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Abstract

The classification of river waves as gravity, diffusion or kinematic waves, corresponds to different forms of the momentum equation
in the Saint-Venant system. This paper aims to define approximation zones of the Saint-Venant equations for flood routing in
natural channels with overbank flow in the flooded area. Using linear perturbation theory, the different terms in the Saint-Venant
equations were analysed as a function of the balance between friction and inertia. Then, using non-dimensionalised variables, flood
waves were expressed as a function of three parameters: the Froude number of the steady uniform flow, a dimensionless wave
number of the unsteady component of the motion and the ratio between the flooded area zone width and the main channel width.
Finally, different theoretical cases, corresponding to different flooded area zone widths were analysed and compared. Results show
that, when the width of the flooded area increases, the domain of application of the diffusive wave and the kinematic wave models is

restricted.
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Introduction

Many hydraulic and hydrological problems involve the
computation of the propagation of flood waves in open
channels based on the solution of the well-known Saint-
Venant (1871) equations. The Saint-Venant equations are
coupled hyperbolic partial differential equations that cannot
be solved analytically. It was not until Stoker (1957) that
approximate numerical solutions were obtained using an
explicit finite difference method. Since Stoker’s work, a
great number of different numerical schemes have been
proposed including the method of characteristics (Abbott,
1966), a variety of sophisticated finite difference methods
(Remson et al, 1971; Cunge ez al., 1980; Dooge et al., 1982)
and finite element schemes (Cooley and Moin, 1976; Fread,
1985; Szymkiewicz, 1991, 1993). Comparisons of numerical
solutions for the Saint-Venant equations have been
published by Price (1974) and Greco and Panattoni (1977).

The complexity inherent in the calculations has led to the
development of approximate methods. Several authors have
examined the approximation zone of the Saint-Venant
equation in the particular case of one main channel river
(Dooge and Harley, 1967, Woolhiser and Liggett, 1967;
Weinmann and Laurenson, 1974; Ponce and Simons, 1977,

Bocquillon, 1978; Daluz Vieira, 1983; Ferrick, 1985;
Moussa and Bocquillon, 1996). Within this basic model,
river waves may be classified as gravity, diffusion or
kinematic waves, corresponding to different forms of the
momentum equation.

However, the major parts of research in this field have
studied the case of a channel with one section corresponding
to the main channel, and little attention was given to
overbank flow during flood events (Rutschmann and Hager,
1996). The cross section of a channel may be composed of
several distinct sub-sections with each sub-section different
in roughness from the others (Chow, 1959; Carlier, 1980).
For example, an alluvial channel subject to seasonal floods
generally consists of a main channel and two side channels.

The object of this paper is to develop a quantitative
method for identifying river wave types in the case of flood
events with overbank flow. The analysis presented herein
endeavours to apply the theory of linear stability to the set of
the Saint-Venant equations in a non-dimensionalised space
as proposed by Ponce and Simons (1977) and Moussa and
Bocquillon (1996). Then, different theoretical cases,
corresponding to different values of the ratio between the
main channel width and the flooded area zone width, were
analysed and compared.
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Fig. 1. A channel consisting of one main section and two side sections.

The Saint-Venant equations for
channels of compound section

The dynamic modelling of a one-dimensional, gradually
varied, unsteady flow in open channels is based on the
numerical solution of the Saint-Venant equations. In the
case of a river with a flooded area, let W; and W, be
respectively the width of the main channel and the flooded
area zone respectively (Fig. 1). The two equations,
describing mass and momentum, can be written as follows
(Chow, 1959; Henderson, 1963, 1966; Abbott, 1979)

Oy 3Q_
W25 o ox 0 )
8V 8V By

where y is the flow depth (m), V is the flow velocity
(ms™1), g is the acceleration due to gravity (ms~2), S is the
river bed slope, St the slope of energy line, Q the discharge
(m? s, x is longitudinal distance (m) and t is time (s). The
basic assumption made to derive this system is that the flow
is one-dimensional in the main channel and the flooded area,
and that there are no lateral inflows or outflows.

The side channels are usually found to be rougher than
the main channel. So the mean velocity, V, in the main
channel is greater than the mean velocities in the side
channels. In such a case, the Manning formula may be
applied separately to each sub-section in determining the
mean velocity of the sub-section. Then, the discharges in
the sub-sections can be computed. The total discharge is,
therefore, equal to the sum of these discharges. As the
velocity in the main channel is greater than the velocity in
the flooded area, the part of discharge in the flooded area
sub-section is small in comparison to the discharge in the
main channel, so the discharge Q is expressed as

Q=A-V (3

where A is the cross-sectional area of the flow (m?) defined
as a function of x and y

= W1 'y (4)
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Differentiating Eqns. (3) and (4) gives

0A _

8Q _ 0A _, OV

_yoA A Y VaAl Oy ov

+Aig- (6)

Bx Ox Ox Oy 3x
Substituting Eqns. (5) and (6) into Eqn. (1) gives
9y O L, 0V
Wza +V-W; - 3 +A16 =0 (7)

Let 1 be the ratio between the flooded area zone width
and the main channel width

W,
n= Wl (8)

The two Egns. (1) and (2) of the Saint-Venant system can
be written as follows

o Ya—FVgX’:O

Term (I) () (1D (9)

ov av
_+V'—"+g%+g'(8f—8)=0

ot Ox
Term (IV) (V) (VD) (VII) (VII) (10)

The term St is usually calculated using the Manning
formula. As the velocity, V, in the main channel is greater
than the velocity in the flooded area, the term of the
Manning formula applied to the fleoded area is small in
comparison to the term in the main channel

S =nVZ.R™ (11)

where V is the mean velocity (m s™), R the hydraulic radius
(m), n the coefficient of roughness and m a constant (m =

-4/3). For the main channel

Wi -y

Reerr—— 12
Wi+2-y (12)

For wide river sections (y < W)), the Manning formula
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can be written
S ~nVi.y™ (13)

The two Eqns. (9) and (10) give the generalised form of
the Saint-Venant system with a flooded area and where the
side channels are rougher than the main channel. In this
case, the Saint-Venant system depends on the parameter 7
that appears in the mass equation. The particular case n = 1,
corresponding to flood routing without overbank flow, was
studied extensively by Moussa and Bocquillon (1996). The
object of this paper is to generalise this method for different
values of the parameter 7 corresponding to different widths
of the flooded area and then to analyse the ability to use the
same wave model when the flooded area width varies during
flood events.

Analysis of river wave types

The analysis presented herein endeavours to apply the
theory of linear stability to the set of equations governing
the motion in open channel flow as proposed by Ponce and
Simons (1977) and Napiorkowski (1992) and then to define
parameter ranges representing each wave type in the Saint-
Venant system for different values of 7. The analysis is
based on the principle that the balance between friction and
inertia determines river wave behaviour. The Saint-Venant
equations are written in dimensionless form, the system
equation provides parameters that quantify the magnitudes
of all terms in the equation and indicate the relative
importance of friction and inertia.

SMALL PERTURBATION ANALYSIS OF WAVE
PROPAGATION

In the usual manner of stability calculations, Eqns. (9) and
(10) must satisfy the unperturbed steady uniform flow for
which y = yg and V = Vj, as well as the perturbed flow. The
problem may be represented as the superposition of two
regimes, a permanent regime and a small perturbation to the
steady uniform flow. Let yo(x), Vo(x), £.¥'(x,t) and &.V'(x,t)
be the values of y(x,t) and V(x,t) respectively for the
permanent regime and for the small perturbation

V(x,t) = Vo(x) + & V'(x,t) (14)
y(x,b) = yo(x) + &y (%1) (15)
For the steady uniform flow, Eqns. (9) and (10) lead to
8y0 8V0
Vo—a““+ 0 o =0 (16)
v
Vo—tg M _ = g(S — Sn) (17)

ox  ®ox

with Sy the slope of the energy line
Sp~n-Vi-y™ (18)

This unperturbed flow is characterised by the Froude
number (Fy) of the unperturbed flow
2
2= Yo (19)
gYo
Substitution of perturbed variables (14) and (15) and Eqns.
(16) and (17) into (9) and (10), and by neglecting the terms
with &%, and by neglecting the derivatives of permanent
terms (Vy and yg) as they are small in comparison to the
derivatives of the perturbation terms (V’ and y'), gives
3}" 9y’
——+V, =0 20
+ 0 9% +y0 6X ( )

U /

/
oV | eSy- (22[7““1‘) =0 (21)
0

6‘t+V05x+g3

The solution for a small perturbation in the depth of flow
is postulated as a sinusoidal upstream input with zero lateral
inflow, in the following exponential form as proposed by
Katopodes (1982) and Hunt (1987)

y/ — el®t. e—Ax (22)

VvV = e ei(ut e—lx (23)

where ¢ is a small real value, w the frequency and A and

complex (i = v/—1) with

A=A+iAk and p=p +iy (24)

with A,, 4, y, and y; real numbers.
The small perturbation, in the form of a harmonic
oscillation, is characterised by the wave period T
2n

T="= (25)

ANALYSIS OF THE PROBLEM USING NON-
DIMENSIONALISED VARIABLES

This problem is studied by using non-dimensionalised
variables y,, V., x; and t, with

= . 'VI=V . : =X+‘Y0. :t+‘y0
Y, Y+ Yo +V0aX sm 3t V()'Sﬂ]
(26)
These transformations reduce Eqns. (20) and (21) to
n e AR
— = 27
5t+ + 6X+ 8X+ 0 ( )
V3 [0V, 8V+ 8y+
— = 2.V, — =0 (28
gYo (6t+ *ox, 3X+ * Y @)

253



Roger Moussa and Claude Bocquilion

Then, it is convenient to non-dimensionalise the input
perturbation with the non-dimensionalised variables w_, A,
and p;

Vo - Sp Sw

A=Ay — =
Yo +Y0 H=He

= 04 (29)

Let T, be the non-dimensionalised period; combining
Eqns. (26) and (29) gives

w-t= w4ty ).X=}.+X+ T+=2—E=M
(08 Yo
(30)
Substituting (26) and (30) into (22) and (23) gives
vy = ei-a)+.t+e—l+.x+ (31)
V+ =p, ei'a)+.t+e—l+.x+ (32)

Differentiating Eqns. (31) and (32) gives

6T:=1»w+'y+ W:=1-w+-V+=1'w+-u+-y+
(33)

Oy ov

5i:_’hr'y+ 8T:=_l+'v+="'1+'#+‘y+

(34

Substituting (32), (33) and (34) into Eqgns. (27) and (28)
gives

inop—Ap—p A =0 (35)

Fiop,.(i-rop—A4)—Ar+2-p,—m=0  (36)

Eliminating 4, between the two Eqns. (35) and (36) leads
to

(Fi-1)- 22 - [i- o4 -Fi(1+n)+2+m| - Ay
—n-wl Fi+2-i-n-0.=0 (37
Finally the solution obtained is

1
Fi-1

1
{1+%+i-w+- (%)ng

2 1—n\2
() raimi-atmi- (152))

_ 1/2
+w+-<F§-m(1+")+2 2n+2-n>-i]
2 (38)

Equation (35) gives

j.+=

(39)
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In the non-dimensionalised space, the Saint-Venant
system can be expressed as a function of A, and u,. The
two non-dimensionalised terms A, and g, are two func-
tions of three dimensionless numbers, the Froude number
F2 that describes the hydraulic characteristics of the channel
reach, the period of the sinusoidal perturbation T, and the
ratio between the flooded area and the main channel widths
7. So, the analysis of the contribution of each term in the
Saint-Venant system (Eqns. 9 and 10) can be made a
function of the three parameters F(Z,, T, and #.

Choice of flood routing method

In most natural open channels, the movement of flood waves
is governed predominantly by the balance of the various
forces included in the two equations of mass (9) and motion
(10). Numerous studies have addressed the question of
which flood routing method might be appropriate for
different circumstances. The object is to study the evolution
of the approximation zones of the Saint-Venant system for
different values of the parameter # corresponding to
different widths of the flooded area.

THE DIFFERENT TERMS OF THE SAINT-VENANT
SYSTEM

In most practical applications, some terms in the Saint-
Venant Eqns. (9) and (10) can be neglected since they are
small in comparison to others. Let 7;, 7, and 73 be
respectively the moduli of the three terms of Eqn. (35) that
correspond respectively to the terms (I), (I) and (III) of the
mass Eqn. (9)

3= = py Ayl
(40)

T =i-n- o T2 =] — A4

and let 74, 5, 76, T7 and 7g be respectively the moduli of the
five terms of Eqn. (36) that correspond respectively to the
terms (IV), (V), (VI), (VII) and (VIII) of the momentum
Eqn. (10)

=i By op]  ts=|—Fhop Ayl
(41)

t6=|—As w=1[2-p] 13=|ml
Note that for a complex number a + bi, where a and b are

real numbers and i = v/—1, the modulus is

la+ bii} = (a% + b%)"/2 42)
el = (2, + 2202 (43)
2 2 1/2
ol 2-opn-
= - +1 44
v leey | <|}~+|2 |/1+|2 ) (44)
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Let
o1 = (22 + & +13)"? (45)
o=+ +1t+d+ )" (46)

The terms 7; (1 < j < 8)and g; (1 < j < 2) depend also on
the three parameters Fﬁ, T, and #. The magnitude of each
term in each equation is obtained by calculating |1,/0|,
|t2/01| and |13/ for the mass Egn. (35) and |14/03),
|ts/ 62, |16/ 72|, |77/ 02| and |15/ 52| for the momentum Eqn.
(36). Figures 2—4 show the values of these eight terms for
m = 4/3 and for three values of 7 (1, 8 and 20) on a decimal
log-log plot for (1072 < T < 10% 1072 < Fj < 10°).

The three terms of the mass equation (|7,/0|, |12/04|
and |13/64|) are of the same order (between 0.25 and 0.8) for
n = 1. When # increases, the two terms |t;/0y| and |73/04|
are still of the same order (0.4 to 0.8) but the term |7,/d,|
can vary between 0.01 and 0.4. For the three values of 7, the
three terms of the mass equation are generally of the same
order and no simplifications could be made in the mass Eqn.
(9). In contrast, the different terms of the momentum
equation may be sufficiently small to be neglected, leading to
further simplifications.

SIMPLIFICATIONS OF THE MOMENTUM EQUATION
OF THE SAINT-VENANT SYSTEM

In Eqn. (10), the term (IV) represents the local inertia term,
the term (V) represents the convective inertia term, the term
(VI) represents the pressure differential term and the terms
(VII) and (VIII) account for the friction and bed slopes.
Various wave models can be construed, depending on which
of these four terms is assumed negligible when comparing
with the remaining terms. Wave models and terms used to
describe them are (Ponce and Simons, 1977)

e  Gravity wave:terms (IV) + (V) 4 (VI)
e Diffusive wave:terms (VI) and (VII)
e Kinematic wave:term (VII)

The delimitation of the different zones is a function of the
two non-dimensionalised numbers, the Froude number F}
that characterises the unperturbed flow regime and T that
characterises the sinusoidal period of the upstream initial
condition. If the terms |7;/0,| for (4 <j < 8) sufficiently
smaller than a threshold (here 109%) are neglected, the three
approximation models of the Saint-Venant system can be
defined as

e  Gravity wave:|t7/0,| < 0.1 and |13/0,| < 0.1

e Diffusive wave:|14/0,| <0.1 and |t5/02| < 0.1

e Kinematic wave:|14/0,| < 0.1; |15/0;| < 0.1 and
I‘L'G/O'zl < 0.1

For the three values of #, Fig. 5 shows the result with
|ti/02| < 10% for (4 <j<8). The contour lines of the
different approximation models (gravity, diffusive and
kinematic) in Fig. 5 don’t have any analytical form and
simple relations using the ratio F(Z) /T were adjusted to give
a first approximation. Table 1 gives these analytical relations
as approximation zones of the gravity, diffusion and
kinematic waves as a function of the two parameters Fj
and T,.

DISCUSSION

The problem of flood wave propagation is considered for a
simplified but typical configuration occurring during flood
events, for which the channel width can change instanta-
neously when overbank flow occurs in the flooded area. The
technique proposed herein guides the user in the choice of
river wave model and specifies two types of error, the error
induced by approximating the Saint-Venant system and the
error due to the variation of the channel width during a
flood event.

Moussa and Bocquillon (1996) showed that the results
obtained for # =1 are of the same order and confirm other
results obtained by several researchers, notably Ponce ez 4l.
(1978) and Daluz Vieira (1983), who developed criteria for
deciding the conditions under which approximate models

Table 1. Conditions of applicability of the different approximation models of the Saint-
Venant system for different values of the ratio between the flooded area width and the

main channel width (7)

Gravity wave

Diffusive wave

Kinematic wave

F§ F§ F§

= — > 12. — < (. — < 0.043 > 39

n=1 T+_1241 T+_00432 T+_00 2and T, >3
F Fj Fg

= -2 >2. —<0. —.<0.01 >1

n=38 T+_285 T+_00101 T+_00 0l and T, > 154
2 2 2

n=20 %—22.50 ?—050.0037 :—030.0037 and T, > 383
+ + 1y

258



Approximation zones of the Saint-Venant equations for flood routing with overbank flow

Fo.Fen{Vo.Vo)(g.yo) n=W2/Wi= 1
1000 3
100 |
3 Gravity wave
10} ho/c21<0.1 Full
3 hy/c2i<0.1 Saint-Venant

system

1 Kinematic
wave
s ha/o21<0.4
hs/cral<0.4
0.1 he/o21<0.1
TeuT.Vo.Stelye
0.01 . +
0.01 0.1 1 10 100 1000
Fo.Fom(Ve.Vo){g.ye) n=Wz/Wi= 8
1000
100 3
Gravity wave
[ h/e21<0.4
10 | /oat<0.1
Full
Saint-Venant
1 system
Kinematic
wave
[ tu/oai<0.1
0.1 hes/oale0,1
Ie/oa1<0.4
0.01 N TeaT.Ve.8nlye
0.01 01 1 10 100 1000
Fo.Fem(Va.Vo)(g.yo) n=W2/Wis 20
Kinematic
wave
hu/o20<0.1
k A
he/o28<0.1
0.01 — at . " P [T+aT.Ve.Stolye
0.01 0.1 1 10 100 1000

Fig. 5. River wave approximation zones obtained from the analysis of the momentum equation of the Saint-Venant system for three values of n = I,

8 and 20.

provide an acceptable representation of the momentum
equation in the Saint-Venant system.

When 7 increases, the domain of application of the
gravity wave does not change while the domain of applica-
tion of the diffusive wave and the kinematic wave models is

restricted and substituted by the full Saint-Venant system.
The comparison of the diffusive wave domain of application
for the three cases of # in Fig. 5, shows that the domain
moves to the right (higher values of T,) when # increases
and substitutes for the kinematic wave zone.
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Other considerations such as the computational power
available or the need for real-time forecasting may also be
important in the choice of technique. Practical experience
suggests that the simpler diffusive wave, kinematic wave or
linear methods will be adequate for many purposes. They
will not, however, be suitable in flood routing modelling
when 7 increases or varies in space (across the river channel)
or in time (during a flood event). In this case, the diffusion
wave model should substitute for the kinematic wave model
and the full Saint-Venant system should substitute for the
diffusion wave model.

In choosing a routing method the accuracy and
availability of channel cross-section and roughness coeffi-
cients may have a greater effect on the predictive accuracy of
a routing algorithm than the choice of the descriptive
equation (Beven and Wood, 1993). In addition, both cross-
sectional and reach scale roughness may be expected to vary
with discharge, especially at the transition to overbank flow.
Estimating roughness coefficients is a particularly difficult
problem for natural channels. In fact, all routing methods
will need to be calibrated to a particular site by comparing
observed and predicted levels or discharges, where they are
available. In general, the more complex the model, the more
physical characteristics and model parameters that must be
estimated or measured in the field. In this respect, the
simpler routing methods with fewer parameters may have
some advantages.

Conclusion

The Saint-Venant system, formed by combining the
continuity and momentum equations, is controlled by the
balance between friction and inertia. The case of a
compound channel section is studied for flood routing
problems in natural channels with overbank flow in the
flooded area. The propagation characteristics of shallow
water waves in open channel flow are calculated on the basis
of linear stability theory. Two dimensionless parameters,
the Froude number and the period of the input hydrograph
enable definition of a spectrum of river waves, with con-
tinuous transitions between wave types. Gravity, diffusion
and kinematic waves correspond to specific scaling par-
ameter ranges of this spectrum. The parameter range
corresponding to each wave type was studied as a function
of the flooded area width. Results show that, when the width
of the flooded area increases, the domain of application of
the diffusive wave and the kinematic wave models is
restricted.

The capability to identify wave type is necessary for
constructing appropriate mathematical models of river flow
and to analyse the ability to use the same wave model when
the flooded area width varies in space and time. Changes in
wave behaviour with the flooded area width can be
addressed quantitatively using the scaling parameters.
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