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Abstract

A Bayesian approach is described for dealing with the problem of infilling and generating stochastic flow sequences using rain-
fall data to guide the flow generation process, and including bounded (censored) observed flow and rainfall data to provide addi-
tional information. Solutions are obtained using a Gibbs sampling procedure. Particular problems discussed include developing
new procedures for fitting transformations when bounded values are available, coping with additional information in the form of
values, or bounds, for totals of flows across several sites, and developing relationships between annual flow and rainfall data.
Examples are shown of both infilled values of unknown past river flows, with assessment of uncertainty, and realisations of flows
representative of what might occur in the future. Several procedures for validating the model output are described and the cen-
tral estimates of flows, taken as a surrogate for historical observed flows, are compared with long term regional flow and rainfall

data.

Introduction

Stochastic flow generation models are widely used to gen-
erate synthetic flow sequences for use in reservoir design.
The use of synthetic data allows a wider range of possible
future flow scenarios to be investigated than that provided
by the observed values and permits a formal assessment of
the likely yield and reliability of the scheme under consid-
eration. Typically, for a multi-site reservoir scheme, a
multivariate Normal model is developed for the trans-
formed annual or monthly flows which preserves selected
key statistical characteristics of the observed flows
(Lawrance and Kottegoda, 1977; McMahon and Mein,
1986; Bras and Rodriguez-Iturbe, 1985; Basson et al.,
1994). For reservoir design, these usually include the
mean, variance, correlation structure and the accumulated
volumes during critical, or drought, periods.

Two practical problems which often arise when apply-
ing this type of model are that the observed flow records
to which the model is to be fitted may contain many gaps,
and the records may only cover a short period. The
difficulty with short record lengths is that the sample sta-
tistics against which the model is to be tested will them-
selves be subject to uncertainties which should ideally be
accounted for in the generation procedure (but usually are
not). Also, the periods for which flow data are available
may not be representative of the long term regime in the

region under consideration; for example, the records may
only contain a limited number of flood and drought events,
requiring assumptions to be made about the marginal dis-
tribution of flows. Similarly, any long term trends or per-
sistence in river flows may not be apparent in short term
records. The difficulty with gaps in the data is that most
existing methods for flow generation require complete
records for use in the calibration procedure. This means
that any gaps must first be infilled, typically using physi-
cally-based rainfall-runoff models or by univariate or mul-
tivariate regression against other flow or rainfall records.
Although this may be legitimate for a few short periods of
missing data, if a considerable proportion of the flow data-
base is missing, then the imputed values will assume an
unjustifiably large role in the calibration procedure, with
the uncertainty in these values effectively feeding through
to the generated flows but possibly not being taken into
account. Depending on the infilling procedure used, the
apparent variation in the flow sequences may be either
increased or decreased.

These problems have long been recognised in a water
resources context and various solutions have been pro-
posed. For example, Bayesian techniques provide one pos-
sible way of assessing the impact of parameter uncertainty
and sampling errors (Valdes and Rodrigues-Iturbe, 1977,
Wood, 1978; Stedinger et al., 1985). Also, observed rain-
fall records—which are typically of much longer duration
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than observed flow records—and flow records at nearby
stations can be used to bring in additional information on
the long-term variability in flows (e.g. Zucchini and
Hiemstra, 1983; Grygier er al, 1989; Pegram, 1994).
Censored data (i.e values which are only known to lie
within certain bounds) can also provide additional
information in some situations (Kroll and Stedinger,
1996). Taken together, these are all aspects of a more gen-
eral inference problem, in which the required flows are to
be estimated from the joint distribution of all the unknown
values; both the model parameters and the unobserved or
bounded flow and rainfall data. In the past few years, var-
ious numerical sampling procedures have become available
to solve this type of problem directly, rather than through
making additional analytical approximations.

One such technique (Geman and Geman, 1984) is called
Gibbs sampling, and is one of a family of iterative Monte
Carlo based approaches to the calculation of numerical
estimates of marginal probability distributions from a com-
plicated multidimensional probability distribution. Gibbs
sampling has been widely applied in many fields (e.g.
Arnold, 1990; Smith and Roberts, 1993; Besag and Green,
1993; Gilks et al., 1993) but is perhaps new to hydrologi-
cal applications. This paper describes an example of the
application of this procedure to the estimation of river
flows for reservoir design, and discusses how conventional
procedures for transforming data to normality, and vali-
dating the model output, need to be adapted to cope with
situations where some of the data are only available in the
form of bounded (censored) values. The practical example
considered is that of annual flow generation for several
potential dam sites in the highlands of Lesotho in south-
ern Africa. One of the attractions of the Bayesian approach
for this application was that a single modelling procedure
could be used to satisfy the two main project requirements,
which were the need to infill and extend historical monthly
flow records back in time by reference to observed rainfall
records, and the more conventional requirement to gener-
ate completely synthetic sequences of flows for use in
reservoir design. Also, there has been much discussion
about the possibility of long term cycles and trend in rain-
fall and flow records for southern Africa (see, for example,
Tyson, 1991; Sene et al., 1998), so including long term
rainfall records in the stochastic flow generation process
helped to ensure that any such long term behaviour was
automatically reflected in the resulting historical flow
sequences.

The stochastic model
MODEL FORMULATION

The stochastic model was required to estimate missing his-
torical flow and rainfall data and to generate synthetic flow
sequences from the joint distribution of all the unknown
values; both the model parameters and the unobserved or
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bounded flow and rainfall data. An early decision was
taken to formulate the model in terms of annual rainfall
and flow values, with disaggregation to monthly values (see
later), since this allowed serial correlation in rainfall values
to be neglected, although serial correlation in flows was
allowed for in the model. The resulting model had the fol-
lowing three main components:

(a) a linear relationship predicting (transformed) flow
from (transformed) rainfalls;

(b) a multivariate Normal model for the residuals from the
linear relation;

(c) a multivariate Normal model for the (transformed)
rainfalls.

There are well known results for Bayesian analysis of
multivariate Normal distributions, specifically for the pos-
terior distributions (e.g. Box and Tiao, 1973), which make
the use of this family substantially easier than any other
class. By comparison, most conventional stochastic flow
generation models would use simply a single multivariate
Normal model for the (transformed) observed or infilled
flows.

In order to reduce the number of parameters within the
model, and to include certain realistic physical assump-
tions about the relation between rainfall and flow (see
later), the model was given the following sub-structure.
Define the following quantities:

r : the vector of transformed rainfalls in a given year;

[ the vector of transformed flows in a given year;

fa: the vector of transformed flows in the previous
year;

z : a vector of averaged transformed rainfall for groups
of raingauge sites for the given year.

The group-averages z are defined by z = Wr, where W is
a known matrix of weights defining both the selection of
raingauges and the averaging within groups. The assump-
tion was made that, in terms of explaining the variation of
J/, knowing z is as good as knowing r; that is, the residuals
in a multivariate regression of fon z are uncorrelated with
r. The transformations used are described later but were
variants on the logarithmic transformation. The resulting
stochastic relationship for flows, including serial correla-
tion, can then be expressed as:

F= W+ D(fapp) + B (24) + e (M

where D is a diagonal matrix of serial correlation
coefficients, B is a matrix of regression parameters, /i is the
mean of parameter values and e is a vector of residuals
which are assumed to be uncorrelated with other random
variables on the right-hand side of the equation and with
r. The term Y, is the vector given in terms of the mean
rainfall by 4, = W u,. To provide some control over which
raingauges are used to generate flows at each site, elements
of the regression matrix B may be fixed at zero so that
flows are only related to rainfall at nearby raingauges or
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groups of gauges. This allows flows to be generated by the
rainfalls recorded at only a few neighbouring sites, as
specified by the structures imposed on matrices B and W
but, in years where these raingauge data are incomplete,
inferred values for these will be used based on values at
other raingauges. This transfer of information is controlled
by the covariance matrix Z,, of the transformed rainfall
values r.

The parameters of the model with this assumed structure
are:

the regression parameters of fon z; |

the diagonal matrix of serial correlation
coefficients; 2

the covariance matrix of 7;

the covariance matrix of the residuals of the
regression of fon z and on fj;

Uf, My : the mean vectors of fand r.

pp o

The more general model, without the structural restric-
tions imposed above, may be defined in terms of the mean
and covariance matrix of an extended set of quantities.
Specifically, let i and ¥ (without subscripts) be the mean
and the covariance matrix of the vector consisting of (7, £1,
f, f+1 ) which contains

r : rainfall in the given year
f1: flow in the previous year
F : flow in the given year
f+1: flow in the next year.

The parameters U and X can be defined in terms of the
above variables in an obvious way so details will not be
given here.

CHOICE OF SOLUTION PROCEDURE

Several possible solution procedures were considered of
which Gibbs sampling and the EM (Expectation-
Maximization) algorithm were the two main candidates.
The general principles of Gibbs sampling are now well
known and are discussed in the references cited in the

Introduction and in outline later in this section. A descrip- .

tion of the more widely known EM algorithm is presented
by Tanner (1993, Ch. 4), who puts what is often thought
of as a non-Bayesian technique into a Bayesian context.
For the present application, the difference between these
approaches, and the reason for our preference for Gibbs
sampling, lies in two areas. Firstly, the principal outcomes
of these two approaches differ. Gibbs sampling provides a
set of random outcomes which, taken together, summarise
the uncertainty about all quantities described in the model,
including model parameters and observed, incompletely
observed (censored) and missing data-values. By contrast,
the EM algorithm supplies as its principal outcome a set
of ‘best estimates’ of the model parameters, with additional
steps being required to extract information about uncer-
tainty in the model parameters in approximate form and

further steps then needed to deal with uncertainty in cen-
sored and missing data-values.

A second difference in the approaches is their complex-
ity, particularly in a multivariate situation, as here.
Gibbs sampling proceeds by finding certain conditional
distributions, where the events being conditioned-on are
particularly simple. The EM algorithm involves finding
conditional expectations where the conditioning events,
where data-values are censored, are rather more compli-
cated: in a multivariate situation the best hope of evaluat-
ing these conditional expectations may be via random
simulations. While Gibbs sampling also involves random
simulations, these may be considered integral to the final
outcome while, for the EM algorithm, they are principally
concerned with evaluating the conditional expectations:
they are essentially discarded at each step of an iterative
loop and even the ‘final’ set are of little use in describing
overall uncertainty except in a very approximate way.
Given these advantages, Gibbs sampling was selected as
the best solution procedure to use. This selection also took
into account the need to be able to deal with the several
non-standard practical considerations which arose for this
hydrological application. These included the need to allow
for serial correlation, to deal with bounded data-values and
with null values in the regression matrices, and to ensure
that incremental flow values sum to the measured total val-
ues at flow gauging sites, when available.

IMPLEMENTATION OF THE GIBBS SAMPLING
PROCEDURE

In brief, the Gibbs sampling procedure can be viewed as
solving an overall statistical inference problem by treating
within an iterative loop a number of simpler inference
problems, where each of these simple ‘inference’ steps is
treated by generating random values for a particular set of
unknown quantities from their known posterior distribu-
tion conditioned on observed data and on the current val-
ues for other unknown quantities. For descriptive
purposes, it is convenient to separate the steps within the
overall estimation scheme into a number of sub-problems,
each of which is then further subdivided although, in the
actual solution procedure, all steps are performed concur-
rently. Thus the overall problem can be reduced in the
first instance to two rather simpler problems:

(i) inference about the parameters of the model given a set
of data in which every item is assumed to be observed;
(ii) inference about missing and bounded data for fixed
(i.e. assumed known) values of the model parameters.

The structure of the model outlined above means that it is
convenient to subdivide the first of these problems into
several further sub-problems each of which is of one of
two relatively simple types:

i(a) inference about regression parameters, with known
regression covariance matuix;
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i(b) inference about a covariance matrix with known mean
vector.

In particular, steps of type i(b) are performed after the cor-
responding steps of type i(a). Here a ‘regression parame-
ter’ is, at each sub-step, either a mean vector, or a
regression matrix. In the case of step (ii), it is again con-
venient to subdivide the problem into two parts:

ii(a) inference about unknown rainfalls conditional on a
complete set of flows and the observed rainfalls;

ii(b) inference about unknown flows conditional on a com-
plete set of rainfalls and the observed flows.

For the first of these steps, step ii(a), the model structure
implies that individual years can be considered separately.
The conditional mean and covariance matrix of rainfalls
given the flows in the same year are readily computed from
the model parameters, 4 and X, and the problem is then
reduced to infilling missing and bounded values of a mul-
tivariate Normal vector with known mean and covariance.
Step ii(b) can be handled similarly, except that the depen-
dence across years means that it is necessary to employ a
further Gibbs sampling step here in that new flow values
generated for one year are used as conditioning values for
the next year to be treated. The required parameters are
computed by finding the conditional mean and covariance
matrix of flows conditioned on rainfalls in the same year
and on flows in the immediately previous and succeeding
years.

The remaining question of infilling values in a multi-
variate Normal vector is straightforward except in the case
of the flow variates where the information available is in
the form of bounds on totals of transformed versions of the
Normal variates. In order to cope with this case the fol-
lowing procedure was used. First the problem is reduced
by conditioning on any variates for which exact observa-
tions are available. Then a further set of Gibbs sampling
steps is undertaken in which every possible pair of the
remaining variates for which there is any information are
replaced by new values from their joint distribution con-
ditional on the remaining set of variables which are either
exactly observed or have information about bounds. It is
not possible to treat a single variate at a time because of
the possibility that the information about a total is in the
form of an exact value for the total, which would mean
that the value for any single component of the total is
fixed, given values for the others. Following this, values
for any variate for which there is no information at all are
generated conditional on the values for the variates already
treated.

A SIMPLE EXAMPLE

These last steps are perhaps best illustrated by an exam-
ple. Suppose that one is considering four variates 4, B, C
and D for a given year, for which the observed informa-
tion about these quantities is: .
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A=a, b<B<bh, a<C<L¢p d<D<d,
11 S yA(A) + yp(B) + y(C) + yp(D) < 1.

Here the functions y ), etc., denote the inverse of the
transformations required for bringing the observed flows
close to a Normal distribution and the final constraint
derives from a censored observation of the total of the
untransformed versions of 4, B, C and D. Results from
earlier steps within the overall Gibbs sampling procedure
provide the mean vector and” covariance matrix for the
joint multivariate Normal distribution from which values
for A, B, C and D are to be generated, subject to the above
observational constraints. The earlier steps provide values
Ao, By, Co and Dy for these variates which are to be
replaced by values A, By, C; and Dj as the outcome of the
present step, where the subscript 1 will be reserved for
intermediate quantities. In the first of the sub-steps indi-
cated above, one recognises that the variate 4 does not
need to be treated here since one needs only to set 4;=a:
note that 4p=a is provided by previous iterations. One can
therefore deal only with B, C and D having evaluated the
mean and covariance matrix of this triplet conditional on

=q. The remaining problem can then be treated by the
following set of three steps, each of which involves a pair
from the variables B, C and D.

(i) generate B;, C; from the conditional distribution
given D = Dy and A = g

(ii) generate By, D; from the conditional distribution
given C = Cj and 4 = g;

(iii) generate C», Dy from the conditional distribution
given B = By and 4 = a.

In each case the conditional distribution is a bivariate
Normal, but subject to the additional constraints derived
from the observational constraints. For example in case (i),
the constraints are

bhi<B<b, casC<c, tn-ysA0)—yp(Do)
< y8(B) + yc(C) £ 12 — y.4(Ao) — yp(Dy).

The required bivariate generation can then be achieved by
generating B from the marginal distribution given these
constraints and Cj from the conditional given that B = B;.
Here the marginal density ¢(b) for B is obtained by inte-
grating the joint density function @(b,c) over the values of
¢ satisfying the above constraints.

DISAGGREGATION PROCEDURES

The main stochastic model is formulated in terms of
annual flow and rainfall values at measurement sites such
as river gauging stations and raingauges, so one further
aspect of the overall problem was the need to transpose
these annual flow estimates to the sites of interest (in this
case, dam sites) and to disaggregate these values to
monthly values. Some possible approaches to this aspect of
the problem are reviewed by McMahon and Mein (1986),
Grygier and Stedinger (1991) and Maheepala and Perera
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L4 Rainfalf station
> Flow station
\ Dam site
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Fig. 1. Location map showing the long-term rainfall and flow measurement sites considered in the model.

(1996), amongst others. For the present example, the
transposition was performed simply by a linear regression
model with a stochastic component for the residuals: this
was done separately for each of the groups of dam sites.
The parameters of these regressions were fixed and could,
in most cases, be estimated with reasonable accuracy due
to the existence of several short-term flow records for mea-
surement sites near to the proposed dam sites. This
approach was felt to be consistent with the quality and
availability of the observed flow and rainfall data and a
more sophisticated approach, such as nesting additional
rainfall-flow regression sub-models within the main sam-
pling procedure, was not felt to be justified. The disag-
gregation to monthly values was performed using a-simple
yet robust procedure, called the Method of Fragments
(e.g. McMahon and Mein, 1986). This essentially searches
the observed flow record for the year which most closely
matches the generated flows across:all sites. The flow at
each dam site is then distributed according to the monthly
flow pattern observed at the closest flow measurement site.
This approach has the advantage of preserving the natural
variability and cross correlation between monthly flow val-

ues across the region and ensures that monthly values sum
to the correct annual totals.

Calibration of the model
THE STUDY AREA

The suggested model provides one possible solution to the
problem of estimating monthly flow and rainfall data (both
historical and synthetic) for the situation of a catchment,
or region, where some historical values in the observational
period are missing, and some may only be known within
known limits (i.e. bounded or censored values). The prac-
tical situation for which the model was originally devel-
oped, and which is described here, was flow estimation as
part of the design studies related to the Lesotho Highlands
Water Project (Fig. 1). This is a major scheme to construct
a network of reservoirs and transfer tunnels to supply
water from the highlands of Lesotho to the heavily popu-
lated and relatively dry regions to the north in South
Africa. Flow estimates were required both for design of
future phases of the scheme and for input to an operational
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study to assess the likely quantity of water available for
delivery to South Africa. Sene er al. (1998) give further
information on the scheme and on the hydrology of the
Lesotho Highlands.

In common with many other parts of Africa, flow mea-
surements in the highlands only began comparatively
recently (in the 1960s) and, due to the remoteness of the
area and occasional damage by floods, the records contain
many gaps. There are few raingauges within the catch-
ments of interest in northern Lesotho, although there are
several good quality long term rainfall records further
afield in Lesotho and in neighbouring regions of South
Africa. A major review of the quality of the flow and rain-
fall data was undertaken as part of this study from which
the records for 12 flow measurement sites and 35 rain-
gauges in and around Lesotho were selected for inclusion
in the model. A subset of 6 key flow measurement sites was
chosen for use in the main flow generation component,
based on physical considerations (e.g. proximity of rain-
gauges to the catchments), the quality and completeness of
the records and the results of cross-checking between sites.
Throughout, annual total flow and rainfall values were
computed for a hydrological year (August to July) chosen
to minimise the serial correlation between successive
annual values.

Figure 2 shows the schematic representation adopted
for most of the modelling studies, and indicates the basic
approach which was to model the incremental flows from
the separate contributing areas, or ‘flow units’, between the
flow gauging sites. Thus the model is posed in terms of
flows from Units A to F, but can also take into account
observations on totals of flows from these units, denoted
by ‘T_AB’, etc. The advantage of expressing the flow data
in this form is that it highlights the relationships between
rainfall and flow records in each part of the region.

UnitA
UnitD

Unit 8

UnitF

T.ABE

T..ABCOEF unitc

Fig. 2. Schematic indicating the division into flow contributing areas
between the flow measurement sites (areas defined on Fig. 1).
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Annual total flow (MCM)

Annual Rainfall (mm)

PROCEDURES FOR ESTIMATING BOUNDS ON DATA

For years with incomplete or missing data, two main pro-
cedures were used for estimating upper and lower bounds
on the annual values. Figure 3 shows typical examples of
the resulting bounded rainfall and flow series. The overall
aim was to define bounds which were wide enough to
definitely contain the true value, yet not so wide that they
contributed little additional information to the model. In
practice, for many of the years considered, the estimated
bounds were often within a few percent of each other.

0 A v

1965 - 2 months missing

T T T T T T T T T T T T T
1830 1835 1940 1845 1950 1935 1960 1985 1970 1975 1900 1965 1990
Year

Fig. 3. Typical examples of bounded annual flow and rainfall
records.

For the flow data, use was made of the fact that all of
the measurement sites lie on the same river network. The
daily mean flow at a given station is therefore unlikely to
be less than the sum of the flows from all contributing sta-
tions further upstream or to exceed the flow at stations
further downstream (less any contributions from tributary
inflows). In the case that the nearest stations upstream or
downstream also have missing data, then the search for
measured values was extended further upstream or down-
stream as appropriate. The data used in this procedure
therefore included all 12 of the basic flow measurement
records. The resulting bounded and actual daily values
were then summed to give the required bounded annual
totals for the 6 main flow units. One consequence of
expressing the annual flow data in the form of incremen-
tal values from each of the separate contributing catchment
areas is that the above procedure produces bounds not
only on these individual component flows but on certain
totals of them. For example, the record at the most down-
stream site; when available, provides, in a given year, a
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value for the total of the flows across all 6 of the major flow
units. The stochastic modelling procedure was designed to
be capable of including both the information provided by
bounds on the individual flow-unit values and the extra
information given by the bounds and exact values for var-
ious sub-totals amongst them.

The second procedure used for estimating bounds was
to prepare scatter plots of annual values at a given site
against values at neighbouring sites. Envelope curves
encompassing all values were drawn where justified and
these allowed plausible bounds to be estimated in years
with missing data. This method was used primarily for
rainfall data but also served as a cross-check on the bounds
estimated for the flow values and, in some cases, provided
a basis for specifying slightly tighter bounds than those
estimated using the first of these methods. For years where
data for only a few months were missing, these values were
used in combination with the scaled monthly maximum
and minimum records for the region to derive plausible
bounds on the annual totals for the year. In some
instances, when the bounds produced by these procedures
were very wide compared to the range of the exact obser-
vations, a missing value was substituted instead.

NORMAL SCORE PLOTS

In stochastic modelling of river flows, the usual way of
judging the adequacy of the assumption of marginal
Normality is to employ a Normal-score plot. To maximise
the amount of data used in these assessments, it was desir-
able to use bounded values as well as observed values, and
a new procedure was developed for this situation. This was
based on a revised form of the empirical distribution func-
tion F, defined, for a sample of size n, as:

Fu(x) = n7'Z Gy(x),

where the function Gx) is the contribution associated
with the i’th ranked data-item. For the case of an exact
observation, the obvious choice is to use Gyx) = I(x-x;),
where I is an indicator function defined here by

I(x) =0, x <0
=Y, x=0
=1, x>0.

An equivalent version of the conventional Normal-score
plot is obtained by plotting the values of the Normal score
@ F,(x)} as a function of the observed values of x,
where @ is the standard-Normal distribution function. For
bounded data it then remains to define a suitable function
to take account of the lower and upper bounds, L;and U,
To retain the character of the standard definition of the
empirical distribution function and to recover this function
when the bounds become very close together, it is clear
that G;(x) should take the values zero below L; and one
above U;. In the case that the bounds are far apart, this
requires a formulation that will take into account the

intended use as part of the definition of the Normal-score
plot. For this reason, the following procedure was adopted.
First, using a maximum likelihood approach, a Normal
distribution is fitted to all the data available for a given
record (after any initial transformations), including both
exact and bounded observations. This yields estimates for
the mean m and standard deviation s of the distribution.
Then the contribution of a bounded observation to the
empirical distribution function is defined to be the distri-
bution function of the Normal distribution with parame-
ters m and s, truncated to the range L; to U;. Specifically,
for L;<x< U; ’

Gilx) = [@{(x-m)/s} — @{(Li-m)/s}]/
[@{(Uirm)/s} — @{(Li-m)/s}].

This definition has been chosen because it should mean
that the contribution to the Normal score plot arising from
an incompletely observed data-item should tend to be a
portion of straight line, rather than a curve. Figure 4
shows an example of a Normal-score plot for the Lesotho
Highlands data constructed in this way. Here, the line
shown is the Normal-score function, including all the
information for the variate, whilst the crosses mark the
function at the “exact” data points, which always lie on a
horizontal segment of the plot. A more conventional plot,
using only observed data points, would of course only
show the crosses, and would omit the extra information
provided by the bounded values.

Transformed flow

T T T T T T 1
-2 v 2

Normal score

Fig. 4. Example of a Normal Score plot for transformed annual flow
data.

TRANSFORMATIONS OF FLOW AND RAINFALL
DATA

The Normal Score plots were used to evaluate the trans-
formations by which annual data were transformed to
Normality. Since the model uses rainfall data as well as
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flow data, the choice of transformations needs to be based
on a compromise between the following three considera-
tions:

(a) marginal Normality of the transformed variables,

(b) constancy of variance in the conditional distribution of
one variable given another (particularly of transformed
flow given transformed rainfall), and

(c) physically sensible results from the regression of flow
on rainfall when expressed in the original units.

Most conventional stochastic flow generation models do
not consider rainfall data and so usually concentrate only
on satisfying the first of these factors. The main factor
determining the choice of transformation was the visual
appearance of the Normal-score plots, although point (b)
was also checked using scatter plots of transformed flow
against transformed rainfall, and inspection of the full set
of scatter plots of pairs of variates. A computer graphics
program, showing up to 12 plots per ‘screen’, was written
to allow a large number of plots to be inspected in a short
time by ‘paging’ through all possible combinations of data.
The final transformation chosen for most of the simula-
tions was of the form:

Jory>h
Jor L<y<h

Ky) =y
Hy) = h + (h-L) log {(y-L)/ (h-L)}

where y is the observed value, # is the transformed value,
L is a lower bound on the generated values and 4 is a
threshold parameter above which the logarithmic transfor-
mation does not apply. Values for the parameters 4 and L
were selected individually for each flow and rainfall site by
iterative adjustment based on the visual judgement of
Normal-scores plots as described above.

The lower limit was introduced to improve the fit of the
transformations at the lower end of the flow range, and was
constrained to be below any of the observed flow values
available (which included data from the worst known
drought on record). The threshold parameter, %, was also
introduced to improve the relationships between rainfall
and flow data. For the Lesotho Highlands, it was antici-
pated that, when considering annual data, it should be pos-
sible to develop linear relationships between transformed
rainfall and transformed flow since, at the time of these
design studies (i.e. before dam construction), there was lit-
tle storage in the basin (either surface or sub-surface) to
provide any carry over of flows between hydrological years.
This was subsequently justified by the data (see later).
Ordinary logarithmic transformations resulted in a regres-
sion equation of the form:

Slow ~ constant. (rainfall)®

with 4 typically close to 2. However, a relationship such as
this would mean that the model might predict unreasonably
large values for flows in years with high rainfall (i.e. more
flow than rainfall), and the threshold parameter was intro-
duced as a means of avoiding this unrealistic behaviour.
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Several other types of transformation were also evalu-
ated during this study including other variants of the log-
arithmic transformation to Normality and included a
‘logistic’ type of transformation which allows for the model
to represent data which are bounded both above and
below: this particular transformation has, for flow data
alone, been found suitable in previous simulation studies
in southern Africa (Basson ez al, 1994) and elsewhere.
These comparisons produced broadly similar results, sug-
gesting that the remaining uncertainty in the estimates
derives more from the availability and variability of the
data than from the choice of transformation. Figure 5
shows an example of a plot of the transformed annual rain-
fall and annual flow values plotted together as a scatter
plot. Bounded data are shown as dashed lines or boxes
covering the range within which the data are known to lie;
however these are omitted if the range covered is large
since otherwise the plots are obscured. Scatter plots such
as these were also used to help assess the constancy of vari-
ance of the regressions between pairs of variables.
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Fig. 5. Example of a scatter plot of transformed annual flow and
rainfall data.

Results
GENERAL APPROACH TO MODEL VALIDATION

The main output from the Gibbs sampling procedure was
a set of individual realisations of the annual flow sequences
for each of the incremental flow-units and, by summing
these, for the originally selected flow measurement sites.
The three main questions to consider when assessing the
performance of the model were:

a) In periods with flow data, can the model simulate the
key statistical and time varying features of the observed
flows by using rainfall information alone ?

b) In periods with rainfall data but no flow data, do the
generated flows correspond with other indicators of
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flow variability, such as regional rainfall records, flows
generated by other types of model and flow records
from more distant sites ?

c) When generating completely synthetic values, does the
model generate flow values with the same statistical
characteristics as the observed flow data ?

To assist in these validation tests, the model was
configured to produce automatically three types of output
in which flows were generated using (I) all of the available
flow and rainfall data, (IT) rainfall data alone and (III) ‘no
data’.

The differences between these three modes of operation
can best be seen from an example of the probability dis-
tributions for each year for the generated flows computed
across all realisations. Figure 6 shows one such example for
the 5,25,50,75 and 95 percentage points calculated in each
mode for one of the sites in the Lesotho Highlands study.
In Mode (I) any missing flow values are generated taking
account of all of the available information, including
bounds on values for the given flow-unit, flow values or
bounds for other flow-units, and all the available rainfall
information in the form of exact values or bounds. This
mode corresponds directly to the Gibbs sampling proce-
dure, while the other two modes were added to create
other versions of the flow-series which take no part in the
estimation procedure: however the ‘current’ versions of
the model parameters were used at each iteration of the
procedure to create these other realisations. In Mode (II),
a revised procedure was implemented which ignores all the
flow information so that the model effectively operates as
a stochastic rainfall runoff model. In this mode, infilled
values for the rainfall data are generated based on the
observations and bounds on rainfall, and these are then
used via the regression equations, with the regression noise
included, to produce a realisation of the flows. The Mode
(III) ‘no data’ case corresponds most closely to a conven-
tional stochastic flow generation model, in which the flow
sequences produced are completely synthetic, but hope-
fully retain the key statistical characteristics of the
observed flows. In this mode of operation, the present
model effectively generates artificial sequences of rainfall
and flow values concurrently, although it does this in a
somewhat more efficient way by generating values for the
regression variables z only.

In addition to producing these different types of output,
several standard computational checks on the procedure
were performed: for example, using different seeds in the
random number generators and rearranging the internal
orderings of the sets of flow and rainfall variates. Between
them, these tests provided a check not only on the pro-
gramming, but on the effect of the initial values set for the
‘unknown’ parameters and data-values. In the case of the
flow-variates, test runs were made in which the variates
were re-ordered to ensure that the initial values obeyed the
constraints imposed by information about totals of flows
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Fig. 6. Examples of model output. Percentage points of modelled
Sflows, together with the known flow data or bounds (a) Conditioned
on all flow and rainfall data (Mode I); (b) Conditioned on rainfall
data only (Mode 1I); (c) Unconditional (Mode III).

from groups of flow-units. The results from all these runs
of the model were in substantial agreement. To check the
independence of successive realisations, simple correlation
analyses were performed across realisations of various sam-
ple statistics, such as the means and standard deviations.
These suggested that a gap of only 4 or 5 between realisa-
tions was enough for them to be treated as statistically
independent due to the inherently weak correlation
between successive realisations. Since the validation analy-
ses reported here do not rely on the realisations being
statistically independent of one another, it seemed appro-
priate to use all the realisations in a sequence rather than
using only every tenth, say. The results shown in the fol-
lowing sections were based on using 800 realisations
obtained after discarding the first 20 as a warm-up period.

EXAMPLE RESULTS

The usual approach to evaluating the output from con-
ventional stochastic flow generation models is to compare
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selected statistical characteristics of the generated flows,
such as the mean, variance and skewness, with those of the
observed flows. This type of comparison can be attempted
using both the Modes(II) and (III) of operation described
above ie. conditionally and unconditionally on the
observed rainfall information. However, here the observed
flow records contain many gaps and instances of informa-
tion in the form of bounds, and hence the task is more
complicated than usual in that a single ‘observed’ value for
each of the sample statistics cannot be calculated. Instead,
there is a probability distribution associated with each sta-
tistical measure, for example reflecting how much is
known about what the actual sample mean annual flow is
in a given period and one must ask whether the observed
statistic was likely to have arisen from the distribution.
These distributions are provided by the Mode (I) results
of the model, which take full account of all relevant data.
Figure 7 shows an example of these types of comparison
in the form of a box plot for one site in the Lesotho
Highlands for a choice of averaging periods for two of the
sample statistics selected; the mean and the standard devi-
ation. If the model is performing well, the median values
should lie within a few percent of each other, at least for
these particular statistics. The three averaging periods
selected here overlap: the ‘site-data’ period was selected
individually for each flow-site to represent the period hav-
ing observations for that site; the ‘flow-data’ period repre-
sents the period when there were data for any flow-site;
the ‘all data’ period is the overall period when either rain-
fall or flow information is available. Note that the variabil-
ity of the results increases across these three periods for
the Mode I case, because a larger fraction of the informa-
tion is derived from rainfall: the variability decreases for
the Mode III case because the distribution is identical from
year to year but the statistic is calculated for a longer
period.

Similar plots were prepared for other sites and other
sample statistics which, taking into account the application
to reservoir design, included the sample maximum and
minimum, the serial and cross correlation matrices and
various storage related statistics computed assuming a
range of assumed values for reservoir yield, such as the
maximum volumetric deficit, the duration of maximum
deficit and the minimum cumulative (run-sum) totals for
various assumed critical periods. Most attention was
placed on statistics defined in terms of the flow data on the
original, untransformed scale, but some consideration was
made of statistics in the transformed space. Clearly, for
this many sites and statistical parameters, the number of
comparisons required can be very large so, to assist in this
work, a formal ‘measure of fit'" was defined on a sliding
scale of 0.0 to 1.0, where a score of 1.0 indicated a very
good fit (agreement of medians perfect given the sample
size) and a score of 0.0 indicated the predicted median
value fell outside the observed range estimated for the sta-
tistic under consideration. These scores were averaged by
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Fig. 7. Examples of box plots comparing the estimated mean and
standard deviations in flows for three different averaging periods.
Within each group of three box plots, values are for Modes I, I and
III of operation (a) Mean (b) Standard Deviation.

site and/or by statistic and were useful in assessing rapidly
different configurations of the model, including the effect
of different transformations. There was some difficulty in
assessing how close a match between the distributions to
expect. Some statistics, such as the sample means in the
transformed space, should be perfectly preserved because
of the structure of the model: conversely, if there were sta~
tistics which are completely unrelated to the model struc-
ture one might treat these as if the ‘observed’ statistic was
supposed to be a random sample from the distribution
derived from the model. However, for the present model,
all statistics calculated from the untransformed values
seem to fall somewhere between these two cases. This
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measure of fit was therefore used primarily as a way of
comparing the performance of different configurations of
the model, without attaching too much importance to the
actual scores obtained in each configuration.

In Mode (IT) of operation, the model performance might
also be evaluated on a time series basis if the central esti-
mates of flows in each year are considered to be represen-
tative of the true flows. Figure 8 shows an example of this
type of comparison for one of the sites in the Lesotho
Highlands, where the time series values are shown as a
scatter plot. Note that, in this plot, the observed data are
indicated as a range of values between the estimated
bounds. A more truly independent test is to perform the
same type of comparison with various other indicators of
flow variability which were not included in the model. For
the Lesotho Highlands example, such indicators included
flow and rainfall records from more distant stations in
south Africa and also ‘non-stochastic’ flow estimates
derived in earlier unpublished studies using physically-
based conceptual rainfall-runoff models driven by monthly
rainfall data. Figure 9 shows an example of this type of
comparison for one of the sites included in the stochastic
model. The overall conclusion from these various tests was
that the model was capable both of providing realistic
estimates for the historic flows, and of generating plausi-
ble synthetic flow sequences for use in reservoir design.

Observed flows (MCM)
§
|

d 2000 400b 600D
Central estimates (MCM)

Fig. 8. Scatter plot of observed and predicted flows in Mode 1.
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SENSITIVITY TESTS

Various tests were also performed to determine the sensi-
tivity of the model results to various assumptions and dif-
ferent configurations of the model. Although many
statistical measures were considered as indicated above
(run-sums etc), the emphasis was on the sample mean and
standard deviations of the flow series since, for reservoir
design, these are the key indicators of the average amount
and variability of the water available for storage. In partic-
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Fig. 9. Time series comparison of central estimates (Mode I) against
other models and records from more distant stations.

ular, the posterior means and standard deviations of these
two sample statistics were used to compare various model
configurations.

These comparisons showed that typically the posterior
means remained fairly constant whilst the standard devia-
tions varied slightly for different model configurations,
depending on the choice of raingauges included within the
rainfall-flow model and on the number of raingauges
included in the overall model. These differences reflected
the amount of information about the flows in particular
years being extracted from the rainfall data. As well as
using the full set of 35 raingauges, models based on only
25 and 13 raingauges were tried. Some results for this
comparison are presented in Table 1 for the period 1930
to 1982, which was one of the periods for which reservoir
yield assessments were required in this study. In these
runs, the same selection of raingauges was used in the rain-
fall-flow regressions throughout. This table also includes
the results for several independent runs using 25 rain-
gauges overall in order to illustrate the remaining uncer-
tainty in deriving estimates of the posterior means and
standard deviations from only 800 realisations. Similar
comparisons were also performed for the full set of model
validations runs, which were designed to assess the sensi~
tivity of the model output to factors such as:

(i) use of separate selections of raingauges for the differ-
ent flow-units, compared with using a single com-
bined rainfall sequence for all units and with using no
rainfall information;

(ii) the effect of using a different family of transforma-
tions;

(iii) the effect of initial values for the unknown quantities;
and

(iv) the effect of the parameters of the prior distributions
used for the covariance matrices of rainfalls and flow
residuals. ‘

These various tests generally produced results which
fell within the range of values indicated in Table 1, show-
ing that the main factors influencing the accuracy of the
model were the number of raingauges used in the model,

501



8

Jones, D.A. and Sene, KJ.

Table 1. Comparison of the posterior distributions for models based on differing num-~
bers of raingauges overall: estimated posterior means and standard deviations for sta-

tistics of yearly flows at site 7' AB

Model Sample mean for years 1930-1982 Sample between year standard
(Mm3 yrT) deviation for years 19301982
, (Mm? yr1)

Mean St.Dev. Mean St.Dev.
No raingauge 1485 160 917 144
information
13 raingauges 1474 86 841 81
25 raingauges 1464 78 843 75

1461 84 838 77

1447 81 845 80

1453 80 832 70

35 raingauges

and the completeness (and closeness of the bounds) of the
observed data.

Discussion and conclusions

The Gibbs Sampling approach, when incorporated within
a Bayesian multivariate regression framework, provides an
attractive way of maximising the amount of observed
information used when generating river flow sequences for
reservoir design. The method allows both rainfall data, and
flow and rainfall values for which only bounds are avail-
able, to be used to help guide the flow generation proce-
dure. It also allows considerable flexibility in the way that
the model is configured, so that it is easy to experiment
with different combinations of flow measurement sites and
raingauges, and to build physically realistic assumptions
into the regression relationships between flow and rainfall.
For the Lesotho Highlands application described in this
paper, the method provided a way of generating plausible
long-term flow sequences, both historic and synthetic,
from only a limited set of observed flow data. The model-
ling procedure adopted met both of the original main
objectives of the study, which were:

(i) estimation of the flows that actually occurred in past
years when flows were not measured;

(ii) generation of stochastic flow sequences, either condi-
tioned on the actual past rainfall or unconditionally.

Although the model used was tailored specifically for the
Lesotho Highlands, a similar approach could be used in
other regions with limited, patchy flow data, but with
longer, more reliable regional rainfall records. In the
Lesotho Highlands application, one particular advantage of
using rainfall data in the stochastic model was that this
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provided a long-term view on the climatic variability in the
region. This was considered important given that, as men-
tioned earlier, several studies have shown strong, but not
conclusive, evidence of cyclical behaviour in rainfall
records for southern Africa. With the structure adopted,
any cyclical behaviour in the rainfall data will be automat-
ically transferred to the generated historical flow values.
Given that the presence, or otherwise, of cycles is a con-
tentious issue, this side-stepped the problem of formally
identifying the cycles from the flow data alone and of
including some representation of this behaviour in the flow
generation process.
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