this, is determined
by a least squares fit minimising

k
DIV, - FrY?? (5)
=1

The local maps are learned in the form of local polynomials
(e.g. Abarbanel, 1996), and the predictions are made
forward from a new point Z; using these local maps. For
the new point Z, the nearest-neighbour in the learning or
training set is found, which is denoted as Y,. Then the
evolution of Zj is found, which is denoted as Z; and is given
by

Zy = F(Zo) (6)

and then the nearest-neighbour to Z; is found, and the
procedure is repeated to predict other values. In this study,
the above methodology is used for local polynomial perdic-
tions, as implemented in the software cspW (Randle Inc.,
1996).

The accuracy of prediction can be evaluated using any of
the standard statistical measures, such as the correlation
coefficient. In this study, the correlation coefficient (CC)
between the predicted values and the observed values is
used as a main tool to determine the accuracy of prediction.
A correlation coefficient of 1 is considered as a perfect
prediction whereas a value of 0 refers to no relationship
between the predicted and the observed values. The root
mean square error (RMSE) and the coefficient of efficiency
(E?) are also used to measure the prediction accuracy. The
time series plots and the scatter diagrams are also used to
choose the best prediction results, among a large combina-
tion of results achieved with the different embedding
dimensions.

The prediction results themselves can be used to detect
the presence of chaos in the time series. This can be done by
checking the accuracy of prediction against the embedding -
dimension. The concept behind the use of embedding
dimension is that if the dynamics is chaotic, then the
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prediction accuracy will increase (to reach its best) with the
increase in the embedding dimension up to a certain point,
called the optimal embedding dimension (,,,), and remain
close to its best for embedding dimensions higher than m,,,.
On the other hand, for stochastic series, there would be no
increase in the prediction accuracy with an increase in the
embedding dimension and the accuracy would remain the
same for any value of the embedding dimension (e.g.
Casdagli, 1989).

RESULTS AND DISCUSSION

In the present study, the first 1440 points from each of the
monthly rainfall, runoff and runoff coefficient series are
used for the phase-space reconstruction (i.e. training or
learning set) to predict the subsequent 80 points. In this
study, only one-step ahead (i.e. lead-time = 1) predictions
are made. Table 2 presents a summary of the prediction
results achieved for the three series. The measures of
prediction accuracy are the correlation coefficient (CC), the
root mean square error (RMSE), and the coefficient of
efficiency (E%). The results presented in Table 2 are those
obtained at the optimal embedding dimension for each of
the three series, also presented in Table 2. In addition to the
above three criteria, the time series plots and the scatter
diagrams are also used to select the optimal embedding
dimension.

Table 2 shows that, the prediction results are best for the
runoff series, followed by the. rainfall and the runoff
coefficient series respectively. Figures 5(a) to 5(c) compare,
using time series plots, the observed and the predicted
values for the rainfall, runoff and runoff coefficient series
respectively. For the runoff series, the predicted values are
in close agreement with the observed values. In the case of
the rainfall and runoff coefficient series, though the pre-
dicted values are not in good agreement with the observed
values, the trends (rises and falls) in the values seem to be
fairly well captured. The reasonably good prediction results
achieved for the three series using the nonlinear prediction
method seem to indicate the suitability of the method (or
any other nonlinear dynamical approach) to model and
predict the dynamics of the three series and, hence, the
rainfall-runoff process.

The prediction results and the correlation dimension
results obtained for the rainfall, runoff and runoff coefficient
series (Table 2) indicate an inverse relationship between the
two. The best prediction results are achieved for the
(runoff) series with the lowest correlation dimension (5.5)
and vice-versa. Such an inverse relationship between the
dimensions and the prediction results for the three series is
consistent with the concept of the dimension -analysis
presented earlier, i.e. a higher dimension is an indication of a
more complex process, which is more difficult to model and
predict than a less complex process, which is recognised by
a lower dimension. These observations suggest the useful-
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Fig. 5. Comparison between Time Series Plot of Predicted and
Observed Values: (a) monthly rainfall series from Gota River; (b)
monthly runoff series from Géta River; and (c) monthly runoff
coeffictent series from Gita River.

ness of the correlation dimension is only as a preliminary
indicator to-identify the behaviour of the rainfall-runoff (or
any other dynamical) system.

The results above regarding the existence of chaos can be
supported further by employing the inverse chaos identi-
fication approach, explained earlier. Figures 6(a) to 6(c)
show the variation of the correlation coefficient against the
embedding dimension for the rainfall, runoff and runoff
coefficient series respectively. In the case of the rainfall and
runoff series, the correlation coefficient increases with the
embedding dimension up to m =2 and 3 respectively and
then decreases when the dimension is increased further,
whereas a saturation of the correlation coefficient beyond a
certain embedding dimension, m = 6, is observed. for the
runoff coefficient series. The presence of optimal embed-
ding dimension values, m,,, = 2, 3, and 6 respectively, for
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the rainfall, runoff and runoff coefficient series indicates the
possible presence of chaos in the three series. Optimal
embedding dimensions are observed also with respect to the
RMSE values and the E? values (figures not shown),
providing further support to the above results regarding the
presence of chaos. Furthermore, the optimal embedding
dimensions obtained for the three time series with respect to
RMSE and E* (3, 2, and 6 respectively) are consistent with
those obtained with respect to the correlation coefficient
values.

A brief discussion about the presence of chaos and the
prediction results is now in order. According to the concept
of chaos theory, for a chaotic time series with an attractor
dimension, 4, (1) accurate short-term predictions can be
achieved when it is embedded in a sufficient phase-space,
i,y or higher; and (2) the prediction accuracy will remain

constant for any embedding dimension higher than m,,,.
The prediction results achieved in the present study raise
important questions, since: (1) the prediction results are far
from -accurate, particularly -for the rainfall. and runoff
coefficient series; and (2) the prediction accuracy does not
remain constant beyond the optimal embedding dimension,
rather ‘decreases when the embedding dimension is
increased further. '

A possible explanation for such observations is the
presence of noise in the time series. Noise is one of the most
prominent limiting factors for the predictability of determi-
nistic chaotic systems. Noise limits the accuracy of
predictions in three possible ways: (1) the prediction error
cannot be smaller than the noise level, since the noise part of
the future measurement cannot be predicted; (2) the values
on which the predictions are based are themselves noisy,
inducing an error proportional to and of the order of the
noise level; and (3) in the generic case, where the dynamical
evolution has to be estimated from the data, this estimate
will be affected by noise (Schreiber and Kantz, 1996). In the
presence of these three effects, the prediction error will
increase faster than linearly with the noise level.

The inability to obtain accurate prediction results for the
rainfall, runoff and runoff coefficient series could be due to
the presence of noise in these series, particularly in the first
and the last. The rainfall measurement is influenced
generally by a large number of factors, such as wind,
wetting, evaporation, gauge exposure, instrumentation.and
human error in reading the rainfall data. The data used in
this study are also influenced by a certain imprecision due to
the averaging of those observed at two different stations in
the basin and the rounding errors resulting from the
conversion of the daily to monthly data. Added to this, and
most importantly, is the intrinsic much higher erratic nature
of the rainfall process, compared to the runoff process. On
the other hand, the level of noise in the runoff coefficient
series is believed to be much higher due to the presence of
noise both in the rainfall and runoff series, as the coefficient
is taken as the ratio of runoff to rainfall. The use of
(incorrect) concentration times in the computation of the
runoff coefficient also increases the noise level, perhaps
significantly. The presence of significantly higher levels of
noise in the runoff coefficient and the rainfall series, not to
forget their higher variabilities, could certainly result in the
much less accurate prediction results, when compared to
those obtained for the runoff series. However, the pre-
diction results can be improved considerably if the noise is
removed or reduced (Porporato and Ridolfi, 1997; Sivaku-
mar et al., 1999b; Jayawardena and Gurung, 2000).
Regarding the optimal embedding dimension, it may seem
surprising that the accuracy of the prediction decreases at
embedding dimensions higher than the optimal embedding
dimension; where potentially more information—more data—
is summarised in each m-dimensional point. A possible
reason for this may be the contamination of nearby points in
the high-dimensional embedding with points whose earlier
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coordinates (at low embedding dimensions) are close but
whose recent coordinates (at high embedding dimensions)
are distant (e.g. Sugihara and May, 1990). -

One more important aspect referring to the presence of
noise needs to be addressed. For each of the three time
series studied, a discrepancy is observed between the
dimension, 4, obtained using the correlation dimension
method (5.5, 6.4, and 7.8 respectively) and the optimal
embedding dimension, m,,,, obtained using the nonlinear
prediction method (2, 3, and 6 respectively). On one hand,
since noise in a time series may result in an overestimation of
the correlation dimension, the actual correlation dimensions
of the rainfall, runoff and runoff coefficient series are
believed to be somewhat lower than the ones obtained
above. On the other hand, as explained above, the optimal
embedding dimensions obtained in the nonlinear prediction
method could also be somewhat lower than the actual ones.
Therefore, the removal or reduction of noise could partially
offset these problems, yielding much closer dimensions to
the actual ones, than those obtained above.

Conclusions and scope for further
research

The present study followed the research undertaken earlier
by Sivakumar et -4/, (2000a), in which some preliminary
evidence of the existence of chaos in the monthly rainfall-
runoff process at the Gota basin in Sweden was collected.
Techniques, ranging from fundamental statistical ones
providing important information on the general behaviour
of the process to more sophisticated ones capturing the
(nonlinear) intricate details of the process, were employed to
rainfall, runoff and runoff coefficient time series. Particular
emphasis was given to the (nonlinear) prediction aspects of
the rainfall-runoff process. The results achieved in this
study augment those obtained previously by Sivakumar ez
al. (2000a). The existence of a chaotic component, which
constitutes the framework of the dynamics under investiga-
tion, appears increasingly evident. Several kinds of analysis
support its existence consistently, both qualitatively and
quantitatively. The variations between the three time series,
observed from time series, phase-space and autocorrelation
plots, were well represented by the corresponding variations
in the correlation dimensions and also the prediction results.
For instance, the lower variability in the time series plot and
a well-defined projection of the time series in the phase-
space, were represented by a lower correlation dimension
and a higher prediction accuracy. The reasonably good
prediction results achieved for the three series (runoff, in
particular) using a prediction method based on the concept
of chaos theory indicate the suitability of a chaotic approach
for understanding, modelling and predicting the underlymg
dynamics of the processes.

Although the present study yielded convincing evidence
regarding the existence of chaotic components in the
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rainfall-runoff dynamics, their assessment is not simple.
Due to the inherent limitations of the identification methods
(e.g. assumptions of infinite and noise-free time series) and
the problems in hydrological time series (e.g. finite and
noisy time series), the results presented here allow only
partial conclusions. New and more refined methods applied
to time series of better quality are required to confirm and
generalise the results. The possible extensions of the present
analysis could be: (1) identification of a parameter,
connecting rainfall and runoff, which could represent the
rainfall-runoff process better than runoff coefficient; (2) use
of other chaos identification methods to confirm the results
obtained previously regarding the existence of chaos in the
rainfall-runoff process; (3) application of nonlinear noise
reduction techniques to obtain better quality data (e.g.
Sivakumar ez al., 1999b); (4) independent analysis of the
other variables that influence the rainfall-runoff process,
such as temperature (e.g. Jinno ez a/., 1995); (5) recovery of
one variable in the rainfall-runoff system, which may be
difficult to measure but is of direct physical interest, from a
relatively easily measureable variable in the same dynamical
system (e.g. Abarbanel ez al, 1994); and (6) multivariate
time series analysis of the variables involved in the rainfall-
runoff system (e.g. Cao ez al., 1998). Investigations along
these lines are underway, details of which will be reported
elsewhere.
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