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Abstract

A numerical multifractal analysis was performed for five river networks extracted from Calabrian natural basins represented on
1:25000 topographic sheets. The spectrum of generalised fractal dimensions, D(q), and the sequence of mass exponents, 7(q), were
obtained using an efficient generalised box-counting algorithm. The multi-fractal spectrum, f(«), was deduced with a Legendre

transform.

Results show that the nature of the river networks analysed is multifractal, with support dimensions, D(0), ranging between 1.76
and 1.89. The importance of the specific number of digitised points is underlined, in order to accurately define, the geometry of river
networks through a direct generalised box-counting measure that is not influenced by their topology. "

The algorithm was also applied to a square portion of the Trionto river network to investigate border effects. Results confirm the

multifractal behaviour, but with D(0) =
dimension are discussed.

Keywords: River networks; measures; multifractal spectrum

Introduction

The multifractal theory was introduced by Mandelbrot
(1972, 1974) and was further developed by Frisch and Parisi
(1985) for application to fully developed turbulence
phenomena. Similar developments were performed by
Halsey et al. (1986) for the analysis of ‘strange attractors’
in the theory of dynamic systems.

Multifractal formalism finds its origin in the theory of
measures. Multifractal measures, in general, deal with the
study of the distribution of a quantity over a geometric
support, €.g. an ordinary plane, a surface, a volume or a
fractal itself. In particular, multifractals are “infinite sets of
exponents, which describe the (power law) scaling of all the
moments of a distribution of some quantities which are
defined on a fractal structure. In many cases, specific
members of these families of exponents coincide with the
fractal dimensionalities of geometrical substructures of the
underlying fractal.” (Aharony, 1989, p. 1).

Recent studies show that the field of applicability of the
multifractal theory can be extended to river basins (Ijjasz-
Vasquez et al., 1992; Rinaldo et 4/, 1992; Rinaldo ez al,
1993; Rigon et al, 1993). For example, the spatial
distribution and the scaling properties of some important
hydrological variables, such as contributing areas, slopes,
dissipation energy, the channel initiation function and the
width function, can be characterised through the formalism

2. Finally, some open mathematical problems related to the assessment of the box-counting

of the multifractal spectrum, f(«), introduced by Halsey et
al. (1986). In particular, fluvial networks may be considered
intricate spatial self-organised structures (Rodriguez-Iturbe
and Rinaldo, 1997), presenting typical multifractal charac-
teristics (De Bartolo et al., 1995) analogous to Diffusion
Limited Aggregation (DLA) processes (Witten and Sander,
1981). In such processes Coniglio and Zannetti (1989)
showed that multifractality is connected to multiscaling
properties.

Some authors, following Mandelbrot’s (1977) observa-
tions inherent to the nature of river geometry, proposed
relations useful to compute the fractal dimension, as a
function of topological parameters. La Barbera and Rosso
(1987, 1989) derived an expression for the fractal dimen-
sion, D, of river networks as a function of the Hortonian
bifurcation ratio, Rg, and length ratio, Ry, assuming that
ratios are constant in the basin and independent of the
observation scale:

= logRp/ logRy, (1)

They computed the fractal dimension of several river
networks and obtained values ranging between 1.5 and 2,
with an average between 1.6 and 1.7.

Tarboton et al. (1988) assessed the box-counting fractal
dimension, Dg, that came out at about 2, indicating that
river networks are space filling. Tarboton et al. (1990)
attributed the differences with respect to values obtained by
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La Barbera and Rosso (1987, 1989) to the fact that formula
(1) includes only bifurcation effects, ignoring individual
stream fractality (Mandelbrot, 1982; Hjelmfelt, 1988;
Helmlinger ez al., 1993); stream fractality contributes to
the measure in a relevant way in the case of direct estimation
through box-counting. The fractal dimension of natural
channel networks, Dy, is therefore equal to the dimension
of a Hortonian branching structure, Dy, (given by (1)), times
the dimension of a single stream, D (which is approxi-
mately 1.1; Mandelbrot, 1977; Hjelmfelt, 1988):

Den = DDy )

Claps and Oliveto (1996) studied 23 river networks in
Southern Italy and found the average values D, =1.7,
D, = 1.5, Dy = 1.1 with very low variability. Commenting
on their results, in addition to other comparable data taken
from the literature, they hypothesised that natural networks
tend to the same fractal dimension. They stated (p. 3132):
“from these results it can be concluded that channel
network structures are definitely non-plane-filling”.

Beauvais and Montgomery (1997) argued that the
Hortonian ratios are inadequate for the estimation of fractal
dimension, because their use is possible by assuming
statistical self-similarity of river networks, without any
demonstration of this assumption; in addition, the applica-
tion of such laws often gave values of fractal dimension even
greater than 2 (Tarboton et al., 1988; Helmlinger ez al,
1993). Eventually Beauvais and Montgomery (1997) con-
cluded that channel networks cannot be considered
statistically self-similar, namely fractals, “in spite of their
seductive branching architecture” (p. 1066).

In this paper, a direct generalised box-counting measure
technique is proposed and an analysis of the geometry of
natural river networks is performed to confirm their
multifractal behaviour, already shown in a previous study
for a single case only (De Bartolo ez /., 1995).

Multifractal Formalism

If one considers N members of a population (N points of a
set S) distributed over a geometric support and covered by
cells of side size 6, the measure (or probability or mass) of
the content in the i-th cell may be defined as follows:

wi(0) = Ni(8)/N ®3)

where Nj(d) is the number of points falling in the i-th cell at
the resolution 4.

The family of parameters q € R (where R is the set of
real numbers) of fractal dimensions, based on the concept of
generalised entropies (Rényi, 1955), is expressed as follows
(Feder, 1988; Olsen, 1995):

1 . InZy(9)

PO =7 s

for q#1 (4)
106

where:

Ne(3)
AOESP MO (5)
i=1

is the partition function (Halsey ez al., 1986), N () being
the number of covering cells at the resolution 8. As q varies,
the function D(q) describes the spectrum of generalised
fractal dimensions, following a multifractal formalism,
previously proposed by Hentschel and Procaccia (1983),
Grassberger and Procaccia (1983) and Grassberger (1983),
parallel to the formalism of the f(et) spectrum. In particular,
D(q = 0) is the fractal dimension of the set S, over which the
measure is performed; D(q = 1) is the information entropy,
that can be obtained from (4) as q —> 1:

Ne(8)

2 (0) In p;(8)
D) = fim =5 (©)
The following relationship holds between the spectrum of
generalised fractal dimensions, D(q), and the sequence of
mass exponents, 7(q):

7(q) = (1 — q) - D(q) (7)

The estimation of the D(q) function is possible using a
generalised box-counting algorithm (Block ez al., 1990).
The given set of N “vectors” (d-uples, i.e. coordinates of the
points) lying in Euclidean d-dimensional space, S C E4, is
covered with a sequence of d-dimensional hyper-cubes
(d-cubic boxes) having side size, d, exponentially decreasing
to a minimum value. The minimum value depends on the
minimum distance between the points of the set S.

The vectors are firstly normalised by proper choice of the
origin, in order to obtain non-negative coordinates, and then
dividing the coordinates by the maximum of their values.
This operation produces vectors confined to the unit
d-cube, i.e. each coordinate assumes values between 0 and 1.
It is important to remark that normalisation does not alter
the measure, since transformations such as translations,
rotations, similarities and affinities are geometrically
invariant (Falconer, 1990). Notice that the edge of the
d-cubic boxes, J, becomes non-dimensional after normal-
isation, assuming values between 0 and 1.

For each value of d, the number of points falling in the
i~th cell, Ny(J), is counted and the measure, pi(d), is
computed. The values of InZ(d)/(q—1) vs. In & for

N
q#land > W In ; vs.In § for q=1 —see (4) and (6) —
i=1

are then plotted and a ‘fractal curve’ is obtained for each q.

The assessment of D(q) values is performed through the
least squares linear regression, in the range In (Jjgwer) tO
In(dypper), where the fractal dimension is significantly
determined as the slope of the fractal curve. In fact, it is
well known that some problems arise in the interpretation of
the results of the box-counting method. Helmlinger ez al.
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Fig. 1. Example of measure M of sub-set S, for a binomial multiplicative process. Most of the information is contained in the sub-set S, for which

the measure shows a peak.

(1993) noticed that, at the smallest J, each box contains a
single point and, therefore, the resulting fractal dimension is
zero. At the largest box sizes, only a few boxes include
points and the fractal dimension approaches 2. The fractal
dimension is meaningfully determined in the intermediate
range of 8, whose limits can be called respectively lower and
upper cut-off (Sjower and Oyupper). The same concept is
expressed by Meakin (1998), who calls them ‘the inner and
outer cut-off lengths’ (p. 80). The generalised box-counting
method can assess 1 < D(q) <2 only in the scale range
S 0 S 6upper-

Once D(q) values are determined, the sequences of mass
exponents can be obtained from (7), and the Lipschitz-
Hélder exponents, &, and the multifractal spectra, f{c), are
deduced by means of a Legendre transform:

de(q)

a(q) = — iq ®)
f(a(q)) = t(q) + qx(q)

Mandelbrot (1989) defined ‘manifest’, ‘virtual’ and ‘latent’
parts of the spectrum as the parts lying respectively in the I,
II-11I and IV quadrant of the coordinate plane. The virtual
and latent parts are still under investigation. The manifest
part can be split into left side (q > 0) and right side (q < 0);
the left side characterises fractal dimensions of sub-sets,
whose measure attributes greater weight to cells containing a
larger quantity of information. Mandelbrot (1977, 1982)
pointed out that there could be sub-sets with greater mass
concentration, and called this process ‘curdling’.

In correspondence to q =1, a particular point of the
spectrum is identified, with equal abscissa and ordinate:
ag = f(aeg)=S, S being the information entropy (Mandel-
brot, 1982). In other words, if one considers that a
multifractal set is a union of sub-sets, each characterised
by a value of the Lipschitz-Holder exponent, «, and a
different fractal dimension, the sub-set S, has a fractal
dimension equal to the entropy of the partition of the
measure, and most of the information concentrates in it (e.g.
Fig. 1, for a binomial multiplicative process).

0 lower

Application to Natural River
Networks

The above theory may be applied to characterise the
geometry of river networks. This paper shows results from
the analysis of five fluvial networks, extracted from the
Calabrian basins of the Ancinale, Crati, Petrace, Savuto and
Trionto rivers.

GEOLOGICAL AND CLIMATIC DESCRIPTION OF
CATCHMENTS

The Ancinale river basin is located on the north-eastern
slope of the Serre mountains, and drains Paleozoic granitoid
(granites, granodiorite and tonalite) and metamorphic rocks.
Miocene to Quaternary sedimentary rocks comprise a minor
part of the basin and only occur on the low-course. The
lithology of the Crati river basin includes Paleozoic meta-
morphic (phyllite, gneiss and minor schist) and plutonic
(mainly granodiorite and granite, minor tonalite), early
Mesozoic ophiolitiferous (metagabbros and metabasalts,
serpentinite) and sedimentary (limestone, marble, argillos-
chist and quartzite), and Tertiary to Quaternary sedimen-
tary rocks. The Petrace river basin is located on the western
slope of the Aspromonte mountains. This fluvial system
drains predominantly high-grade metamorphic rocks (gran-
ulite to gneiss) and minor plutonic rocks on its upper
course, with Quaternary sedimentary rocks on its lower
course. The Savuto river basin has, on the upper course,
Paleozoic gneissic rocks thrust over Paleozoic schist and
phyllite (mid-course); the lower course has phyllite, and
Mesozoic to Quaternary sedimentary rocks. The Trionto
river basin has Paleozoic granites and phyllite-schist on its
upper reach and, on the middle and lower course, Mesozoic
to Quaternary sedimentary (sandstone, marl, limestone,
claystone, gypsum, conglomerate) rocks.

The five basins experience a typical Mediterranean
climate, characterised by dry summer periods and rainy
autumns. The annual average rainfall height is about
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Fig. 2. River Ancinale normalised net-points extracted from the
representation of the natural basin on 1:25000 topographic sheet.

800 mm for the Ancinale and Trionto catchments, 900 mm
for the Crati, 1200 mm for the Petrace and the Savuto.

APPLICATION OF THE GENERALISED BOX-
COUNTING ALGORITHM AND RESULTS

Each network was represented by a set of points, obtained
by digitising 1:25000 topographic sheets (e.g. Fig. 2). These
points will be referred to in the rest of the paper as ‘net-
points’. A set of net-points is a set of vectors in the

Table I. Characteristics of river networks (A, drainage basin
area; N, number of net-points).

Set, S A (km?) N N/A (1/km?)
Ancinale 173.84 19380 111
Crati 2447.79 268286 110
Petrace 406.62 30039 74
Savuto 411.54 16476 40
Trionto 288.49 61167 212

Euclidean plane, S C E%, over which it is the intention to
perform the measurement.

Table I shows the following characteristics of the
analysed river networks: the drainage basin area, A; the
number of net-points, N, the specific number of net-points,
N/A, which is an index of how accurately the digitised point
sets approximate river networks.

In order to verify the multifractal behaviour of river
networks, the spectrum of generalised fractal dimensions
was computed, by using the previously discussed general-
ised box-counting algorithm. As an example, Fig. 3 shows
the scaling of the partition function, defined by (5), with the
box size for the Ancinale river network.

Many authors underlined the fact that some experience is
needed to select the scale range between the lower and
upper cut-off lengths (see Helmlinger et 4/, 1993, and
Meakin, 1998). In the present application, it was determined
as the range of box sizes where the coefficient, RZ, of the
least squares linear regression is maximum.

The generalised fractal dimensions for values of the
moment order q = 0 to 20 are shown in Fig. 4; the natural
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Fig. 3. Example of scaling of the partition function, Z,, with the box size (Ancinale river network).
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Fig. 4. Specira of generalised fractal dimensions.

distribution of net-points has an evident multifractal
behaviour, since D(q) varies as a function of q. Figures 4
to 6 include results from the analysis of the other two sets (a
random plane and a square portion of the Trionto river
network), which are discussed in the rest of the paper.

Figures 5 and 6 show respectively the sequences of mass
exponents, 7(q), obtained from (7), and the multifractal
spectra, f(¢t), deduced from (8). In Fig. 6 the experimental
points describe the left sides of the manifest part of the
spectra, interpolated with third order polynomial curves
(solid lines).

The following results are shown in Table II: the
regression coefficient, RZ, for the assessment of D(0); the
bounds of the scaling behaviour, dypper and Siower, for q =0
and for each normalised set; the support fractal dimension,
D(0) = f(oig); the information entropy, D(1) = f(ag) =

ag=.S; the maximum and minimum values of the
Lipschitz-Holder exponents, 0y,;, and o, in the given
range of moment order, q = 0 to 20.

Notice that all the values of R%(q = 0) are very close to 1.
The values of R%q#0), not shown in Table II, are also
approximately 1.

Results show that the values of the Lipschitz-Holder
exponent lie in the range 143 to 1.86, the support
fractal dimensions range from 1.76 to 1.89 while the
information entropy assumes values 1.79 to 1.87. The
Petrace and Savuto river networks, having a specific
number of net-points, N/A, less than the other analysed
networks, present the anomaly D(1) > D(0), in spite of
the regular fashion of the multifractal spectrum. This
fact indicates that, when the cardinality of the set S is
not sufficiently high, one cannot assess correctly the

10
0% « .
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& ¥ §
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-20 - * B OX i
«x Ancinale 2 Crati * . E [} ; X
.30 | x Petrace o Sawuto . . L A ; X
o Trionto + Random plane * 4 F
40 |+ Square (Trionto) ¢
0 5 10 15 20
q

Fig. 5. Sequences of mass exponents.
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Fig. 6. Multifractal spectra (lefi sides). Symbols indicate experimental points; solid lines are third order polynomial interpolating curves.

support dimension, but only the information entropy,
which is an index of the information content in the
available data.

Discussion

The scale range [Jiower, dupper] OVer which the generalised
box-counting method yields 1 < D(q) < 2 is narrow. This
fact was already noticed by Helmlinger et 4l (1993) and
Beauvais and Montgomery (1997) in the application of the
standard (not generalised) box-counting method to channel
networks extracted from the digital elevation models. In that
case, a dependence of results on the threshold value of the
contributing area used to delineate network sources was
evidenced by the authors. In the present case, the box-
counting method was applied to sets of digitised points. The
width of the scaling region, therefore, is probably dependent
on the scale of the topographic sheets used to extract the
net-points.

It is interesting to note that the values of D(q = 0) for the
five natural fluvial networks are in contrast with the findings
of some authors who obtained D(0) =2 and defined the
river networks as “space filling” (Tarboton et al, 1988;
Ijjasz-Vasquez ez al., 1992). The present analysis seems to

Table II. Results.

be in accordance with the outcome of Claps and Oliveto
(1996), reported in the Introduction, and could support
their opinion that natural networks are non-plane-filling.
Nevertheless, Ijjasz-Vasquez et al. (1992) pointed out that
the application of the box-counting algorithm may produce
biased results due to the border effects of boxes overlaying
the edges of the catchments and including a “white space”
that belongs to adjacent catchments and may contain other
net-points. In order to investigate possible border effects,
another test was performed for a square portion of the
Trionto river network (Fig. 7).

Results are shown in Figs. 4 to 6, which confirm the
multifractal behaviour, but with support dimension
D(q = 0) = f(ap) = 2. This outcome could induce suppor-
ters of the space filling hypothesis to think that border
effects are responsible for the values f(ay) <2 obtained in the
analysis of the whole river networks. However, other
problems are probably hidden in the application of the
box-counting method, as noticed also by Claps and Oliveto
(1996), but in the opposite conviction: “the box counting
method could be responsible for often producing D = 2” (p.
3128). Really, the problem is that not all the properties of
the classical Hausdorff dimension hold for the box-counting
dimension (Falconer, 1990); in particular, the ‘countable
stability’ — which states that if S; ;. is a countable

Set, S qu =0 5lower, q=0 5upper, q=0 D(O) = f(do) D(l) = f.(OCS) min 0o

Ancinale 0.99959 0.036 0.067 1.809 1.789 1.434 1.838
Crati 0.999%6 0.007 0.023 1.890 1.873 1.579 1.859
Petrace 0.99999 0.167 0.500 1.764 1.814 1.601 1.798
Savuto 0.99993 0.013 0.083 1.809 1.830 1.590 1.806
Trionto 0.99999 0.011 0.023 1.824 1.813 1.559 1.826
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Fig. 7. Square portion (N = 13404) of the Trionto river network.

sequence of sets then dim(|J;S;) = supy(dimS;), where
supi(dimS;) is the smallest upper bound of dimS; — does
not hold for the box-counting dimension computed on
countable sets. This fact can explain how it is possible to
find different values of D(0) if a whole network (union of
sub-sets) or a square inside it (a single sub-set) is analysed.

Another issue arises about the density of sets. It is known
that if S is a dense sub-set of an open region of R", then its
box-counting dimension is equal to n (Falconer, 1990), so
that the problem of achieving D(0) =2 depends on the
density of the set under investigation. If one considers that
often river networks are assimilated to tree-graphs, and that
trees with a finite number of nodes are not dense (West,
1996), it is evident that more research is needed to
investigate these open mathematical aspects. The multi-
fractal behaviour of the natural networks was confirmed by
the analysis of the square portion of the Trionto river
network, as stated above. To verify whether the generalised
box-counting algorithm adopted is able to recognise
different geometric structures, a random set of 50000
vectors, filling a plane area (random plane) was generated.
The spectrum of generalised fractal dimensions proved to
be a very good approximation of a horizontal line, expressed
by D(q) = 2 (Fig. 4). This constant value indicates that the
random plane does not have a multifractal behaviour, as is
obvious for such a Euclidean structure. The sequence of
mass exponents is depicted in Fig. 5. The random plane
spectrum, f(«), coincides in a unique point with the abscissa
and ordinate equal to 2 (Fig. 6).

Conclusions

The multifractal analysis of five digitised Calabrian river

Muiltifractal behaviour of river networks

networks was performed by means of an efficient general-
ised box-counting algorithm. The spectrum of generalised
fractal dimensions, D(q), and the sequence of mass
exponents, 7(q), were obtained. The multifractal spectrum,
f(o), was deduced with a Legendre transform. Results
showed that the digitised points extracted from 1:25000
topographic sheets constitute a multifractal natural dis-
tribution on the shape of each river network, with estimated
values of the fractal support dimension between 1.8 and 1.9.

Border effects were investigated in a square portion of the
Trionto river network. Results confirm the multifractal
behaviour, but show a plane filling support dimension.

Some open mathematical problems are pointed out.
Firstly, the countable stability of the classical Hausdorff
dimension does not hold for the box-counting dimension
computed on countable sets. This fact can explain the
different values of D(0) estimated for a whole network and a
square portion of it. Secondly, the problem of achieving
D(0) =2 depends on the density of the set under
consideration, and more knowledge about density of river
networks is needed.

Nevertheless, the ability of the generalised box-counting
algorithm adopted to recognise different geometric struc-
tures was tested on a random set of 50000 vectors filling a
plane area. Results showed that the random plane is
obviously a Euclidean structure, with D(q) = 2 for each q.
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