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Abstract

Geological fault zones are usually assumed to influence hydrocarbon migration either as high permeability zones which allow
enhanced along- or across-fault flow or as barriers to the flow. An additional important migration process inducing along- or across-
fault migration can be associated with dynamic pressure gradients. Such pressure gradients can be created by earthquake activity
and are suggested here to allow migration along or across inactive faults which ‘feel’ the quake-related pressure changes; i.e. the
migration barriers can be removed on inactive faults when activity takes place on an adjacent fault. In other words, a seal is viewed
as a temporary retardation barrier which leaks when a fault related fluid pressure event enhances the buoyancy force and allows
the entry pressure to be exceeded. This is in contrast to the usual model where a seal leaks because an increase in hydrocarbon
column height raises the buoyancy force above the entry pressure of the fault rock. Under the new model hydrocarbons may
migrate across the inactive fault zone for some time period during the earthquake cycle. Numerical models of this process are
presented to demonstrate the impact of this mechanism and its role in filling traps bounded by sealed faults. :

Introduction

The published literature on secondary migration of hydro-
carbons considers that faults act in two primary ways to
influence migration. Either they are assumed to be open
pathways of high. permeability or they are considered as
barriers to the flow. An additional and important possibility,
modelied here, is that hydrocarbons can migrate across
or along inactive faults when quakes on an adjacent fault
induce a pressure pulse that can promote migration of
hydrocarbons across the inactive fault. In other words,
the seal is viewed as a temporary barrier, or retardation
feature, which leaks when a quake-related fluid pressure
event allows the entry pressure of the fault rock material
to be exceeded. This is in contrast to the normal model
where a seal leaks because of an increase in hydrocarbon
column, i.e. the buoyancy force exceeds the entry pressure
of the fault rock. Under the new model, hydrocarbons may
migrate across the inactive fault zone for the time period
that the fluid pressure difference (pp — py) is above the
critical entry pressure p., see Fig. 3.

Figures 1 and 2 provide a description of this system
and show the basis for the numerical calculation of the
amount of hydrocarbon that can be moved across a fault
in this manner. This new model is based on the known
importance of fluid pressure variations during faulting
events. Pressure variations have been the foundation of

many models which relate fluid flow to faulting processes.
For example, when the fluid pressure exceeds the least
principal stress by an amount equal to the strength of the
rock, a hydrofracture can be generated or reactivated. This
basis has been used to model fault pumping and valv-
ing (Sibson, 1981, 1992, 1996), earthquake propagation
(Lockner and Byerlee, 1995) and top seal leaking (Holm,
1996; Larson et al., 1992). The new model for migration
proposed here differs in that it does not rely on fracturing
or dilation to activate flow, but proposes that when the
effect of buoyancy and fluid pressure pulses combine to
exceed the entry pressure of seals then flow of hydrocarbon
across/along the barrier is possible. In addition, many seals
in hydrocarbon provinces are dynamic systems which are
in equilibrium, or in a delicate balance of a leaking rate
and a hydrocarbon influx rate controlling the accumulation
columns. Such dynamic systems will be very sensitive to
pulses which are above the background (or long term) fluid
pressure levels, but are below the pressure levels needed
to dilate and fracture flow barriers. Therefore, the role of
pulses in fluid pressure gradients is critical. The cause of
fluid pressure variations usually considered in migration
studies. is compaction driven or transformation controlled
processes (Ge and Garven, 1994). It is proposed here that
fault related pressure induced gradients also need evalu-
ation and inclusion in models of hydrocarbon migration
pathways. The dynamic model suggests that the migration
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behaviour patterns in areas where fault systems are active
depends fundamentally on' the pressure level pulses and
properties of the seals. Three levels of behaviour can be
identified:

Level 1. Buoyancy control. (pr — pw) < pc

Seal leaks in this case are primarily controlled by the buoy-
ancy force at the top of the column alone. The buoyancy
pressure needs to build up, by addition of hydrocarbon to a
column, to the entry threshold pressure level before leakage
occurs.

Level 2. Fault related pulsed flow.

Pc < (P — Pw) < Pfrac

This is the condition for seal leakage associated with dy-
namic pressure changes without breaching by fracturing
and is the basis of the model introduced here. The amount
of leakage will be controlled by the time period when

(pn'= pw) > Pe.

Level 3. Open fracture/fault controlled flow.

(Ph — Pw) ~ Pfrac

Here the seal fails by breaching because the mechanical
strength of the seal is exceeded. Note that the failure
mechanism may be either dilation of existing structures or
generation of new structures (fracture and fault arrays).

The following points are important aspects of the pulsed
flow across non-active faults during near-by fault activity:

(1) There is no need to wait ~100,000 years for com-
paction related pressure cycles to allow cross seal leakage.

(2) Large numbers of pressure pulses are known to occur
during fault activity. For example note the 500 quakes per
day felt during the Matsushiro swarm (Sibson, 1996). Each
of these will create a fluid pressure transient.

(3) This mechanism of leaking can operate away from
active faults but within a volume affected by pressure pulses
on an active fault. This creates a vision of fault-related
fluid pressure transients propagating through a volume
affected by a faulting event. The propagation of these
pressure waves will be complex because the dampening
and re-enforcement of the pressure wave will depend upon
the three-dimensional permeability and porosity structure.
Both sedimentological features (e.g. sand and shale body
architecture and connectivity) and structural features (e.g.
the size, shape and distribution of fault juxtaposition win-
dows with different transmissivities) will contribute to the
three-dimensional pattern of pressure histories within the
volume. It is, therefore, likely that the shapes of the vol-
umes which experience similar pressure levels, or rates of
change of pressure, during a single event will be complex.

(4) The proposed pulsing mechanism may explain en-
try into hydrocarbon accumulations which are apparently
bounded by sealed faults with no migration route into the
reservoir.

(5) The timing of migration is often linked to faulting
events but the subtle role of pressure cycling and flow
across seals has not been considered before.
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(6) The database collected by Rock Deformation Re-
search during the last five years on the petrophysical prop-
erties on seals provides the platform for quantifying the
impact of this pulsed leakage process.

(7) The proposed mechanism is not included in models
of secondary migration. It should be. In addition, this
mechanism should be added as a possible contribution to
the fracture-leak models used to assess flow through top
seals.

Controls and model basis

The important components of the proposed model of flow
across inactive fault seals are listed below:

. The entry pressure characteristics of the fault.
o The magnitude and duration of each pressure event.

o The statistical distribution of population of pulse sizes
over an extended time period.
Each of these aspects is discussed separately below

THE ENTRY PRESSURE CHARACTERISTICS OF THE FAULT

Quantification of entry pressure data for fault rocks is vital
to the modelling of flow across fault zones. During the
last five years Rock Deformation Research has built its
own computer controlled accurate permeameter (able to
measure to < 1uD) and combined permeability data with
mercury injection data on different fault rocks. This unique
dataset now contains information on more than 400 fault
rocks and has allowed determination of the relationship
between entry pressures and permeability for fault rocks. A
simplification of this relationship is used to evaluate pulsed
flow across faults.

THE MAGNITUDE AND DURATION OF EACH PRESSURE
EVENT

Schowalter (1979) reviewed the impact of hydrodynamic
flow on seal behaviour and recognised how down dip flow
increases the sealing capacity of a flow barrier and that
up dip flow will reduce the sealing capacity. The criti-
cal factor is the alteration of the fluid pressure gradient
with depth. The mechanism investigated here is where the
depth/pressure gradient can be considered to be modified
during a distant faulting event. The result is to induce
a change in the buoyancy force which alters the sealing
capacity of the inactive fault zone.

Accurate calculations for the pulse model requires in-
formation on the range of pressure changes which may
be associated with faulting events and the time period
over which these pulses operate. Data on the character
of the pressure pulses comes from a number sources. For
example, Parry and Bruhn (1990) report a fluid inclusion
study from fault zones which indicate that fluid pressure
transients of 5 MPa to 120 MPa occur on faults at a depth of



3-5 km. Information in Bruhn et al. (1990), Schwartz and
Coppersmith (1984) and Sibson (1992) suggest that stress
drops of ~10 MPa are consistent with recurring quakes of
M5/6 on the order of 1000 yrs in some areas. Note that
the smaller events (including fault creep events and earth
quake swarm events) will generate a large frequency of
small pulses, which can contribute a significant volume
over an extended time period. Sibson (1996) suggests that
differential stresses of ~*40 MPa are probably a maxima for
the operation of fault meshes or networks as enhanced flow
zones. The lower range of fluid pressure pulse values (up
to 10 MPa) has been used for the numerical modelling of
pulsed flow across inactive fault zones presented later.
Bruhn et al. (1990) have calculated the approximate time
needed to seal up a fracture by quartz precipitation. The
model used is based upon evaluating the impact of pressure
or temperature drops or saturation levels; for a pressure
reduction of ~100 MPa (equivalent to a 70°C temper-
ature reduction) sealing times for a fracture at ~300°C

are approximately 1-100 yrs for fractures of width 0.01—

1 mm. The calculation assumes that there is a reservoir
of supersaturated solution and rapid fluid flow through the
fracture. The estimates form a platform for calculating the
sealing time on faults with different pore sizes and indicate
that modelling fault zones as open systems for periods of
up to a few months is appropriate. This is the period when
after-shock activity following large (>MS5) earthquakes is
also considered to maintain an open system in the fault
damage zone structure (Knipe, 1992).

THE STATISTICAL DISTRIBUTION OF POPULATION OF
PULSE SIZES OVER AN EXTENDED TIME PERIOD

The number of pressure pulses which take place in a
volume undergoing active faulting is indicated by the data
available on seismicity activity. Note that 700,000 shocks
were recorded in the 1965-1967 Matsushiro earthquake
swarm (Hagiwara and Iwata, 1968). The exact distribution
of events can be considered approximately fractal or power-
law and earthquakes of M5/6 can take place on the order
of every 1000 yrs in some tectonic areas (Scholz, 1989;
Sibson, 1989).

Flow model and governing equations
DEVELOPING A FLOW MODEL

Consider a sealed fault zone behind which a hydrocarbon
reservoir has accumulated and which has the potential to
leak when the pressure within the hydrocarbon is raised
by a transmitted pressure pulse from a nearby geological
event.

The reservoir is constrained from above by a sealing
cap rock and around the sides by sealing inactive faults.
The hydrocarbon is supported from below by a denser
water reservoir. In the initial state, the hydrocarbon remains
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Fig. 1. A hydrocarbon column constrained by inactive faults and
a sealing cap rock.

contained and the excess pressure within is insufficient to
cause any leakage. A portion of the faulted walls bound-
ing the hydrocarbon is then forced to cause migration of
the hydrocarbon as an applied pressure pulse transmitted
through the reservoir increases the pressure over some of
the surface sufficiently to raise the cross-fault pressure
difference above the critical pressure for the fault rock.
The water reservoir bounding the base of the reservoir is
assumed to extend below the lowest part of the leaking fault
and along the other face of this fault so that the pressure
difference across the fault, which will aid in the seepage of
hydrocarbon, will be due to the difference in the densities
of the water and hydrocarbon alone.

The mathematical model for the process described above
is depicted in Fig. 1. The hydrocarbon reservoir is assumed
to have a uniform horizontal cross section of area A. The
vertical sides of the column are initially of height #¢. As
flow takes place across the fault during the influence of
the pressure pulse, a decrease in the hydrocarbon column
height and a decrease in the undisturbed hydrocarbon pres-
sure driving the fluid flow will occur. Here, it is assumed
that no increase in the level of hydrocarbon in the reser-
voir can be achieved by migration into that region from
other hydrocarbon reservoirs. The column height at the
time ¢, relative to the reference time ¢ = 0 at which the
pressure pulse begins to act at the hydrocarbon-rock-water
boundary, is then denoted by A(z). Measuring the depth
z vertically down through the system, let zo represent the
constant position of the top of the column, i.e. the base of
the sealing cap rock. The surface of the column side over
which there is the potential for hydrocarbon migration is
taken to have horizontal length ! and can be assumed to
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Fig. 2. A section through the hydrocarbon-rock-water bound-
aries.

be planar without significant loss of generality due to the
minimal variations of quantities in the horizontal direction
compared to the vertical direction. The pressure gradient
which drives the flow of hydrocarbon acts over the constant
distance d between the two faces of the fault rock.

A close-up of the hydrocarbon-rock-water interfaces is
shown in Fig. 2. On the right-hand side of the fault rock
water exists at all depths within the vicinity of the reservoir.
On the other side, water exists beyond z = zo + A(f) and
hydrocarbon for zo < z < (zo + h(2)). Thus, if oy and pp
denote the density of water and hydrocarbon, respectively,
we have within the region of interest that

20 <z=<zo+h(@
z > 2720+ k() €))

0(2) = pn,
0(2) = pw,

Relative to the reference pressure depth z = (zo + A(?))
of the hydrocarbon-water interface where p = pg, the
pressure within the hydrocarbon column at depth z when
no pressure pulse acts is

Pr(z) = po — prg(zo + A(t) — 2) )

and the pressure within the water on the other side of the
fault is

Pw(z) = po — pwg(zo + h(t) — 2) 3

where g is the acceleration due to gravity. Thus, the effect
of buoyancy forces is to produce a resultant pressure at
depths zg < z < (2o + 4(¢)) within the column as an excess
to that achieved by hydrostatic pressure.

A critical entry pressure value, p., is introduced; this
is dependent upon the permeability of the fault rock and
represents the pressure difference across the inactive fault
plane which must be exceeded before fluid can flow. For
a given value of p., the hydrocarbon reservoir will remain
sealed by the fault only if the ambient pressure at the top of
the hydrocarbon column z = zo does not exceed the sum of
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hydrostatic pressure (ambient pressure on the other side of
the fault plane) and the critical pressure. Thus,

Pr(20) < pw(zo) + pc “4)

is required for the reservoir to remain sealed by the fault.
The condition (4) can be applied at ¢+ = 0 to impose a
maximum initial hydrocarbon column height Aq, Which
can be supported by the fault rock, namely

Dec
(ow — pr)g

A pulse of pressure, applied to the reservoir at the reference
time ¢t = 0, causes an effective increase in the pressure
difference across the two sides of the fault. The function
describing the increase in pressure within the hydrocarbon
at time ¢ is f'(¢). This pressure pulse function is assumed
to act for a period T and reach a peak value py over
0 <t < T. At any particular time throughout the period
of the pulse three possible flow regimes may exist:

ho < hupax =

&)

(i) Complete flow through the fault plane:

The value of the pressure pulse at time ¢ is sufficient to
cause flow over the depth interval zo < z < (20 + A(2)).
Thus, complete flow exists at time ¢ if the pressure differ-
ence across the fault at z = zg + h(t) exceeds p, i.e.

f@® = pe ©®

(ii) No flow over the fault plane:

The value of the pressure pulse at time ¢ is insufficient to
cause flow at the top of the reservoir z = zo. Thus, no flow
exists over the fault plane if

Pr(zo) + f(#) < puw(zo) + pe @)
This condition requires that
F(©®) = pc — (pw — pr)gh(t) ®

(iii) Partial flow over the fault plane:

The value of the pressure pulse at time ¢ is sufficient to
cause flow, but only over the reduced depth interval zo <
z < zc(t), where z.(¢t) denotes the critical depth value at
which flow stops at time ¢. Partial flow over the fault plane,
therefore, requires that

Pe — (ow — pr)gh(t) < f() < pc ©
In such cases, the flow takes place over zg < z < z. and z
satisfies
Pr(ze) + () = pw(ze) + pe (10)
so that
Pe— £
(ow — Pn)g

The above three conditions are represented diagrammat-
ically in Fig. 3. The line along which p = py + pc
shows the pressure which must be attained at any depth

Ze(t) = zo+ h(2) — (11)
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Fig. 3. A diagram of the three possible flow regimes.

within the hydrocarbon column for flow to commence at
that point. The three values of the pressure pulse function
f@® = fi@®), fo(t) and f3(¢t) represent the three flow
regimes (i)—(iii), respectively, listed above.

If the pressure pulse function is continuous over the time
interval [0, T], the flow across the fault plane may evolve in
three distinct ways, depending upon the peak value of the
pulse pg:

(i) No flow at all times:
The pulse is insufficient to cause flow at any time ¢ € [0, T]
and hence

Pd < pc — (pw — pr)gho 12)
from equation (8).

(i1} No flow initially, followed by partial flow,
and a return to no flow:

Flow begins at z = zg at some time tlz" within the period of

the pressure pulse, but the peak pressure py is insufficient
to achieve complete flow. Thus,

De — (Ppw — pr)gho < pd < pe (13)

and the value of #{° is deduced by solving the following
equation:

F°) = pc — (ow — pr)gho (14)

At a second time t§° € [0, T'] flow across the fault ceases.
This time is implicitly defined by the following relation-
ship:

F&3°) = pe — (pw — pr)gh(£) (15)

(iii) No flow initially, followed by partial flow,

complete flow, partial flow and no flow:
Complete flow is achieved over a time interval from ¢ = #{
to ¢ = ¢, the limits of this period corresponding to the
times at which the complete flow condition (6) is satisfied.

Pulsed migration of hydrocarbons

This requires that the peak pulse pressure be at least p.
Thus, there is no flow for ¢ € [0, tfo); partial flow for
t € [1{° ); complete flow for ¢t € [{, £]; a return to
partial flow for ¢ € (5, £5°]; no flow for ¢ € (£3°, T].

If the pressure pulse function is discontinuous over the
time interval [0, T'], flow may start instantaneously or stop
over the whole fault plane without the intermediate stage of
partial flow.

DERIVATION OF THE GOVERNING EQUATIONS

If d (the fault thickness) is small, the velocity of the fluid
flowing through the fault plane at the depth z when the
pressure difference is large enough can be assumed to be
independent of x, the horizontal coordinate perpendicular
to the plane of the fault, and, assuming that the flow satisfies
Darcy’s law, can be approximated by the relation

. _KApi1)
n ox nw d

(16)

where K is the permeability of the rock, u is molecular
viscosity and Ap(z, t) denotes the pressure difference over
and above the critical entry pressure at the depth z due to
the pulse at time ¢:

Ap(z,t) = puw(2) + pc — pn(2) — f ()

= pc — (pw — pr)8(z0 + h(t) — 2) — f(2)
a7

Suppose now that flow takes place at depth z for some
small time interval 8¢ across an elemental portion of the
fault plane of width 8z and horizontal length / (the extent
of the hydrocarbon reservoir across the fault plane). The
small volume of fluid migrating across the fault plane in
this time interval is 8V (z, £). Thus,

) . z+6z
8V(z, t) =18t f (7, 1) d7
¥4

tK
= K — omeo+ h() — 2)
ud

+ (@) — pcl (18)

and the volume flow rate across the elemental volume of
width 8z is

)
BeR oo — o820 + () —2)
ud

+ f@® — pcl (19)

The flow rate over the whole fault plane at time ¢ depends
upon the value of the pressure pulse and whether there
is no flow, partial flow or complete flow. The equations
governing the fluid flow rate and, hence the height of the
hydrocarbon column, must be derived separately depending
on whether the flow is over part or all of the fault plane:

av
—A(z,t) =
ar P

(i) Partial flow over the fault plane:
The value of the pressure pulse function f(t) satisfies
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condition (9) and flow occurs over a limited range of depths
Z0 < 7 < z, Where z. is defined in equation (11), within
the fault plane. The total volume flow rate over the surface
of the fault at time ¢ when partial flow occurs is defined by

av 2 K1
—Jt—(t) = /z w‘[(ﬂw — pn)g(zo + h(t) — z)

0

+ f(®) — pcldz (20)

using equation (19). The volume of hydrocarbon, V, which
has migrated across the fault plane can be expressed as the
horizontal surface area of the reservoir multiplied by the
loss in height of the column, i.e.

Total volume migration = V() = A(hg — h(2)) (21)

and, hence, the equation governing the height of the hydro-
carbon column when partial flow is occurring is given by

dh 1dV
E(t) = —X*El‘t-(t)
o Kl
T 2pAd(pw — pn)g

+ £ - pel? (22)

(ii) Complete flow over the fault plane:

The value of the pressure pulse function f(r) satisfies
condition (6) and flow occurs over the complete range of
depths zo < z < (zo0 + h(¢)). Using equation (19), the total
volume flow rate over the surface of the fault at time ¢ when
complete flow occurs is defined by

[(ow — pPr)gh(t)

dv w+h() K]
—@®) = f — [(ow — pn)g(zo + h(t) — 2)
z ud

dt
+ f(®) — pcldz (23)

and, hence, the equation governing the height of the hydro-
carbon column when complete flow is occurring is given
by

0

1
—(@) = ~hAd [E(Pw — pn)gh®) + () — Pc] h(t)
(24)

NON-DIMENSIONALISATION OF THE GOVERNING
EQUATIONS

To obtain a non-dimensional version of each of the govern-
ing equations (22), defining partial flow over the fault plane,
and (24), defining complete flow over the fault plane, non-
dimensional variables t, s, H(t) are defined as

t Z—20 h
= —, = , H=— 25
4 T s ho hg (25)
the non-dimensional function F(t) is defined by
F = ;. (26)
Pwgho
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and the following non-dimensional parameters are intro-
duced:

* Dc " Pd KiTpygho
P, = , Pg=———, = —_—
Pw&ho Pwgho wAd

where p* is the non-dimensional critical pressure and pj
is the non-dimensional peak value of the pressure pulse
function.

As a result of this non-dimensionalisation, the flow char-
acteristics can be summarised as follows:
If Hyoy = ﬁ;‘}g‘ denotes the non-dimensional initial hydro-
carbon column height which can be supported by the fault
rock, equation (5) requires that

B @7

1 < Hpax = (28)

1- &
Pw
and, thus, the following restriction may be imposed upon
the value of the parameter p:
prz1-2 29)
Pw
(i) Partial flow over the fault plane:
The value of the non-dimensional pressure pulse function
F (1) satisfies :

Pt - (1 - ﬁ) H@) <F@ <p:  (30)
Pw

and flow occurs over a limited range of non-dimensional

depths 0 < s < s.(t), where s.(7) is the critical non-

dimensional depth at which flow stops and is defined by

*_F
se(v) = H(x) — 517&(3 @31)
Pw

The equation governing the height of the hydrocarbon
column when partial flow is occurring is given by

H 2
%(z)=_——ﬂ—— [(1—££)H+F—p:]
2 (1 -~ gg) pw
(32)
It is also clear from equations (30)—(32) that if partial flow

is achieved without progressing to complete flow through
“the period of the pulse, i.e.

Pt — <1 - ;’—”) H(t) < p} < p’ (33)

w

then the non-dimensional height of the hydrocarbon col-
umn must approach a limiting value

pi—Dpj
H— = (34)

for any value of the parameter 8, i.e. for any period of pulse,
and for any form of the function F(t). This result shows
that the hydrocarbon column can never be exhausted if the
maximum of the pressure pulse function has a magnitude
less than the critical pressure. ’



(ii) Complete flow over the fault plane:
The value of the non-dimensional pressure pulse function
F (1) satisfies

F(r) = p} (35)

and flow occurs over the complete range of non-
dimensional depths 0 < s < H(r). The equation
governing the height of the hydrocarbon column when
complete flow is occurring is given by

dH 1
E‘(f) =—8 [5 (1 -

SOLUTION OF THE GOVERNING EQUATIONS

ﬂ)H+F—p:]H (36)
Puw

For a given pressure pulse function, the problem reduces to
the solution of at least one first-order differential equation.
At times when partial flow is occurring, the height of the
hydrocarbon column is governed by equation (32) and, at
times when complete flow over the fault plane occurs, the
governing evolution is given by equation (36). The solution
of these nonlinear differential equations is now discussed
separately, beginning with the equation governing complete
flow:

(i) Equation (36) governing complete flow
The non-dimensional height of the hydrocarbon column
when complete flow is occurring is governed by the

Bernoulli equation
£ (1 - )] H? (37)
2 Pw

where prime denotes differentiation with respect to time 7.
Equation (37) can be reduced to a linear equation by the
change of variable r = % The function r(7) then satisfies
Oh
/18t - Fnr =5 (1 —)
‘ Pw
The general solution of this linear equation can be obtained
readily as

r(t) = e~BPiT-[" F(®)d?)

T w1 1T gy g=
X |:C + E (1 - p_"‘)/ eﬂ(l’cf -f F(r)dr) d‘t’]
2 Pw

(39

for some constant of integration C. In general, the govern-
ing equation (37) for complete flow may be valid over some
non-dimensional time interval 7{ < r < 77 with an ini-
tial non-dimensional hydrocarbon column height specified,
namely H(t{) = Hg. Applying this initial condition, the
following expression for H(t) can be recovered:

—[B(p; — F())IH = [

(38)

H(r) = Pra2] 1 eF )
HE

0

T -1
+ B (1 - ﬂ)f ef(”dr’:l
2 Pw /) Jf

(40)
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where the function
F(r) = ,3<p;‘r — /r F(T) df) 41)

has been introduced. The value of H at the end of the non-
dimensional time interval, 7, may then be predmted using
equation (40).

(ii) Equation (32) governing partial flow

The non-dimensional height of the hydrocarbon column
when partial flow is occurring is governed by equation (32).
In general, this equation cannot be solved by elementary
methods. However, if a particular solution H; (t) is known
then the general solution has the form

Hy(r) + H(z)

H(t) = (42)

where H (7) is the general solution of the Bernoulli equa+

tion
H - [p: — F(v) - ( - p—) Hl(f)]

- [_E (1 p”)] 02 (43)
2 Pw

This Bernoulli equation can be solved using the change of
variable which was applied to equation (37) above. The
governing equation (32) for partial flow may be valid over
some non-dimensional time interval tf < v < 7 with
an initial hydrocarbon column height specified, namely
H(zP) = HP. Thus, the required particular solution of
the Bernoulli equation (43) follows by applying the initial
condition

AHGP) = H - Hiz]) (44)
and is given explicitly as
~ 7 1 =P
H() = ef(’)[-—eﬂ’l)
HY — Hi(z})

r . -1
+ B (1 - p—”)/ eﬂf)dz’] 45)
2 Pw /) Jf
where

f(f)=ﬁ[172ff—/ (F(f)+(1—p—)H1(T)) ]

(46)

THE EFFECTIVE IMPULSE IMPARTED TO THE FLUID

The variation of the decrease in non-dimensional hydrocar-
bon column height with the non-dimensional parameters
B, p; and p} can be characterised from an alternative
perspective by introducing the quantities

sc(7)
Ip=/ / Pefrdsdt )
T, Jo
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for the total time interval 7, when partial flow is occurring

and ;
H(r)
Ic=f/ peﬁcdsdt (48)
7. JO

for the total time interval 7, when complete flow is occur-
ring. (I + Ip) is considered to be the effective impulse
imparted to the hydrocarbon over the duration of the pres-
sure pulse so as to cause migration over the fault plane. The
notation p. is used to indicate integration of the effective
pressure difference at any non-dimensional depth s and
time T only when flow is occurring. This effective pressure
difference is defined to be

1= 21

Peﬁ"=F(T)+< p )(H(t)—S)—pZ (49)

w

where the second term is the buoyancy pressure at depth
s and time 7 due to the hydrocarbon column of height
(H(t) — 5) which lies below the depth s. Direct integration
of equations (47) and (48) with respect to s leads to

(- 2) [, 2
IL,==-({1-— ssdt 50)
d 2( Pw ’I;,c (

1
Ic=f [-(1—51)H+F—»»p;]Hdr 51)
L2 Pw

The governing ordinary differential equations (32) and
(36) for partial and complete flow, respectively, can be
used to directly relate these effective impulses to losses in
hydrocarbon column height as follows:

and

1 1
I = —gH@y, L=-ZHOL (2

where the notation [H (7)]7 denotes the total change in
H(t) over the time period 7. Thus, the total effective
impulse imparted to the hydrocarbon over the period 7 C
[0, 1] for which flow over the fault plane takes place is

I=Ip+Ic=%(1_H(l)) (53)

and [ is directly proportional to the decrease in hydrocar-
bon column height due to the pressure pulse.

Application to specific pressure pulse
functions

In this section, the general discussion presented earlier is
applied to some particular functions defining the pressure
pulse. In the first example, the non-dimensional pressure
pulse is assumed to take the form of a discontinuous step
function with value p} and the governing equations can
be solved analytically. In the second example, the non-
dimensional pressure pulse reflects a linear increase from
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Fig. 4. The flow regimes associated with different values of the
non-dimensional step pressure pulse function.

zero to the peak pj; at the non-dimensional time T = 7,
followed by a linear decrease down to zero again at the non-
dimensional time T = 1, the non-dimensional period of the
pulse. The majority of the first-order governing equations
in this section are solved analytically before a transfer to
numerical techniques is suggested for applications to more
complex pressure pulse functions. The analytical results
presented in this section will be displayed graphically for
some appropriate ranges of the non-dimensional parame-
ters B, p; and p}.

EXAMPLE: the step pressure pulse function

At the reference time T = 0, the non-dimensional pressure
pulse function describes an instantaneous increase by an
amount p} and this value persists until 7 = 1, as shown in
Fig. 4. The value of p} critically determines whether flow
occurs and, if it does, whether flow occurs over the whole
depth of the hydrocarbon reservoir or only partially over the
reservoir. The three different flow regimes are depicted in
Fig. 4 by three suitable step functions with non-dimensional
1% 2% 3% .
pressure values p; , p; and p; described as follows:

(i) No flow:

The non-dimensional pressure pulse function is a step func-
tion with value p}i*‘ and the associated non-dimensional
pressure increase is insufficient to cause flow at the top of
the reservoir. Hence

P < pt - (1 - ﬁ”—) (54)
Pw

using equation (12).

(ii) Partial flow over the fault plane:

At time T = 0, a non-dimensional pressure pulse step
function with value P¢21* initiates flow over the fault plane.
However, the magnitude of the pulse function is insufficient
to cause flow at all depths over the height of the hydrocar-
bon column and flow instantaneously begins over only a
limited range of non-dimensional depths 0 < s < s.(7),




where s.(7) is defined in equation (31). Hence,

pr - (1 - £’i) <p¥ <p (55)
Pw
and the largest non-dimensional depth at which flow occurs

at non-dimensional time 7 is

*
Pt — p3

— Lr

(1-2)
Following the analysis presented earlier, the non-
dimensional time tlp becomes rlp = 0. The equation
governing the height of the hydrocarbon column at

non-dimensional time 7 is given by

——— (1= =) H+pF - p| 7
2 (1 - gi) Pw

$c(t) = H(z) — (56)

H = -

subject to the initial condition
HxPy=H©0) =1 (58)

The evolution of the non-dimensional hydrocarbon column
height H(z) can be obtained by a simple integration in
this case. However, this example is used to illustrate the
general approach given earlier. The differential equation
(57) possesses the particular solution

Pt~ by
Hi(7) = —5~ (59)
Pw

and hence the general solution (42) can be derived by solv-
ing the Bernoulli equation (43) for H(t), given explicitly
in this example by the differential equation

s (1 - p—”) a2 (60)
2 Pw
Solving equation (60) subject to the initial condition
- pi - p3
HO =1-H(0)=1- _;:&_d 61)
Pw

either directly or by substitution into the particular solution
(45), gives

H(r) =

-1
8 1
|24
(1—2&) [2 1— £ — pry p2*
(62)

and therefore the variation in non-dimensional height of the
hydrocarbon column evolves according to

1
(1-2)

H(r) =

Pulsed migration of hydrocarbons

At time 7, the largest non-dimensional depth at which flow
occurs is given by equation (56) as

-1
1 B 1
se(t) = 7—— | 57+
c (1—5—;){2 1—%—p:+pg*]
(64)

The influence of the pressure pulse ceases at T = 1, the
final non-dimensional height of the hydrocarbon column at
this time being

-1
B 1 ] . o
X -+ + p. — P3 (65)
[[2 12 — pt+py” ‘

Equation (64) also predicts the largest non-dimensional
depth at which hydrocarbon migrates across the fault just
before the pressure pulse ceases. It becomes clear from
the value of sc(1) that flow can stop before the non-
dimensional pressure pulse period T = 1 only in the
limiting case B — o0, corresponding to 7 — oo. Thus,
for a pulse of finite period, partial flow over the fault plane
continues throughout the period of the puise. Furthermore,
the hydrocarbon column can never be exhausted since the
limiting, infinite period, case B - oo, requires that H (1)
also approaches a limiting value:

H(l) =

p:— Py
_ bPn
(1-2)
as stated for the general non-dimensional pressure pulse
function F(t) in equation (34).
From condition (55), it can be shown that

0<p§*—pj+(1—Z—Z)<(1—£—Z) (67)

H() > asp—>o00, T—> o0 (66)

so that the term S (pg* —-pi+ (1 - %)) 7 can be con-

sidered to be small provided that 8 < 1. In this case,
the solution (63)can be expanded to give the approximate
linear evolution for H(t) as

iy (e (- 2)

HD~1-3 Ps —p.t+H|l——) )<
g s

(68)

(iii) Complete flow over the fault plane:

At non-dimensional time T = 0 a non-dimensional pressure
pulse step function with value p?i* initiates flow over
the fault plane. The magnitude of the pulse function is
sufficient to cause flow at all depths over the height of the
hydrocarbon column. Hence,

3 = p (69)
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and, following the analysis earlier, 7; = 0. The equation
governing the height of the hydrocarbon column at time
is given by

H + B — pHIH = [—g (1 - ﬁ”—)] H? (10

Pw

subject to the initial condition
H([)=H0) =1 71)

Solving the differential equation (70) either directly or by
substitution into the particular solution (40), the height of
the hydrocarbon column evolves according to

1 1_& 3% _ %
H(r) = 1+§ —'-:,;T—ew—* ePPa —PO)T
pd = D¢

-1
| 2w (72)
2 (pﬁ* —p:

The influence of the pressure pulse ceases at T = 1, the
final height of the hydrocarbon column being defined by
equation (72). In the limiting case 8 — 00, corresponding
to T — o0, H(1) — 0. Thus, if the pressure pulse is
of sufficient magnitude to cause complete flow over the
fault plane, the hydrocarbon column could be exhausted in
the limiting, infinite period, case. This result is in contrast
to the situation when only partial flow-is present over the
fault plane; it was shown that the final non-dimensional
hydrocarbon column height approached a limiting value as
the period of the pulse was increased.

The evolution of the hydrocarbon column height can also
be investigated for the cases in which B( PZ* -pH KL
By expanding the expression (72) in powers of this small
parameter, it can be shown that

w1 o[- 1 (1-2)]:

Pw
+ OB — P (73)

Thus, if B (p?j* — p}) < 1, the evolution of H(r) is
approximately linear with non-dimensional time 7.

The solutions (63) and (72) must be continuous with
respect to the value of the step function when the step
function has the value p}. This can be confirmed, since as
ps* — p? in equation (63) for the evolution of H (7) under
partial flow conditions and as pg* — p? in equation (72)
for the evolution of H (t) under complete flow conditions,
both solutions approach the limiting function

-1
H(z) = [1 +B (1 - fﬁ) z] (74)
2 Pw

EXAMPLE: the linear pressure pulse function

Over the time interval 0 < © < 1, the non-dimensional
pressure pulse function describes a linear increase in non-
dimensional pressure, the peak value of pressure p; then
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being achieved at T = 7. A linear decrease in the pressure

pulse function then follows until 7 = 1 when the pressure

returns to ambient, as shown in Fig. 5. The three different

flow regimes are depicted in Fig. 5 by three suitable linear

functions having non-dimensional peak pressure values
* 2* 3* .

p; » p; and p; described as follows:

(i) No flow:
The pressure pulse function is insufficient to cause flow at
the top of the reservoir. Hence, condition (54) is satisfied.

(ii) Partial flow over the fault plane:
At non-dimensional time 7 = O the non-dimensional
pressure pulse function

pfi*-;—, for0<t <1
F(r) = 1" (15)
2177
)2 , forry, <t <1
1 - tp

with peak value pfi* initiates a pressure increase within
the hydrocarbon column. The initial pressure increase is
insufficient to start flow over the fault plane until the time
rlp is reached. Beyond the time rlp partial flow exists
over the fault plane but the magnitude of the peak of the
non-dimensional pressure pulse function is insufficient to
cause flow at all depths over the height of the hydrocar-
bon column. Thus, the window over which hydrocarbon
migrates across the fault plane decreases until at the time
1:2" flow ceases. Hence, condition (55) is satisfied, partial
flow begins at the non-dimensional time

p Tp * Ph )]
Ty = —{1-— 76)
1 P?j* [pc ( Pw (

and ceases at the non-dimensional time 1:2” , defined implic-
itly by the relation

) |
=p- (1 - ”—") HED) D
p P

w
The largest depth at which flow occurs at any non-

dimensional time 7¥ <t <1tJ is

pt—-pyE
c
H() — 1_&r” fortf <t <7,
_ Pw
se(7) = * __ 2% 1-1
Pc ~ Pa 1=, b4
H(r)—T—ﬂL—— forz, <7 <71,
Pw

(78)

Following the approach earlier, the differential equation
(32) applied over the interval rlp < T < 1) possesses the
particular solution

1 * 2p¢21* 2% T
— | Pe t+ \/ ———Pi — 79
VB T

Hyi(zr) = 1
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Fig. 5. The flow regimes associated with different values of the linear non-dzmenswnal pressure pulse functzon (a) No flow; (b) Partial

flow over the fault plane; (c) Complete flow over the fault plane.

and hence the general solution (42) can be derived by
solving the Bernoulli equation (43) for H(t) subject to the
initial condition

1 2p3"
ﬂfp

H (g

~ (80)

since H(tf) = 1 and 7 denotes the non-dimensional time
at which the magnitude of the non-dimensional pressure
pulse is sufficient to initiate flow at the top of the reservoir.
From the particular solution (45),

~ 2 207
H(t) = -
= -1
%f(m %+ (1-55))
x|1+e 81

and therefore the variation in non-dimensional height of the
hydrocarbon column evolves according to

H(t) = L
(t) _/;ﬂw_ D, d T,
L
- ) =1
(2% T gk (1. Ph)
eI PEPY PR A
Btp

(82)

while the largest non-dimensional depth (78) at which flow
occurs over the fault plane is given explicitly as

1 2p‘2,*
sc(t) = 1-& Bt,

-1
TE 5 dort(1-2)

x{1-211+e¢

(83)
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for rlp <'t < 1,.If B K 1, it can be shown that the non-
dimensional critical depth, s.(7), progresses approximately
linearly with non-dimensional time 7 according to

2* 1
P:—p; 7
se(2) N 1= (84)
Pw

over the interval rlp < © < 1, and reaches the maximum
value

pi—py
se(tp) 1 — %_—B_Td (85)
Pw

at the time 7.

The evolution of the hydrocarbon column over the non-
dimensional time interval 7, < 7 < r{ can be derived from
the particular solution

1 * . 2p¢21* 2*1—‘[
-2 |7 W pa-zg,) P 1g,

(86)

Hy(7) =

to the differential equation (32). The general solution (42)
then follows by solving the Bernoulli equation (43) for
H (1) subject to the initial condition

1 * 4 2¢2i* 2%
o | P W=~ D4
-2 | 7T Ba—1,)

@7

I:I(rp) = Hp, —

where Hy, denotes the evaluation of the hydrocarbon col-

umn height at the end of the time interval 77 < 7 < 7,
according to equation (82) and is given explicitly as

1 /2p¢21* 9%
H‘L’p = ﬁ p: + ﬂ‘fp - pd

-1

2+ 8 (3" -re+(1-5))
2p; Py
-2 1+e (88)

ﬂfp

The variation in the non-dimensional height, H(t), of
the hydrocarbon column over the non-dimensional time
interval 7, < 7 < tf can be shown to evolve according
to

2p£21*
B (1 - Tp)

1 x1—1
H —_ * __ 2
(T) 1_;))_1;; Pc pdl—‘tp

+

y Qcosf —I'sinb
2tpe77 + % (1- e—7)2 + Qsinf + I'cosb
(89)
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where

Q=T /1-1,(1—e%),

T=1,(1+e ) -1 —e7")?

205 B
() =(t — ,
@ =@F-1p) -1,
287
y= |5 (pﬁ* - pt+ (1 - "—”)) (90)

The largest non-dimensional depth (78) at which flow
occurs on the fault plane over the non-dimensional time
interval 7, <7 < 1:2” can now be evaluated as

1 2p%”
() = T2 1Pd
~ ow B — 'Cp)
y Qcosd —TI'sinf
21pe~" + (1 — e7¥)2 + Qsin6 + I'cosd

on

using expression (89) for H (). The value of the final time
at which flow takes place, t{’ , is determined by solving
equations (77) and (89) to give

1—-1 WA
sz =Tp + sz; tan 1 (F) (92)
d

Thus, the final non-dimensional height of the hydrocarbon
column is

1
H(#)) = o
Pw
2*
* D ~ Q
X P:—PZ +‘/—-————-———2’3(‘1d_tp)tan I(F)

(93)

In the limiting case 8 — o0, corresponding to the infinite
period case T — oo, the final non-dimensional hydrocar-
bon column height, H (tf ) approaches the limiting value
given in equation (34) and hence it is not possible to exhaust
the reservoir within a finite time. If 8 « 1, it can be
shown that the non-dimensional critical depth, s.(t), de-
creases approximately linearly with non-dimensional time
7 according to

2% f 1—
- ()
— P
1 Pw

sc(ty~1— 94)

over the interval 7, < 7 < 1:2” , from the maximum value
given in equation (85) to zero at the time

1 —
it pz:p (p: B (1 - %)) ©)
’ d




For the case of partial flow, the effective impulse im-
parted to the hydrocarbon, as defined earlier, is given by

1 Ph TZP 2
I, ==-{1-12
P72 ( pw) /L:]p selr)"dr 6)

This impulse is directly proportional to the total decrease in
hydrocarbon column height over the non-dimensional time
interval [z, '] according to the relationship (52), given
explicitly as

| | .
I, = B(1 — H(td)) )

If 8 « 1 then 7’ may be approximated by equation (95),
the evolution of s.(t) over rlp < 1 =< 7p by the linear
function (84) and the evolution of s.(t) over T, ST < ‘{;
by the linear function (94). The time interval over which
flow takes place is then

1T h
z{—z{’m-T[p:—(l—p—)] (98)
Pd pw
the effective impulse imparted to the fluid is

I~ 1 2% * Ph 3
P~ s | P} —pc+(1—— (99)
6 (1 — z—z) P5 Pw
and the decrease in hydrocarbon column height due to the
linear pressure pulse function can be approximated using
equation (97). This approximate measure of hydrocarbon
migration can also be calculated by applying a 8 <« 1
expansion to expression (93) for H (rzp ). It is clear that, for
a constant value of 8, the expression (99) for I, and, hence,
the amount of hydrocarbon migration, has its minimum
value, namely O, for a given value of p* when pfi* =

pr— (1 - %); this corresponds to the minimum peak of
the pressure pulse function which will induce flow. Thus,
as pg* increases from p} - (1 — %) to p¥, a monotonic
increase in hydrocarbon migration results. If pﬁ* takes

the maximum value allowed by partial flow, the effective
impulse is inversely proportional to p} = ps*:

I~ 1 | _ P 2
P~6* -
Pc Pw

(iii) Complete flow over the fault plane:

At non-dimensional time T = 0 a non-dimensional pressure
pulse function of the form (75) with peak value pz* satisfy-
ing condition (69) (see Fig. 5) initiates a pressure increase
within the hydrocarbon column. At the time rf’ , defined by

T P
el (- 2)

partial flow begins over the fault plane over a window
0 < s < sc(1), where the critical depth is -

(100)

(101)

pi-py £

c

$o(r) = H(v) = ———5= (102)
Pw

Pulsed migration of hydrocarbons

and continues until the critical depth and non-dimensional
hydrocarbon column height coincide at the non-
dimensional time

T = %tp (103)
Pa

Flow takes place over the whole fault plane at non-
dimensional times beyond 77 as the pressure pulse function
increases to a maximum at t,, and subsequently decreases.
This flow regime continues until the magnitude of the
non-dimensional pressure pulse function falls to the value
p; at the non-dimensional time

*
g=1-Loa-1)
Py

(104)

Flow now ceases at the base of the hydrocarbon column
and partial flow takes place over the fault plane at non-
dimensional depths less than

pr — 3* ll—r

C —

se(®) = H@) ~ ——5 (105)
Pw

until the migration of hydrocarbon across the fault plane
stops at the non-dimensional time tzp , defined implicitly by
the relation

1- ‘L'p h
pZ*l 2= pr— (1 - f—) H(z}) (106)

Following the approach presented and illustrated earlier,
the four differential equations governing the evolution of
H (1) over the time intervals tlp <7< tf, rf <1 = 1p,
Tp<t=<rtandty <1< tzp can be solved analytically
subject to the initial value H (rlp ) = 1 and continuity of
H(7) at the non-dimensional times 7, 7, and 75. It can
be shown that the non-dimensional hydrocarbon column
height has the following explicit solution for tlp ST L1

1 * T
H — * 3% b
(t) 1— _% DPc D4 T
B T Tk -1
e TEW st 50)
= 1-2|1+¢ '
Btp

(107)
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fortf <t <rtf,

o (o gy
1B 7 Xl
H@) =T, 557 ¢
Pw Pa
T -1 !
T (-2)
X 1-2t1+e
-1
1 3 3 1 *
+_(t§*) erf \/?((Pd ) ) P;*_[p
2 pd 2 Tp !

(108)

forty <t <tp. Forrp <7 < 75, explicit expressions
for H(t) can also be derived as solutions of the systems:
(i) the ordinary differential equation (36) over the non-
dimensional time interval 7, < T < 75 subject to the initial
condition H = H(tp), defined us1ng equation (108); and
(ii) equation (32) over 75 < T < r2 subject to the initial
condition H = H (t5), defined using the solution (i) for H
over the previous time interval. However, for this example,
it is preferable to use a numerical procedure for the solution
of these two systems which is applicable to any suitable
pressure pulse function F (7). '

An explicit expression for the non-dimensional critical
depth, 5.(7), over the time interval tlp <7< tf follows
from equations (102) and (107) and the approximate be-
haviour (84) for 8 « 1 is valid.

The value of the final time at which flow takes place, ‘K; s
and the final non-dimensional height of the hydrocarbon
column H (7; Py will be presented for partlcular examples of
the non- d1mens1ona1 parameters B, P 7 * and pr. An expla-
nation of these results in terms of the total effective impulse
imparted to the hydrocarbon $0.as to cause mlgratlon will
also be given.

EXAMPLE: a more complex pressure pulse function

Over the time interval 0 < T < 7p, the non-dimensional
pressure pulse function increases from zero in direct pro-
portion to %, where @ > 0, the peak value of pressure
p}; then being achieved at T = 7. An exponential decay
in the pressure pulse function then follows until T = 1
when the pressure instantaneously returns to ambient, as
shown in Fig. 6. The three different possible flow regimes
can be described in a similar manner to the example of the
linear pressure pulse function deplcted in F1g 5 with non-
dimensional peak pressure values P2 g * and p> ¥ correspond-
ing to the partial flow and complete flow cases.

(i) Partial flow over the fault plane:
At non-dimensional time 7 =
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0 the non-dimensional

o

Increasing

Pressure Pulse Function, F(1)

Non-Dimensional Time, T

Fig. 6. A more complex pressure pulse function which increases
as t®, a > 0, before decaying exponentially. The effect on the
evolution of the function of varying the parameters o and & while
keeping the peak pressure constant are indicated.

pressure pulse function

TTEAY
ri \—1, for0<7 <1
Tp
* —E(rt—7p)
pYe ,

F(r) = (109)

fort, <t=<1

with peak value pﬁ* initiates a pressure increase within
the hydrocarbon column. The value of the parameter & is
assumed to be such that the pressure has almost returned
to ambient at T = 1, the period of the pulse. Thus, if
F(1) < ﬁ P d*, the parameter & would be constrained
to be greater than 5= 3 In 10

The initial pressure increase causes flow over the fault
plane at the time

1
AR
p pc (1 Pw)

T =Tp p2* (110)
d

Condition (55) is satisfied and partial flow continues until
the non-dimensional time ‘L’2 ,- defined implicitly by the
relation

—£ah—p)
pie * p=ﬁ—(l )H@)
Pw

assuming that the parameter £ has been chosen to be
sufficiently large. The largest depth at which ﬂow occurs
at any non-dimensional time rl <t < ‘L'2 is defined
analogously to the linear pulse function in equation (78).
Following the approach given earlier, a solution of the
differential equation (32) applied separately over the inter-
vals 1:{’ <t <tadrt, <71 < r2p can be sought.
However, it is preferable to use numerical techniques to
derive the evolution of the non-dimensional hydrocarbon
height and the results of this approach are presented later.

(111)



(ii) Complete flow over the fault plane:

At non-dimensional time T = 0 a non-dimensional pres-
sure pulse function of the form (109) with peak value
pd satisfying condition (69) initiates a pressure increase
within the hydrocarbon column. At the time 'L'l ,-defined
similarly to expression (110), partial flow begins over the
fault plane and continues until the critical depth and non-
dimensional hydrocarbon column height coincide at the
non-dimensional time

1
x \ o
c __ pc
= 3% Tp
Pg

Flow takes place over the whole fault plane at non-
dimensional times beyond 7 as the pressure pulse function
increases to a maximum at 7, and subsequently decays
exponentially. At the non-dimensional time

3 *
! —In Pa_
£ p¢

the magnitude of the non-dimensional pressure pulse func-
tion falls to the value p¥ and partial flow is re-established.
The migration of hydrocarbon across the fault plane stops
at the non-dimensional time 1:21’ , defined implicitly by a
relation similar to expression (111).

Rather than solving the four differential equations gov-
erning the evolution of H(t) over the time interval rf’ <
T < 1:2 , we again utilise a numerical procedure and discuss
the solution in terms of the non-dimensional parameters B,
P> ! * and py in the following section.

(112)

% =1,+ (113)

Numerical solutions and results

The analysis developed to model hydrocarbon migration
across inactive faults was applied to three examples of
possible pressure pulse functions. A full analytical inves-
tigation for the step and linear pressure pulse functions was
made, whilst for the more complex function introduced the
governing equations must be solved numerically. Thus, we
first develop a numerical approach for solving the system
of ordinary differential equations governing either partial
flow, or complete flow, over the fault plane subject to a
specified initial hydrocarbon column height.

NUMERICAL SOLUTIONS OF THE GOVERNING
EQUATIONS

The ordinary differential equation and boundary conditions
describing each system arising from the analysis of partial
or complete flow over the fault plane, as described earlier,
constitute simple two-point boundary-value problems. The
NAG routine DO2HBF is an algorithm for solving such
two-point boundary-value problems in which the unknown
parameters may be the boundary values and/or the range
of integration. The estimated values of the parameters are

Pulsed migration of hydrocarbons

corrected by a form of Newton iteration until convergence
has been achieved to within a specified tolerance.

For the problems defined earlier, the unknown param-
eter will be either the final non-dimensional hydrocarbon
column height at the end of the time interval or the time
at which flow ceases, depending on which one of the
following two situations is occurring:

(i) If the end of the time interval over which the integration
is being carried out is known, i.e. the upper boundary is at
Tf, Tp Or 73, then the final non-dimensional hydrocarbon
column height, i.e. H (z), H(tp) or H(zs), will be the
unknown parameter;

(ii) If the end of the time interval is unknown, i.e. the upper
boundary is at t; , then the non-dimensional time at which
flow ceases, t2p , is the unknown parameter.

TYPICAL VALUES AND RANGES FOR FLOW PARAMETERS

The dimensional parameters governing the migration of
hydrocarbon in the problems have specific values, or ranges
of values, which determine the characteristics of the flow
regime. Typical values of these governing dimensional
parameters are listed prior to their interpretation in terms
of ranges of values of the non-dimensional flow parameters

B, pj; and pj.

Dimensional flow parameters

The dimensional parameters governing the flow character-
istics for hydrocarbon migration across a sealed fault plane
have the following typical values:
Density of water, p,, = 1035 kgm"3;
Density of hydrocarbon, o, = 795 kgm™3;
Acceleration due to gravity g = 9.81 ms™2;
Molecular viscosity, 4 = 2—4 cps = 2 x 1073 Nsm~2
4 %1073 Nsm™2;
Horizontal surface area of reservoir, A = 10*-107 m?;
Width of reservoir adjacent to fault, / = 100-1000 m;
Initial height of hydrocarbon column, g = 10-200 m;
Thickness of sealed fault plane, d = 1 mm-10 c¢m;
Period of pressure pulse, T = 1 min—2 weeks
= 60-1.2096 x 106 s;
Permeability of fault rock, K = 0.001-0.1 mD; .
Critical entry pressure, p. = 15-150 psi
~ 10°-10° Nm~2,
where 1 psi = 6.89 x 103 Nm™2, 1 Darcy = 9.869 x
10713 m? and the range of thicknesses of the sealed fault
plane reflects the fact that we are. considering only an
individual fault plane rather than a fault zone comprising
a number of fault planes. The restriction (5) requires that
the initial height of the hydrocarbon column ho satisfies the
inequality: ,

e 4247 x107%p,

(114)
Pr)8

ho <
(pw ~

- The upper bound (114) on the initial hydrocarbon column

height corresponds to typical maximum initial hydrocarbon
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columns of up to Amax = 42 (p. ~ 10° Nm~2) - 420 m
(pe ~ 10° Nm~2) that can be supported by fault rocks
whose permeabilities lie within the range K = 0.001 -
0.1 mD, respectively, as specified in the above parameter
list.

Given an appropriate value for the critical entry pressure,
condition (8) can be used to specify the minimum pulse
amplitude, py, required to induce flow:

(ow — pPr)gho = pc — 2354.4h¢

Thus, a critical entry pressure of p. = 10° Nm~2 and an
initial column height 29 = 200 m, a pressure pulse with
peak amplitude p; > 76.8 psi = 5.3 x 10° Nm~2 is
required for the migration of hydrocarbon across the fault
plane. If the peak of the pressure pulse function satisfies
53 x 10° Nm™? < p; < 10% Nm~2, migration across
the fault plane will take place but only over a pOl'thIl of
the hydrocarbon column, whilst, if pg > p. = 10% Nm—2
a period of complete flow will be achieved at some time
within the duration of the pulse.

Pd > pc— 115)

Non-dimensional flow parameters

The above values and ranges of dimensional parameters can
be used to determine the following approximate range of
values for the parameter 8:

1.5x 1072 <8 <03 (116)

The upper and lower bounds of the interval (116) corre-
spond either to choosing values of the dimensional pa-
rameters K, hg and T at the upper and lower end of
the ranges specified or, less 51gn1ﬁcant1y, choosing values
of the dimensional parameters 1 , 4 and d at the lower
and upper end of their ranges, respectively. Increases in
the value of the parameter 8, whilst keeping p} and p}
constant, correspond to increases in the level of the non-
dimensional volume flowing across the fault plane.

Given values of the hydrocarbon and water densities, oy
and py, respectively, the constraint (29), corresponding to
the upper limit (5) on the initial hydrocarbon column height
when in dimensional variables, requires that p} > 0.2319.

From typical values of the dimensional critical pressure
pc and the corresponding appropriate initial hydrocarbon
column heights ko satisfying the constraint (114), the
following range of values of the non-dimensional critical
pressure has been determined:

02319 < pl < 10 117)

where the upper bound arises from a typical minimum
hydrocarbon column height of 10 m. It should be noted
that the value of p} varies only according to the ratio
L so that for any hydrocarbon reservoir which is at its
11m1t.1ng maximum initial column height, always, p} =
0.2319. Furthermore, as p} is inversely proportional to kg,
it measures. the relative initial capacity of the reservoir in
comparison to the maximum capacity for a given fault rock
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critical entry pressure. Thus, larger values of p} correspond
to reservoirs under which the fault rock is subjected to
relatively smaller ambient pressure differences, i.e. hg is
much less than the maximum that could be held back by the
fault rock and, hence, these reservoirs are less susceptible
to hydrocarbon migration under the influence of a pressure
pulse with a given amplitude.

The conditions (54), (55) and (69), which define the
ranges of values of the parameter pj; corresponding to the
non-dimensional peak of the pressure pulse function for the
situations in which no flow, partial flow and complete flow,
respectively, exist over the fault plane, can be summarised
as follows:

No flow: 0 < p < p! — (1 - 2—") = p* 02319
w

Partial flow: p} — (1 - %) < p) < pi

w
or pf — 02319 < pj < p;

Complete flow: p; > p* (118)

FLOW MODEL RESULTS

This section will compare the predicted loss of non-
dimensional hydrocarbon column height (1 — H(t))
achieved for a range of values of the parameters 8, p}
and p} within the three models for the pressure pulse
function examined earlier. An additional set of parameters
governing the evolution of the pressure pulse function will
also be discussed. Thus, both the evolution and the final
loss of non-dimensional hydrocarbon column height will
be investigated as the parameter 7, for the linear function
and the parameters 7,, & and & for the complex function
are varied. To explain the variation in the migration of
hydrocarbon through the fault plane, some results from the
present section will be translated back into dimensional
quantities.

The predicted evolutions of the non-dimensional hydro-
carbon column height presented here will be based upon the
following sets of parameter values lying within the ranges
(116) and (117) and satisfying conditions (118):

B =03, pr=2x1075, (119)
non-dimensional critical entry pressures:
1 =025 pt=4, p=y9, (120)
and non-dimensional peak pressures:
pill =015 pi*' =385, p;;31 = 8.85,
p;“ =20, p?=60, p;*=120 (21

where the notation p*ij denotes the peak pressure giving
partial flow for j = 1 and complete flow for Jj = 2 when
the critical entry pressure is p}’.
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(1) Analytical solution with p} = p2! = 0. 25, pi =pit =015
(2) Analytical solution with p* = p*’ =4, p" =il =385
(3) Analytical:solittion With p? = p2 == 9, p3* = p¥t= 8:85'
Approximate linddr solution; pjir gﬁ i=.0i1

Approximate linear lytion. g3 P& =015
(,6—031na,11case:§' R

(1) Analytical solution with 7% = ,;;1 = 0.25, A =pm=
(2) Analytical solution with p? = pc =4, 3 2=py a6
(3) Ana.lytlcal solut19n with p} = P =9, pd =p?% =12

(8 =0.31n all cases)

1—H(r) (x10-)

(1) Analytical solution ‘with p? = pt¥ = 0.25-, pg =gyt =
(2) Analytical solution with p} = p2? = 4, p3* = p;?* = 6
(3) Analytical solution with p} = p23 = 9, p§ 2 py¥ =12
Approximate linsar solution for case (1) parametars
Approximate linear solution for case (22 Jarameters
Approximate linear solution for case ("3) pa.ra,meters
(8= 2 x 10~ ini all cases)

o.o . 1 I ! I 1 I 1 l I

0.0 0.2 0.4 0.6 0.8
T

Fig. 7. The evolution of the decrease in non-dimensional hydrocarbon column hezght a- H (t)), with %zmenswnal *tzme, T, for the

step pressure pulse function at a variety of sets-of flow parameters

R
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Example: the step pressure pulse function

(i) Partial flow over the fault plane:

Figure 7(a) shows the evolution of the decrease in non-
dimensional hydrocarbon column height, (1 — H(t)), when
B = pi for the three pairings of parameters p}; and pj
which produce only partial flow over the fault plane for a
step pressure pulse function. The results have been plotted
using the analytical solution (63) for H(r) from which it
is clear that at constant values of B the evolution of H
is only dependent upon the difference (p} — pg*). For
graph (1) in Fig. 7(a) we have (p} — pﬁ*) = 0.1 whilst
for graphs (2) and (3) (p} — pg*) = 0.15 and thus if
the difference (p} — pﬁ*) remains constant the evolution
of H(t) is unchanged. The graphs also suggest that an
increase in (p} — pg*) has the effect of decreasing hy-
drocarbon migration, as expected physically. Furthermore,

as the term B (pg* -pi+ (1 - ﬂ)) T is always small,

Pw
the approximate solution (68) for the step function pulse

can be used to explain the linearity of the evolution of
(1 — H) with 7. The approximate solutions (68) have been
plotted in Fig. 7(a) to confirm the close agreement with
the analytical solution (63) which improves as (p} — pfi*)
increases. It is also clear from equation (68) that, provided
this approximation is valid, the value of (1 — H(z)) varies

as the square of the difference ((1 - l’)’—i) - (pr - p?i*))
thus verifying that both the loss in hydrocarbon column
height (1 — H (7)) and the accuracy of the approximation
1- {)’—” .

The total loss in non-dimensional hydrocarbon column
height (1 — H(1)) for the corresponding cases in which
B = B2 is reduced by a factor of approximately 6.8 x
10~%. For cases in which 8 <« 1, and hence the term
B (pﬁ* -pr+ (1 - %)) is small, we can deduce an
approximation to (1 — H (1)) from equation (68), whereby
the loss in hydrocarbon column height is directly pro-
portional to 8. Furthermore, since the variation in 8 can
be considered to be inversely proportional to A, the total
decrease in hydrocarbon column height (1 — H (1)) varies
approximately as A~1, when all other dimensional parame-
ters are kept constant. Thus, the dimensional volume of hy-
drocarbon migration Akg(1 — H (1)) becomes independent
of the horizontal surface area of the reservoir if 8 < 1.

(68) increase as p2* — p¥ — (

(ii) Complete flow over the fault plane:

Figure 7(b) shows the evolution of the decrease in non-
dimensional hydrocarbon column height (1 — H(z)) when
B = pi for the three pairings of parameters pj and p}
defining complete flow for a step pressure pulse function.
The results presented in this figure using the analytical
solution (72) emphasise the large increases in hydrocarbon
migration compared with the situation of partial flow as we
increase the size of the step pressure pulse function beyond
p} to a value for which flow is achieved at all depths.
For instance, with p} = 4, the loss in non-dimensional
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Table 1. A comparison of the predicted, analytical solution for
the decrease in hydrocarbon column height (1 — H (1)) with the
‘B « 1 approximation valid for partial flow when 8 = 0.3.

pﬁ* p* B <« 1approximation 11— H(z})
0.15 0.25 3.298 x10~3 3.269 x1073
3.85 4.0 3.077 x10~3 3.075 x10~3
8.85 9.0 1.338 x107° 1.338 x107°

hydrocarbon column height (1 — H(1)) is 0.0043 for the
partial flow case p2* = 3.85 whilst this height loss is
0.4652 for the complete flow case pfi* = 6, an increase
of more than 10,000%. The approximate solution (73) is
clearly not valid in these examples as the evolutions are not
linear. Howeyver, as the difference ( P¢31* — p7) decreases the
linearity of the graphs does improve and the migration of
hydrocarbon is reduced.

The same set of parameters as used in Fig. 7(b) were
used in Fig. 7(c) for the case 8 = f. The approximate
solution (73) has been superimposed on the graphs in each
case and these two plots are graphically indistinguishable.
Thus, the evolution is linear with 7 and in direct proportion
to p3*—pr+1 (1 - /%)‘ The total loss in non-dimensional
hydrocarbon column height (1 — H(1)) as B is reduced
from B; to B, is reduced by a factor of approximately
1073, As for the partial flow case, if B < 1, approximately
(1 — H(1)) « B, from equation (73), and the dimensional
volume of hydrocarbon migration becomes independent of
the horizontal surface area of the reservoir.

Example: the linear pressure pulse function

In the majority of cases discussed for this example, and
unless otherwise stated, the peak of the linear pressure
pulse function is assumed to occur at the non-dimensional
time 7, = 0.5.

(i) Partial flow over the fault plane:

The evolution of the decrease in hydrocarbon column
height (1 — H(t)) for the sets of parameter values defined
by the partial flow cases (1)—(3) in Fig. 7(a) show a very
similar behaviour to the complete flow examples presented
in Fig. 8(a) and discussed below. These results are not

_ presented graphically, as the final hydrocarbon column

height losses for cases (2) and (3) are a factor of less than
0.01 of the height loss in case (1); instead the total increase
in (1 — H) due to these linear pressure pulse functions in
Table 1, when 8 = 0.3, are demonstrated. Furthermore, in
Table 1 the approximate increases in (1 — H), calculated
using expressions (97) and (99), are presented under the
assumption that 8 <« 1, which is a valid assumption for
the ranges of non-dimensional parameters used here. The
agreement between the 8 < 1 solution and the analytical
solution (93) is good for the cases presented.



The results for § = B, show very similar behaviour
to the B; case and migration of hydrocarbon is reduced
by a factor of approximately 6.7 x 10~® compared to
the corresponding 8 = pB; cases. This reduction factor
is of approximately the same magnitude as that observed
for partial flow due to a step pressure pulse function. A
comparison of the total decrease in hydrocarbon column
height (1 — H(1)) with the 8 « 1 approximations, as
presented for B = B; in Table 1, again confirms their
excellent agreement.

(ii) Complete flow over the fault plane:

The evolution of the loss in non-dimensional hydrocarbon
column height (1 — H (7)) for the three sets of parameter
values defined in Fig. 7(b) has been used in Fig. 8(a) to
demonstrate its behaviour under the influence of a variety
of linear pressure pulse functions which develop complete
flow over the fault plane. The times ‘[Zp at which flow ceases
are indicated for each of the graphs. The analytical solu-
tions (107) and (108) which define the function (1 — H (7))
over the time interval ¥ <t < 7, have been calculated in
each case and excellent agreement between the numerical
and analytical solutions was found. As the difference can-
not be discerned graphically, only the analytical results are
shown in Fig. 8(a).

The total loss in non-dimensional hydrocarbon column
height (1 — H(1)) as B is reduced from B;, shown in
Fig. 8(a), to By is reduced by a factor of approximately
1073, the same factor observed for the step pressure pulse
function.

As expected, the profile of (1 — H(t)) as time evolves
is quite different to the profiles shown in Fig. 7 for the
step pressure pulse function and the overall migration of
hydrocarbon is reduced in all cases. However, the important
difference between Figs. 7(b) and 8(a) is that for the step
pressure pulse there is a monotonic decrease in hydrocar-
bon migration as the difference (p?i* — p}) is reduced,
whilst for the linear pressure pulse the relationship between
( P?z* — p¥) and the amount of hydrocarbon which migrates
must be more complex. For the cases in which partial
flow only is achieved due to the linear pressure pulse,
some analysis was carried out and it was shown that the
increase in (1 — H(t)) is proportional to both the cube

of ( pﬁ* -pi+ (1 - %)) and inversely proportional to

pfi* itself, assuming that the 8 < 1 approximation is valid.
Clearly, a similar type of relationship must exist for the case
of complete flow but, without an explicit expression for the
evolution of H (), it is possible only to demonstrate the
variation with 7 of

/ Pefr ds

the area under this curve representing the evolution of the
effective impulse I,(t) which is proportional to the de-
crease in hydrocarbon column height (1 — H (t)). The limits
of the integral depend on whether complete flow or partial

(122)

Pulsed migration of hydrocarbons

flow is occurring at that time. Thus, Fig. 8(b) presents
the evolution of the function (122) with non-dimensional
time 7 for the three variations in the parameters pg* and p}
used in Fig. 8(a) when 8 = 0.3. The area under the curve
for case (1) is clearly the greatest, showing that, despite
( pg* — p}) being smaller than for the other two cases,
this set of parameter values gives the greatest hydrocarbon
migration in comparison to cases (2) and (3).

It is evident from Figs. 7(b) and 8(a) and a comparison
of the results in Fig. 7(a) with those in Table 1 that the
migration of hydrocarbon across the fault plane under the
same set of non-dimensional parameters depends crucially
on the model we choose for the profile of the pressure pulse
function. Not only does the evolution of the function (1 —
H (7)) change significantly and the amount of hydrocarbon
migration reduce when we transfer from the step function
to the linear function model, but also the dependence upon
the non-dimensional critical entry pressure and peak of the
pressure pulse function is quite different.

The variation of H(t) with 7. :
In Fig. 9 the non-dimensional parameters 8, p) and pJ
have been kept at the constant values 8 = B; = 0.3,
pr = pt' = 025and p3* = pi!! = 0.15 so that
partial flow takes place over the time interval [tlp , rf ] but
the time at which the linear pressure pulse function reaches
its peak value is varied within the range 7, € (0, 1). We
have taken 7, = 0.1, 0.3, 0.5, 0.7 and 0.9 and plotted
the associated profiles of (1 — H(z)) with 7. The time
intervals over which flow takes place, (tzp - tlp ), and the
loss in hydrocarbon column height (1 — H (t{’ )) over this
interval are graphically indistinguishable, although they are
not identical. If this value of 8 is sufficiently small for
the 8 « 1 approximations derived earlier to apply, then
equations (98) and (99) demonstrate that in such situations
both the time interval for flow and the overall loss of
hydrocarbon column height (1 — H (1)), respectively, will
both be independent of the value of the parameter 7.
Precisely the same observations were recorded for the
case of complete flow for which the peak of the linear
pressure pulse function was increased to pj* = p}lz = 2.
However, the result in this case could not be demonstrated
analytically as a numerical approach was employed in the
solution of the governing equations.

Example: the more complex pressure pulse function

Unless otherwise stated, in the cases discussed for this
example the peak of the complex pressure pulse function
occurs at the non-dimensional time 7, = 0.5 and the
parameters « = 0.4 and § = 10. Beyond t = 7, the
pressure pulse function decays exponentially according to
the parameter & and the value £ = 10 was necessary to
ensure that flow ceased before T = 1 for all combinations
of the non-dimensional flow parameter values given in
equations (119)—(121).
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Fig. 8. Particular sets of parameters defining complete flow over the fault plane for the linear pressure pulse function: (a) the evolution

of (1 — H(z)), and, (b) the evolution of the function f Pefrds with T.

The behaviour of the loss in non-dimensional hydrocar-
bon column height (1 — H (1)) as we vary the parameters S,
p¢ and pj according to the values in equations (119)-(121)
is very similar to the results obtained for the linear pressure
pulse function, in the cases of both partial and complete
flow. To illustrate this point, and also some typical profiles
of the evolution of (1 — H(t)) with 7, Fig. 10 gives the
results obtained for the complex pressure pulse function in
the cases of complete flow shown for the linear pressure
pulse function in Fig. 8(a).

The variation of H(t) with 75, « and &.
The brief discussion that follows determines the impact
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of independent variations in each of the non-dimensional
parameters 7, @ or § governing the profile of the complex
pressure pulse function on the migration of hydrocarbon
across the fault plane.

In Fig. 11(a) the non-dimensional ﬂoW parameters 8, p}
and p; have been kept at the constant values 8 = g1 = 0.3,

pr = pjz = 4 and pg* = p;;zz = 6 so that complete
flow takes place, and the parameter values « = 0.4 and
& = 10 are used to define the profile of F(r). The time
at which the complex pressure pulse function reaches its
peak value is now varied within the range 7, € (0, 1)

to produce different profiles of (1 — H(7)) with 7. As
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Numerical solution with 7, = 0.1
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Fig.9. The variation in hydrocarbon migration (1 — H(t)) and flow period with the time, Tp, at which the linear pressure pulse function

achieves its peak value for the non-dimensional parameters B = 0.3, p*

p’c"1 =0.25 and p?i* = p:i‘“ = 0.15.
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Fig. 10. The evolution of the decrease in non-dimensional hydrocarbon column height (1 — H(t)) with t for a complete flow situation

and the complex pressure pulse function.

predicted by equation (110), the value of tlp increases
linearly with 7,. The values of the time at which flow
ceases, sz , and the loss in hydrocarbon column height over
the interval [rlp , rf ], namely (1 — H (1:2” )), also increase
approximately linearly as we increase 7,. In all cases, the
flow beyond 7 T, is identical and, thus, there is an ap-
proximately linear dependence of (1 — H(t,)) on 7, which
would become clear from an analytical investigation of the
governing differential systems at small values of 8. The
fact that an increase in T, results in greater hydrocarbon

migration follows from a consequential increase in the area
under F(7) and hence an increase in the effective impulse
imparted to the hydrocarbon. Clearly, the characteristics of
the same investigation applied to the partial flow case are
very similar.

Using the same flow parameters as for Fig. 11(a) and
with 7, = 0.5 and £ = 10, the variation of hydrocarbon
migration with the parameter « is determined for complete
flow in Fig. 11(b). The most interesting observations for
this example are: (i) @ — oo approaches the case of
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no flow over the time interval [0, 7pl; (i) fora — 0
the pressure pulse function, F(t), and the profile of (1 —
H (7)) both approach their corresponding cases for the step
function over [0, 7,]; and, (iii) & = 1 gives results for the
corresponding linear pressure pulse function over [0, 7,].
A reduction in p} to the partial flow case shows that the
same rate of decrease of o results in a more rapid relative
decrease in hydrocarbon migration (1 — H (1)), as predicted
by equation (110).

Figure 11(c) presents the variation of the decrease in
hydrocarbon column height (1 — H (7)) beyond the time
Tp = 0.5, using @ = 0.4, as the parameter £ is varied when
the same flow parameters as used in Figs. 11(a) and 11(b)
are employed. Thus, complete flow is occurring although
the results for partial flow show the same characteristics.
The expected reduction in hydrocarbon migration as £ is
increased is such that the values of sz and (1 — H (1’2‘0 )
decrease whilst the functions (t —1,) and [(1— H (t])) —
(1 — H(tp))] remain approximately linearly related.

~

ESTIMATED HYDROCARBON PRODUCTION RATES

A complete specification of a hydrocarbon reservoir and
the bounding inactive fault in terms of the viscosity of the
hydrocarbon, u, the thickness of the fault rock, d, the ratio
of the horizontal surface area of the reservoir to the hori-
zontal length of the fault over which there is the potential
for leakage, %, the permeability of the fault rock, K, and
the critical entry pressure of the fault rock, p., provides the
platform for a discussion of the application of the model
presented in this paper. The remaining dimensional param-
eters which affect the volume of hydrocarbon migration
are (i) the initial hydrocarbon column height, s, which is
constrained to be less than /,,,,, defined in equation (114),
according to properties of the fault rock; (ii) the peak value
achieved by the applied pressure pulse function, pg, which
governs whether flow exists and, if it does, over what depth
migration takes place; and, (iii) the model profile for the
pressure pulse function, three examples of which have been
demonstrated earlier.

A hydrocarbon reservoir with § = 0.3

Suppose the hydrocarbon reservoir and fault rock to have
the following dimensional properties:

A
u=2x103Nsm™2, d=10"3m, 7= 100 m

K =0.1mD = 9.869 x 10~!7 m?
(123)

in accordance with the dimensional parameter ranges de-
fined earlier. By taking the critical entry pressure as

pe = 1.2666 x 10° Nm™2 (124)

the maximum hydrocarbon column height which can be
supported by the fault rock is '

Amax = 53.793 m

T=12x10%s,

(125)

Pulsed migration of hydrocarbons

from expression (114). To ensure that the non-dimensional
parameter 8, defined in equation (27), takes the value g =
0.3 the initial hydrocarbon column height is chosen to be

ho = 49.8985m (126)

As a direct result of the choice (124) for the critical entry
pressure, approximately, p¥ = 0.25. Thus, the flow regimes
specified in equation (118) require that

p5<00181 or pg<9170.1Nm™?

or pg < 1.33 psi 127)
for no flow,

0.0181 < p} <0.25

or 9170.1 < pg < 1.2666 x 10° Nm ™2
or 1.33 < pg < 18.38 psi (128)
for partial flow only and '
pj =025 or pg>1.2666x 10° Nm~2
or pq > 18.38 psi (129)

to achieve complete flow. Table 2 shows the volume of
hydrocarbon migration

V = A(ho — h(T)) = Aho(1 — H(1)) (130)

as defined in equation (21), which may be achieved under
the above set of parameters. Given that i,“- = 100 m in
the parameter definitions (123) and A = 10* m?, the total
hydrocarbon migration volume for the examples p; = 0.15
and p}; = 2 has been presented. The results from all three
models for the pressure pulse function have been included
and the parameters governing their profile are precisely the
ones given earlier.

A hydrocarbon reservoir with = 2 x 1076

The results given in Table 2 demonstrate the process de-
scribed in this paper in which the model parameters, and
hence the predicted hydrocarbon migration, are at the upper
extreme of their likely values. In the next example, the
process is illustrated using a set of dimensional parameters
in which the migration of hydrocarbon is much less, namely
nw=3x 1073 Nsm™2,

A
d=10"2m, 7 =1000m

pe = 4.1413 x 10° Nm™2,

K =6 x 1071 m? = 0.00608 mD
ho = 10.197m < Apgy = 175.881 m,
T = 96586.90 s = 1.118 days

(131)

sothat 8 = 2x 1075 and p} = 4.0. Taking A = 5x 10° m?
Table 3 presents the total hydrocarbon migration volume
for the examples p; = 3.85 and p); = 6 using the results
for all three models for the pressure pulse function given
earlier. -
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Table 2. Hydrocarbon migration volumes for models of the pressure pulse with period approximately 2 weeks and peaks corresponding

to partial and complete flow.

Pulse Dd Flow : Volume

model py (X 10° Nm~2) regime 1-H®1) (m3) (bbls)
Step 1.1033 x1072 5505.35 34,650
Linear 0.15 0.7600 Partial 3.2691 x1073 1631.24 10,260
Complex 3.3210 x1073 1657.12 10,420
Step 0.42403 211584.61 1,330,870
Linear 20 10.1327 Complete 0.22710 113319.49 712,780
Complex 0.21057 105071.27 660,900

Table 3. Hydrocarbon migration volumes for models of the pressure pulse with period approximately 1.1 days and peaks corresponding

to partial and complete flow.

Pulse Dd Flow Volume

model py  (x10°Nm™2)  regime 1-HQ) A  (m3) (bbls)

Step 2.8915 x10~8 0.147 0.92

Linear 3.85 3.9860 Partial  2.0500 x10710  1.045 x10~3  6.57 x1073

Complex 2.7482 x10710 1401 x10~3  8.81 x1073

Step 42319 x1076 21.576 135.7

Linear 6.0 6.2120 Complete  7.4695 x10~7 3.808 24.0

Complex 8.6177 x10~7 4.394 27.6
Conclusions pulses can then be determined by compounding the results

The new model has been analysed in detail for the process
by which inactive faults can allow hydrocarbons to migrate
across them when activity on an adjacent fault induces a
pressure pulse; high production rates have been demon-
strated over the time period for which the fluid pressure dif-
ference is above the critical entry pressure. After presenting
a full description of this system, the behaviour of the hydro-
carbon reservoir under the influence of the pressure pulse
was determined either analytically or numerically for three
separate models of the profile of the pulse. Results have
been obtained over a range of non-dimensional parameters
which demonstrate both high and low amounts of migration
when interpreted in the original dimensional variables.

Given the typical dimensional reservoir parameters, the
predicted volume of hydrocarbon migration due to any of
the three models of the pressure pulse can now be predicted
readily. In reality, such pressure pulses often occur not
just as single entities, but rather as a train of pulses over
short intervals. However, from the parameters specifying
the reservoir, the bounding fault rock and the profile of an
individual pressure pulse, it is possible to predict the de-
crease in hydrocarbon column height for each, essentially
isolated, pulse. The combined effect of a series of these
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from each individual pulse.
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