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Abstract

This paper compares the performance of two artificial neural network (ANN) models—the multi layer perceptron (MLP) and
the radial basis function network (RBF)—with a stepwise multiple linear regression model (SWMLR) and zero order forecasts
(ZOF) of river flow. All models were trained using 15 minute rainfall-runoff data for the River Mole, a flood-prone tributary of
the River Thames, UK. The models were then used to forecast river flows with a 6 hour lead time and 15 minute resolution,
given only antecedent rainfall and discharge measurements. Two seasons (winter and spring) were selected for model testing using
a cross-validation technique and a range of diagnostic statistics. Overall, the MLP was more skillful than the RBF, SWMLR and
ZOF models. However, the RBF flow forecasts were only marginally better than those of the simpler SWMLR and ZOF mod-
els. The results compare favourably with a review of previous studies and further endorse claims that ANNs are well suited to

rainfall-runoff modelling and (potentially) real-time flood forecasting.

Introduction

According to Hsu et al. (1995), artificial neural network
(ANN) approaches to rainfall-runoff modelling are more
efficient than conventional flow forecasting models when-
ever explicit knowledge of the hydrological balance is not
required and when the system may be treated as a black-
box. However, many ANN configurations are available and
this paper compares two of the most favoured architec-
tures: the multi layer perceptron (MLP) and the radial
basis function network (RBF) applied to river flow fore-
casting. While the MLP has been evaluated for rainfall-
runoff modelling in a number of studies (e.g. Braddock ez
al., 1998; Campolo et al., 1999; Zealand ez al., 1999), the
RBF has been used in relatively few cases (e.g.
Jayawardena ez al., 1998; Mason ez al., 1996).

For a flood forecasting system (FFS) to be effective, it
must provide flood warnings with a reasonable lead time
and at an appropriate temporal granularity. Previous stud-
ies have noted that the accuracy of ANN model forecasts
decrease as the lead times increase. For example, Campolo
et al., (1999) forecasted flows in the River Tagliamento
(catchment area 2480 km?) up to 10 hours ahead at one
hour intervals but reported deteriorating results after 5
hours. In comparison, this paper describes the develop-

ment of ANNs for forecasting runoff in the River Mole
(catchment area 142 km?) with a forecast lead time of
6 hours and 15 minute temporal granularity. In all catch-
ments, the forecasting skill is ultimately constrained by the
choice of ANN inputs, as well as by factors such as dom-
inant storm characteristics and time lag between rainfali-
runoff. This study follows closely the methodology of
Dawson and Wilby (1998) and takes that work further by
evaluating radial basis function networks when applied to
the same catchment. ‘

To establish the true merit of ANNSs relative to simpler
statistical techniques, comparisons are also made between
the forecasting skill of the two ANNs and those of a step-
wise multiple linear regression (SWMLR) model and Zero
Order Forecasts (ZOFs). Furthermore, in an earlier study
Dawson and Wilby (1998) identified problems transferring
ANNs to runoff seasons outside of the training set. This
problem is overcome in this study by stratifying the data
by season and then applying a cross validation technique.
Finally, suggestions are outlined for future research in
ANN rainfall-runoff modelling and real-time flood fore-
casting.
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Artificial neural networks

Research in artificial neural networking has experienced a
renaissance since the rediscovery and popularisation of the
backpropagation algorithm by Rumelhart and McClelland
(1986). Prior to this publication, it was very difficult to
train neural networks of the size needed for most practical
applications. This important breakthrough subsequently
stimulated research in two main areas: the development
and advancement of artificial neural networks per se (i.e.
architectures, training algorithms, etc.), and the applica-
tion of these tools to a variety of complex management
problems. However, in any given situation, the effective
application of ANNSs still requires an appreciation of the
relative merits of different networks, as well as how best
to train them. For example, having chosen a suitable
neural network architecture, one still needs to determine
the appropriate network ‘size’ and the most efficient train-
ing algorithm (e.g. Dai and MacBeth, 1997). Furthermore,
one must also pre- and post-process the data (for cross val-
idation and normalisation/standardisation) and select suit-
able training periods. While some of these factors are
determined dynamically—using appropriate modifications
to training algorithms—many decisions must still be made
through a process of trial and error. A full discussion of
these topics is beyond the scope of the present paper and
interested readers are directed towards texts such as
Bishop (1995) and Gallant (1993).

NETWORK STRUCTURE

Two of the most common neural network structures were
chosen for modelling: the MLP and the RBF network.
These are both feed forward networks, typically consisting
of three connected layers of neurons (as shown in Fig. 1).
The number of neurons in the input and output layer is
specified by the problem to which the network is applied
(i.e. the number of predictors and predictands respec-
tively). In this study, seven nodes were used in the input
layer and one node, representing flow, was used in the out-
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Fig. 1. A feed forward artificial neural artwork structure
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put layer. The neural network engineer must specify the
number of neurons in the hidden layer (and, in some cases,
the number of hidden layers). If there are insufficient neu-
rons in the hidden layer, the network may be unable to
model the underlying function because it has insufficient
parameters to map all points in the training data.
Conversely, if there are too many neurons, the network
has, in effect, too many free parameters and may overfit
the data and hence lose its ability to generalise. While it is
possible to determine an ‘optimum’ number of neurons to
use in the hidden layer, using pruning or constructive
algorithms such as cascade correlation (e.g. Hirose et al.,
1991), these algorithms can retard training significantly by
introducing additional computations. Shamseldin (1997)
claims that the best way to determine an appropriate num-
ber of neurons in the hidden layer is via trial and error.
Accordingly, networks with 5, 10, 20 and 30 hidden neu-
rons are considered here.

ACTIVATION FUNCTIONS

Inputs to the network (predictors) are passed from the
input layer of neurons, through the hidden layer of neu-
rons, to the output layer (see Fig. 1). Neurons in the input
layer do no more than disperse all inputs to each neuron
in the hidden layer. The network then operates by apply-
ing weights to values as they pass from one layer to the
next. Each neuron in the hidden and output layers com-
putes an output, based on the weighted sum of all its
inputs, according to an activation function. These func-
tions may be logistic sigmoid, linear, threshold, Gaussian
or hyperbolic tangent functions depending on the type of
network and training algorithm employed.

The network is trained by adjusting the weights that
link individual neurons. This is accomplished by present-
ing the network with a number of training samples (a cal-
ibration data set)}—each one of which consists of a specific
input pattern and corresponding ‘correct’ output response.
Depending on the nature of the training algorithm used, it
may be necessary to present a network with the calibration
data repeatedly (a number of epochs) until it ‘learns’ the
underlying function being modelled. However, care must
be taken to ensure that the network does not become
overly specified to the calibration data set and thus lose its
ability to generalise to problems it has not encountered
before. Various techniques may be employed to avoid over
training; they include regularisation theory which attempts
to smooth network mappings (Bishop, 1995), and cross
validation using an independent test set (Braddock ez al.,
1998).

THE MULTI LAYER PERCEPTRON

The MLP is the most popular neural network architecture
in use today. It assumes that the unknown (rainfall-runoff)
function is represented by a multi-layer, feed forward net-
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work of sigmoid units (shown in Fig. 1). The logistic sig-
moid activation function (Eqn. 1; where x represents the
weighted sum of inputs to the neuron and f{x) the neu-
ron’s output) is used because it is continuous, and it is easy
to compute, as is its derivative. In this study, neurons in
both the hidden and output layers were represented by this
function.

1
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In this study, the MLP was trained using the error
backpropagation algorithm. This popular algorithm works
by iteratively changing a network’s interconnecting
weights such that the overall error (i.e. between observed
values and modelled network outputs) is reduced. This is
achieved by searching the network’s ‘weight space’ or error
function. The error function is an error surface in n-
dimensional space corresponding to a mapping of the net-
work’s weight vector to the network’s overall error. The
purpose of training is to search this error surface, by
adjusting a network’s weights, such that an acceptable
error minimum is found. Training is initiated from ran-
domly determined regions of the error surface. The algo-
rithm then proceeds by directing weight changes down
error gradients based on the first order derivative of the
error function. Step changes are made to weights as each
training example is presented to the network (an epoch).
The ‘training rate’ parameter affects the size of step taken
through weight space at each training iteration. If the rate
is too large, training can oscillate from one non-optimal set
of weights to another; if the rate is too small training may
be trapped in a local error minimum or sub-optimal solu~
tion. ,

There are many other training techniques available (e.g.
line search algorithms, such as conjugate gradients, and
Newton’s Method [Bishop, 1995; Battiti, 1992]). For
example, Thirumalaiah and Deo (1998) compared the
results of an MLP rainfall-runoff model trained using
three different training algorithms (error backpropagation,
conjugate gradients and cascade correlation). While cas-
cade correlation provided rather poor results, little differ-
ence was found in network performance between the
backpropagation and conjugate gradient training
approaches.

For the present purpose, the error backpropagation
algorithm was adapted in two ways. Firstly, momentum
(which keeps weight changes on a faster, more even path
and helps to avoid local minima) was used in an attempt
to speed convergence to an error minimum (Gallant,
1993). Momentum is controlled using a ‘momentum rate’
which must be less than unity for convergence. Secondly,
the training rate was adjusted dynamically to prevent the
optimisation becoming caught in a local error minimum
(Dawson, 1996; Magoulas et al., 1997). The training rate
was varied between 0.1 to 0.01 and the momentum rate
was fixed at 0.9. A trial and error approach was used to

determine the most effective training duration (or number
of epochs) for the MLP by comparing its performance
with a validation data set. Evaluations were made of MLPs
trained for 500, 1000, 2000, 3000, 4000 and 5000 epochs.

RADIAL BASIS FUNCTION

While the structure of the RBF is identical to the MLP,
the RBF simulates the unknown rainfall-runoff function
using a network of Gaussian basis functions in the hidden
layer (Eqn. 2) and linear activation functions in the output
layer. In Eqn. 2, » represents the weighted sum of inputs
to the neuron, o is the sphere of influence or width of the
basis function, and f{x) is the corresponding output from
the neuron.

fl)y=en 2)

Training an RBF involves two stages. Firstly, the basis
functions are established using an algorithm to cluster data
in the training set. In this case, a k-means clustering algo-
rithm was used. K-means clustering involves sorting all
objects into a defined number of groups by minimising the
total squared Euclidean distance for each object with
respect to its nearest cluster centre. However, other tech-
niques, such as Kohohen self organising maps, orthogonal
least squares and MaxiMin algorithms might also be used
(Song, 1996).

Secondly, the weights linking the hidden layer to the

output layer were calculated directly using simple matrix )

inversion (singular value decomposition) and matrix mul-
tiplication. Because of the direct calculation of the weights
in the RBF, it is far quicker to train than an equivalent
MLP (seconds rather than hours using a 233MHz proces-
sor).

As a starting point, RBFs were developed with the same
number of basis functions as hidden nodes in the MLPs
to enable a direct comparison to be made between the two
network types (i.e. 5, 10, 20 and 30 basis functions).
Because the RBF can be trained very quickly, this exper-
iment was extended to 40 basis functions to assess if this
would lead to an improvement in forecasting accuracy.
However, as results showed, this did not lead to any
improvement.

Methodology

The methodology initially employed here follows that of
Dawson and Wilby (1998). The Environment Agency
(Thames region) provided 15-minute rainfall-runoff data
for the River Mole for all of 1994. These data include rain-
fall (mm), recorded at 15 minute intervals at the Burstow
raingauge, and 15 minute flow measurements made at
Kinnersley Manor (in cumecs). The River Mole, a flood-
prone catchment of approximately 142 km?, is a lowland
tributary of the River Thames which drains largely
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impervious soils in the vicinity of Gatwick airport. Note
that the relatively small basin area and ‘flashy’ response of
the flow to heavy rainfall present significant forecasting
challenges.

DATA PRE-PROCESSING

Before ANNs are trained, input data must be pre-
processed. It was intended to develop models to predict
river flow at a time ty using observations that had occurred
previously at times t_, (representing a time » minutes
before tp). Exploratory analysis of the rainfall-runoff data
were undertaken using two methods: windewing and auto-
regression.

Windowing involves the use of antecedent flows and
rainfall at times t_j, t_3, . . . t_, as direct inputs into the
model (as in Hall and Minns [1993], and Abrahart and
Kneal [1997]). However, initial experimentation with this
approach, with a 6 hour lead time, produced very poor
results because current runoff is related to the cumulative
affect of previous flow and rainfall (surrogate measures of
the state of the basin), rather than discrete 15 minute
events occurring 6 hours earlier. Although windowing can
produce acceptable results with either shorter lead times
or larger temporal granularity, individual 15 minute flow
and rainfall events were found to have limited predictive
power for the River Mole at the specified 6 hour lead. As
a consequence, the moving window approach was disre-
garded and an alternative technique after that of Refenes
et al. (1997) was adopted. This technique involves the use
of ARMA (Auto Regressive Moving Average) models to
select input variables and lag times, and a stepwise regres-
sion method for determining appropriate combinations of
inputs from these variables. Again, an arbitrary lead time
of 6 hours (t_3ep) was chosen as the initial point for the
analyses.

Table 1 shows the lagged variables identified by the
ARMA models (with their corresponding correlation
coefficients, Pearson r) as significant (p<0.005) predictors
of flow at time tg. These were selected by varying the lag
interval and moving average periods within the ranges 6-

Table 1. Predictors used to hindcast River Mole discharges
at ty

Predictors Lag  Correlation
(minutes) Coefficient

15 minute instantaneous discharge 360 0.891
30 minute moving average of discharge 360 .0.889
Previous 24 hours total discharge 360 0.468
15 minute instantaneous rainfall total 900 0.417
20 hour moving average of rainfall 360. 0.841
Previous 24 hours total rainfall 360 0.727
Storm events 1620 0.551
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12 hours and 2-96 hours respectively. Individual precipi-
tation events exceeding specified duration and intensity
thresholds are also known to affect flow in the River Mole
significantly (Dawson and Wilby, 1998). Storm events
were defined 4 priori as periods of rainfall lasting over one
hour or having intensities exceeding 0.5 mm in any 15
minute interval. Hydrologically, this variable represents
the ‘filtering’ of small (<1 mm) and/or isolated precipita-
tion events by canopy interception, surface depression
storage and subsequent evaporation. In the case of the
Mole, the optimal lag-interval for the storm parameter was
found to be 27 hours, compared with 15 hours for the
instantaneous rainfall totals, and 6 hours for the moving
average rainfall. However, the latter was by far the most
strongly correlated with discharge, implying that the cho-
sen forecast lead time of 6 hours is of the same temporal
order as the catchment response time. Thus, the seven fac-
tors, shown in Table 1, represent the most significant pre-
dictors of flow at time tg that could be identified from the
rainfall-runoff records, and constitute the inputs used to
train and evaluate the two ANNS.

DATA NORMALISATION/STANDARDISATION

The gradient descent algorithm (error backpropagation)
used to train the MLP is particularly sensitive to the scale
of data used. Due to the nature of this algorithm, large val-
ues slow training because the gradient of the sigmoid func-
tion at extreme values approximates zero. Also, because of
the nature of the logistic activation function used in the
output layer, outputs from the network are constrained to
the range [0,1]. In addition, because each predictor can
cover a different range of values, it is prudent to rescale
each input to a common range so that one predictor does
not dominate all others.

To avoid these problems, input and output data in both
the training and test sets were rescaled using an appropri-
ate transformation. In general, data may be rescaled to the
interval [-1,1], [-0.9,0.9], [0.1,0.9], or [0,1] (referred to as
standardization) depending on the network activation func-
tions employed. Another approach is to rescale values to a
Gaussian function with a mean of 0 and unit standard
deviation (referred to as normalization). The advantage of
using [0.1, 0.9] for runoff modelling is that extreme (high
and low) flow events occurring outside the range of the
calibration data may be accommodated. Hsu et al. (1995)
used this approach to avoid the problem of output signal
saturation (i.e. truncation) that can be encountered in
ANN applications. An alternative approach involves the
use of changes in flow rather than absolute flows to avoid
the problem of saturation, but Minns and Hall (1997)
reported only limited gains from this refinement.

Both data rescaling procedures have been considered;
standardizing data to the range [0.1,0.9] provided the most
accurate results. For the RBF, it is particularly important
to standardize all input variables so that they span similar
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ranges (Bishop, 1995). Hence, data used in training and
testing the RBF were also standardized to [0.1,0.9].

CROSS VALIDATION

Because 15 minute rainfall-runoff data for an entire year
represent a large data set (35040 values) and embrace sea-
sonal variations in catchment properties, care must be
taken when assigning the data to calibration and validation
sub-sets. For example, Dawson and Wilby (1998), using
data drawn from different seasons, concluded that in the
absence of parameters describing seasonal variations in
catchment rainfall-runoff responses (due to, for example,
soil moisture or infiltration rate variations), the ANN
should ideally be validated against data from the same sea-
son as the calibration period.

Therefore, the data were split into two sets—the first
100 days of 1994 (representing winter and early spring,
9495 data points) and the last 100 days of 1994 (repre-
senting autumn and early winter, 9495 data points). These
seasonal data sets were then used to validate the two ANN
techniques using a cross validation approach (Bishop,
1995). Cross validation involves splitting the available data
into S equal sized segments. Because of strong autocorre-
lations between successive data points, these segments
were created at random rather than being drawn sequen-
tially. This went some way to ensuring that the validation
and calibration data sets did not contain near identical data
points which would have led to a less rigorous test of the
models. The networks were then trained using all data in
S-1 of these segments and tested on the remaining seg-
ment of independent data. This procedure is repeated S
times so that S networks are trained and tested for each
network type and configuration. This ensures that each
data segment is used only once for validation. Thus, when
the validation segments are recombined, one has a valida-
tion set that is equal to the entire data set.

Cross validation enables one to identify, more objec-
tively, the configuration of the most accurate seasonal
model. One would then use this information to retrain the
chosen ANN on all the available data before it is imple-
mented in a practical situation.

In this study, the two seasonal data sets were each split
randomly into 5 segments, a typical value for S (see
Schalkoff, 1997). The networks were then trained on 4
segments (7596 data points) and tested on the remaining
segment (1899 data points). When the training and test
cycle was completed for the 5 segments, the ANN model
had produced a set of 9495 validation points.

COMPARATIVE MODELS

In addition to the neural network models, it was felt that
comparisons should be made with less computationally
demanding models. To this end, stepwise multiple linear
regression models (SWMLR) were produced for both sea-

sons based on the cross validation data sets (Eqn. 3; in
which predictand y is based on predictors x1...,). The
stepwise procedure adds or removes predictors to a model
during a series of iterations. Predictors are added or
removed based on the partial F-ratio at each stage of the
procedure until no additional benefit is gained from adding
or removing variables. Readers are directed towards texts
such as Mendenhall and Sincich (1995) for a more thor-
ough discussion of this technique.

y =B+ B+ By + ...+ B, 3)

Because of the way the predictors were identified for the
two seasonal data sets, the stepwise procedure did not dis-
regard any of the input parameters. This was because the
set of predictors had been optimally selected beforehand.
However, as presented in the following section, the
SWMLR models still produced rather disappointing
results, due to their underlying assumption of linearity
which does not necessarily exist between each variable.

Additionally, the performance of the ANNs was com-
pared with Zero Order Forecasts (ZOFs) in which the
measured flow at t_3gp was taken as the best estimate of
flow at tg. Both alternatives were evaluated in the same
way as the two neural network models and comparable
diagnostics are presented below.

PERFORMANCE MEASURES

Survey of recent literature describing ANN applications to
rainfall-runoff modelling (Table 4) suggests a general lack
of a modelling protocol. Firstly, there is no convention for
the error measures that are employed (e.g. mean square
errors, relative errors and so on). Secondly, the wide vari-
ety of catchments studied (in terms of area, topography,
land-use, climate regime, etc.) precludes direct comparison
of ANN performance in each case. Thirdly, several differ-
ent measures of flow are employed, such as discharge
(Dawson and Wilby, 1998), water level (Campolo et al.,
1999; Jayawardena et al., 1997), and rates of change of dis-
charge (Minns and Hall, 1997). Finally, there are differ-
ences between the studies in terms of the lead time and
temporal granularity of the flow forecasts.

Four of the most commonly employed error measures
were calculated: the root mean square error (RMSE); the
mean square relative error (MSRE); the coefficient of
efficiency (CE); and the coefficient of determination (r?).
According to Karunanithi ez al. (1994), square errors pro-
vide a reliable measure of goodness of fit at the high flows,
whilst relative errors are biased towards moderate flows.
CE and r? also provide useful comparisons with other
studies since they are independent of the scale of data used
(i.e. flow, catchment, temporal granularity, etc.). However,
CE is referred to by some authors as R? and care must be
taken not to confuse this with the coefficient of determi-
nation, r2. The CE is considered a better measure of the
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Fig. 2. Validation results for winter/ early spring

goodness-of-fit than the coefficient of determination
because the former is sensitive to differences in the
observed and modelled means and variances, whereas the
latter is insensitive to additive and proportional differences
between the model simulations and observations (Legates
and McCabe, 1999).

Results

In all cases, the optimal number of hidden neurons in the
MLP was found to be 20. Coincidentally, 20 basis func-
tions in the RBFs were also found to produce the most
accurate models. Experimentation, which involved adding
more basis functions to the RBFs, produced worse results
due to overfitting the calibration data. In the case of the
MLP, the best results were those obtained using a train-
ing period of 2000 epochs, noting that the RBF was not
trained iteratively and so effectively had a single epoch.

WINTER/EARLY SPRING

Table 2 provides a summary of the results of the four
models using the cross validation technique for
winter/early spring. In all cases, the MLP was more accu-
rate than the RBF, ZOF and SWMLR models. According

534

to Shamseldin’s (1997) scale, the MLP was ‘very satisfac-
tory’, the RBF and SWMLR models were ‘fairly good’,
and the ZOF was ‘unsatisfactory’. While the RBF appears
more accurate than the SWMLR model (using the MSRE
criterion), according to the other error measures it is only
marginally better.

Figure 2 shows a scatterplot of the forecast versus
observed flows for each model. These plots give a clear
indication of the relative skill of each model across the full
range of flows, and highlight the superiority of the MLP.
However, for flood forecasting purposes, the skill of each
model at predicting the largest instantaneous flows is
clearly of greatest concern. Accordingly, Fig. 3 shows the
time series of discharge forecast by all models during the
first two weeks of 1994. Once again the MLP forecasts the
timing and magnitude of flood events very closely and note

Table 2. Comparative results for late winter / spring

Model RMSE (m3/s) MSRE CE 12

MLP 1.617 0.059 93% 0.928
RBF 2.712 0.079 81% 0.804
SWMLR 2.758 0.138 80% 0.798
ZOF 3.289 0.060 72% 0.730
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that the three anomalous ‘spikes’ (5 January, 11 January
and 12 January) were caused by missing data. The RBF
and SWLMR models, on the other hand, while following
the general pattern of flow, underestimated the magnitude
of peak flows, and in some cases forecast peaks up to 8
hours late. In the case of the RBF model, this was attrib-
uted to inefficiencies in the choice of cluster centres by the
k-means clustering algorithm.

AUTUMN/EARLY WINTER

Table 3 and Fig. 4 show the validation performance of the
models using the autumn/early winter data set. Once
again, for all models the MLP produced better forecasts of
flow than the RBF, SWMLR and ZOF models. The CE
in the first case was 97% and the MSRE was 0.080. As
before, the RBF provides only marginally better results
than the multiple regression model and worse results at
moderate flows than the ZOF (as indicated by the MSRE
statistic).

Figure 5 focuses on a single flood event which occurred
during the first two weeks of December 1994 (the largest
on record). As before, the MLP provides a convincing
forecast of the flood peak while the RBF and SWMLR
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Table 3 Comparative results for late autumn / winter

Model RMSE (m3/s) MSRE CE r?

MLP 1.147 0.080 97% 0.964
RBF 2.396 0.160 86% 0.848
SWMLR 2.396 0.235 86% 0.859
ZOF 2.942 0.076 79% 0.794

models predict the peak around 8 hours too late. This sug-
gests that the significance assigned to previous flows by
RBF and SWMLR was too low since the response time of
the river depends on the state of saturation of the basin
prior to (and/or during the evolution of) the flood event
— information that must be supplied by antecedent flows.

CONFIDENCE LIMITS AND UNCERTAINTY

When producing flow forecasts it is informative to provide
accompanying measures of confidence based on the model
being used. Using the standard error of the least squares
regression line between modelled flow and observed flow
(i.e. the regression of observed on modelled flow),
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Fig. 3. Validation results for first two weeks of 1994
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confidence intervals were calculated for each model. Using
all flows during the winter and early spring period, the
standard error of the MLP model was 1.67 cumecs. Thus,
when the MLP predicts a flow of 30 cumecs six hours

hence, one is 95% confident (two standard errors) that-

flow will actually be 31 *+ 3.34 cumecs (where 31 cumecs
is calculated directly from the regression line based on the
modelled prediction).

Unfortunately, due to heteroscedasticity these
confidence intervals are valid only within certain ranges.
This means that the variability of modelled versus
observed flow cannot be guaranteed to be consistent over
the entire range of flow ordinates. For example, in winter/
early spring, for flows in excess of 20 cumecs the standard
error increases to 3.4 cumecs. However, while this is
greater than the overall standard error it is relatively small
compared with the higher flow values. For example, Fig.
6 shows the ratio of the standard error to forecast flow (at
5 cumec intervals) for all models for both seasons. This
figure shows how the standard error of each model
decreases appreciably as flow levels increase and thus all
models provide relatively accurate forecasts for flows in
excess of 20 cumecs.

Discussion

Table 4 presents a summary of the most proficient ANN
rainfall-runoff models reported by other authors using real
hydrometric data (based on validation results). These
results have also been selected because they present either
r2 or CE performance measures which are not biased by
the scale of data used. However, the studies vary in choice
of time step, lead times and catchment characteristics.
These factors must also be considered when comparing
studies of this type with perhaps greater emphasis being
placed on the qualitative factors that are identified.
Therefore, Table 4 also supplies information on the basin
area, network type and structure (in terms of number of
nodes in each layer), data standardisation approach and
training algorithm used in each case.

The present results, together with those in Table 4, sup-
port the assertion that ANNs are well suited to rainfall-
runoff modelling and flood forecasting. According to the
r? statistic, the present MLP results compare favourably
with all other studies listed in Table 4. Considering the
coefficient of efficiency, CE, results by Minns and Hall
(1997) and Campolo et al. (1999) are marginally better: 98
and 98.5% respectively, compared with 97% herein.
However, these studies modelled flow with lead times of
30 minutes and one hour respectively as opposed to the
6 hour lead time in the present study and lead time is
catchment specific and depends upon the time-scale of the
phenomenon investigated. Campolo et al. (1999) suggest
that the limiting time horizon corresponds to the mini-
mum time lag between rainfall and rising water levels; this

factor varies on an event by event basis in consequence of
the inter-play between successive storm characteristics and
the state of saturation of the catchment. In the case of the
River Mole, the strongest (rainfall) predictor of discharge
had a lag interval of 6 hours (see Table 1) implying that
this was the mean response time of the catchment.

A comparison of the MLP results with those of Dawson
and Wilby (1998) indicates that dramatic improvements in
the validation statistics arise when ANNs are trained and
tested against discharge data from the same season. The
need for seasonal stratification of the training data implies
that antecedent flows are not able to characterise fully the
pre-storm conditions of the basin year-round. This is
because other factors such as inter-seasonal variations in
effluent discharges, vegetation and snow cover or soil
moisture profiles may affect subsequent flood evolution.

A further consideration is the resources required to
develop each neural network model. While the results pre-
sented in this paper indicate that the MLP is more accu-
rate than other techniques, the length of time required for
model training should not be discounted. For example,
SWMLR and RBF models, built in a fraction of the time
required for an equivalent MLP, can still provide accept-
able predictions of flows in most cases (see Tables 2 and
3). This factor was also acknowledged by Fernando and
Jayawardena (1998) who noted that RBFs require fewer
parameters than the MLP (particularly when an orthogo-
nal least squares algorithm is used to determine the num-
ber of basis functions). The RBF, therefore, requires less
knowledge about the functioning of ANNSs for their imple-
mentation than an MLP and might, therefore, be the first
choice for ANN feasibility studies.

Conclusions

A comparison of the flow forecasting skill of two ANN
configurations using a cross-validation technique and 15
minute rainfall-runoff data for the River Mole indicates
that the multi layer perceptron model performed better
than the radial basis function network. The RBF was, in
turn, marginally more skillful than a less computationally
demanding stepwise multiple linear regression model and
zero order forecasts. The relatively poor results for the
RBF were attributed to the clustering algorithm’s selection
of suboptimal cluster centres.

The preceding results suggest several avenues for fur-
ther study. Firstly, as Table 4 indicates, direct compar-
isons between different ANN configurations and
catchment studies are highly problematic. In this respect,
the implementation of standard ANN descriptors and
measures of accuracy—such as Bayes factors which
penalise unnecessary model complexity (Kass and Raftery,

- 1995)—would  greatly assist model inter-comparison.

Equally, an index of catchment responsiveness (such as the
mean lag interval between rainfall and runoff) would
enable more objective comparisons of ANN forecasting
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Fig. 6. Standard error with respect to mean flow for all models

skill at different lead times by recognizing that the limit-
ing time horizon is catchment specific.

Secondly, the possibility of coupling ANN runoff mod-
els to runoff models should be explored as a means of
extending forecast lead times, as in the Model Output
Statistics (MOS) and Perfect Prog (PP) techniques (Klein
and Glahn, 1974). For example, statistical downscaling
methods could be used to transform coarse spatial resolu-
tion forecasts from numerical weather prediction models
into local-scale input variables for hydrological modelling
(Wilby and Dettinger, 1999; Hay ez al., 1999). In this case,
the ANNs could even provide a means of handling inex-
plicit uncertainties introduced by the weather forecasts.

Thirdly, hybrid neural network models might be devel-
oped that maximise the advantages of different neural net-
work architectures. For example, RBFs could be used to
model intermediate flows and MLPs for flood forecasting.
Furundzic (1998) found that a hybrid model of this type —
which employed three MLPs to predict flow from data
that were pre-clustered—performed better than a
SWMLR model. In this approach, a self organizing map
is used to precluster the data into different event types
which are then passed through three separately trained
neural network structures. The predictands are then
recombined into a unified output.

Finally, as this study and others have shown, there is
now a convincing basis for the pilot-testing of ANN rain-
fall-runoff models in real-time contexts. This of course
presupposes the existence of telemetry and/or radar net-
works for generating the necessary ANN input drivers.
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