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Abstract

Expressions for the upwelling and downwelling fluxes of optical and thermal radiation between soil, vegetation and the sky are
derived, under certain simple assumptions. These are that interception of radiation by the vegetation is a purely geometric effect,
while scattering is isotropic, with a strength given by a single-scattering albedo in the optical part of the spectrum, and by
Kirchoff’s Law in the thermal. The soil is assumed to be a lambertian reflector, also scattering according to an albedo and
Kirchoff’s Law. The model, called RM, conserves energy exactly. As part of a SVAT, it is driven by measured insolation instead

of net radiation, with little increase in computational cost and number of parameters.

Introduction

During the past decade, many SVAT models have incor-
porated explicit consideration of the interactions between
multiple sources of water for evaporation (e.g. soil and
canopy surfaces) when describing land surface/atmosphere
exchanges. Many of these have been based on extensions
of the Penman-Monteith equation proposed by Shuttle-
worth and Wallace (1985) and Choudhury and Monteith
(1988); these attempt to take account of interactions
between the contributing evaporation surfaces (e.g. soil
and canopy surfaces) that arise when the aerodynamic
transfers of sensible and latent heat from the individual
surfaces interact within the canopy air space. Much atten-
tion has been given to the parameterisation of the various
surface, aerodynamic and boundary layer resistances that
describe the flow paths of sensible and latent heat from the
individual surfaces to the point at which the flows merge,
and then the combined flow path from the within-canopy
air space to some reference height in the atmosphere above
the canopy.

The exchanges of sensible and latent heat are driven by
solar forcing, expressed in the Shuttleworth and Wallace
(S-W) and in the Choudhury and Monteith (C-M) evap-
oration equations in terms of the net radiation allocated to
each contributing surface, where the net radiation (R,) is
the difference between the total downwelling radiative flux
(including shortwave and thermal) and total upwelling
radiative flux. However, interactions between solar radia-

tion and complex bodies such as soil surfaces covered by a
sparse vegetation canopy are difficult to measure and to
model; a full mathematical description of solar forcing
within a SVAT appropriate for sparsely vegetated land
would be very difficult to apply, requiring a large number
of parameters that are difficult to measure and rarely avail-
able. Nevertheless, the problems should not be dismissed
because the sensible and latent heat fluxes can be quite
sensitive to radiative forcing. For example, Henderson-
Sellers et al. (1993) note that changes of 0.02 or more in
albedo can result in substantial changes in modelled sur-
face fluxes and surface temperature.

Various formulations of radiative forcing have been sug-
gested and implemented. Where accuracy is not the fore-
most requirement, or is allowed to be degraded in the
trade off between computational complexity and fast cal-
culation, simple formulae have been used. For example,
Franks et al. (1997) assumed a Penman-Monteith formu-
lation, without modelling radiative transfer at all; never-
theless, this was sufficiently accurate for their purpose.
Some more complex models use the methods of radiative
transfer to simulate the transport of sunlight in the
canopy. This degree of complexity is required for many
purposes when there are multiple sources and sinks of
radiation and other fluxes, as in two-source models such as
that discussed in detail in the rest of this paper. For exam-
ple, Hope ez al. (1986) used the TERGRA SVAT, and
incorporated Verhoef’s (1984) SAIL, a simple radiative
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transfer model; SiB [Sellers et al. (1986)] used a related
but much more complicated method, simplified to some
extent by Xue er 4l (1991) in the SSiB model.
MAESTRO [Wang and Jarvis (1990)], a SVAT which also
models transport of carbon, used an unusually compre-
hensive model of the radiative properties of the canopy, in
which crowns are considered as assemblages of interacting
elements.

Finally, the most complex radiation transport models
(e.g. Gerstl and Borel (1992), Pearson (1997)), which accu-
rately simulate the directional reflectance of canopies, are
usually not applicable for inclusion in SVATSs because of
their complexity, although they are useful for reference.
For most purposes, a balance between the degrees of com-
plexity of the different compartments or modules of a
SVAT is desirable.

Although there has been some use of the more complex
models, the requirement for additional observations has
limited their use. Many are also not fully coupled to a
SVAT. In the context of modelling canopies using the
dual-source combination equation approach (i.e. variants
of the S-W or C-M Equations), the most widely adopted
approach to modelling net radiation and its partitioning is
still to start with some estimation of the overall net radia-
tion available, and then to partition R, between that avail-
able to the soil (R;) and canopy (R,) surfaces. Many
SVATSs [e.g. Choudhury and Monteith (1988), Daamen
(1993, 1997)] assume that the partitioning of net radiation
can be described using Beer’s law for exponential attenu-
ation and assume that the appropriate attenuation
coefficient (&) is that which describes the attenuation of
downwelling solar radiation. This gives rise to the follow-
ing simple equations:

R, = R, exp(-0,), M

R, =R, - R = R,[1 - exp(-aA,)], )]
where R; is the net radiation available to the soil, R, is the
net radiation available to the vegetation, « is an attenua-
tion coefficient and Ay is the leaf area index. Wallace ez al.
(1986) find that o = 0.41 for West African millet crops,
while Choudhury et 4/. (1987) find a = 0.5 for wheat.

This approach is usually implemented assuming a con-
stant attenuation coefficient (and hence constant net radi-
ation partitioning) throughout the day, whereas in reality,
the attenuation depends on the obliquity of the path
through the canopy.

Accurate partitioning of net radiation might be crucial
in accurate simulation of hourly or daily surface fluxes,
because the fractions of net radiation that are dissipated as
sensible and latent heat can be very different for the soil
and canopy surfaces, and have very different diurnal pat-
terns. For example, in the case of a sparse millet crop on
a sandy soil in Niger it is typical for the majority of net
radiation allocated to the canopy to be dissipated as latent
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heat (via transpiration) whereas evaporation from the soil
surface will rise to a sharp peak by mid-morning before
decreasing sharply once the few millimetres of soil closest
to the surface dry out. In such circumstances, over-
allocation of net radiation to the soil would be expected to
result in underestimation of total evaporation.

A further objection to the use of Eqns. 1 and 2 is that
they treat the shortwave and thermal components of net
radiation together. However, in reality these two wave-
bands are subject to different transport laws.

This paper presents a new formulation for the radiative
transfers within a SVAT that is more realistic than Beer’s
law without being too complex, which is physically rea-
sonable, and which can be driven from knowledge of
downwelling solar radiation (this is often the only radia-
tion flux of which measurements are readily available).
The objective is to produce a model that requires no fur-
ther information about the size and architecture of the
canopy beyond the leaf area index and attenuation
coefficient for downwelling solar radiation that is already
required by approaches based on Beet’s law. This is done
by analysis of the detailed energy balance between the soil,
vegetation and atmosphere in a simplified representation of
the canopy. The approach builds on ideas in the radiation
module of the SiSPAT SVAT [SiSPAT is discussed in
detail by Braud ez al. (1995); it uses a radiation model pro-
posed by Taconet et al. (1986)], following the multiple
reflections of shortwave and thermal radiation between the
foliage and the soil. In the present study, the calculation is
extended by more accurate representation of the radiative
scattering processes in the foliage, and by allowing diurnal
variation of these processes: it is also indicated how to
extend the method to more complex radiative transfer
methods, should these be required.

Reflected solar flux and net radiation can be calculated
as diagnostics of correct functioning of the new model,
which will be referred to as RM. It is incorporated into an
existing SVAT model —SWEAT—{[Daamen (1993, 1997)]
that is based on the Shuttleworth-Wallace two-source
approach, to create a new model (SWEAT2). The paper
explores how the partitioning of net radiation between R,
and R; using RM differs from that using a simple Beer’s
law approach, and the implications for the prediction of
surface temperature.

The new radiation model is a significant advance on
other single-layer models. Although the derivation is
lengthy, the end result is not complex and is quick to run
on a computer.

The models

SOIL WATER, ENERGY AND TRANSPIRATION—
SWEAT

The work to be discussed was applied as an upgrade to the
SWEAT model, an overview of which is presented here.
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Daamen (1993, 1997) provides further details. SWEAT is
a one-dimensional model which simulates the movement
of water and heat in the soil profile above a nominated
depth (e.g. 2 m), up to a reference height in the air above
the vegetation (e.g. at a height of 5 m). In the soil, fluxes
of liquid water, water vapour and sensible heat are simu-
lated using Richards’ equation, thermally enhanced
Fickian diffusion of vapour and the Philip and de Vries
(1957) approach to modelling heat flow. Following
Campbell (1985), the coupled partial differential equations
are solved by a fully implicit backward-difference scheme
in time, approximately centred in the spatial grid. This
numerical scheme can also be considered as a resistance-
capacitance network. Spatial centering is approximate
because the spatial grid’s spacing increases with depth.
This enables efficient calculation of transport of water
close to the soil’s surface, where changes are rapid because
of fluctuations in forcing at the boundary. The equations
are non-linear, so a Newton-Raphson method is used to
solve the implicit set of equations at each time step.

In the canopy air space, fluxes of water vapour and sen-
sible heat from the vegetation and soil are described using
a two-source method developed from that of Shuttleworth
and Wallace (1985). The vegetation is assumed to have a
stomatal resistance ry in series with a boundary layer resis-
tance 75 The latter terminates in the air space within the
canopy, which is connected by a further resistance 7, to
the surface of the soil and by another resistance 7, to the
atmosphere at the reference height. Thus, the vegetation
and the soil can interact within the canopy’s air space—
this is an important consideration in the sparse crops for
which SWEAT was designed, where evaporation from the
leaves can be increased by heating by hot air rising from
the soil between the plants, or reduced by humidification
of the within-canopy air space following evaporation from
the soil’s surface. Methods of calculating the resistances
are taken from recently published literature. The move-
ment of water from the bulk soil to the site of evaporation
within leaves is modelled using an Ohm’s law analogue of
water flow in the soil-plant system, incorporating radial
root and soil resistances (both of which depend on root-
length density) in series with the hydraulic resistance in
the shoot. The linkage between stomatal resistance and soil
water is via leaf water potential, there being a threshold
value of the potential below which stomatal resistance
increases dramatically.

The model is forced by meteorological data at the ref-
erence height (temperature, net radiation, relative humid-
ity, wind speed and rainfall) and by an assumption of unit
hydraulic gradient (i.e. steady-state gravity-driven flow
with homogeneous matric potential) at the nominated
depth in the soil that is greater than the depths of inter-
est. Net radiation is required as an input, and is parti-
tioned between the soil and vegetation according to Eqns.
1 and 2.

THE RADIATION MODEL—RM

Introduction

In the models vegetation moderates the supply of energy
to the soil and canopy surfaces, and allows subsurface
water to enter the atmosphere by transpiration. In RM, the
physics of photosynthetically active radiation is not treated
differently from that of the rest of the visible/NIR spec-
trum, while transfer of thermal radiation is considered as
a different phenomenon. Hence two broad wavebands—
shortwave (optical) and longwave (thermal)—have been
considered. Thermal radiation is assumed to arise isotrop-
ically from the surface of the soil, isotropically from the
vegetation, and isotropically from the sky; shortwave
radiation is incident isotropically from the sky, and as a
delta-function in direction from the sun. Various approx-
imations are already evident: isotropy, a delta-function,
and the simple division between shortwave and thermal
radiation. In developing RM, horizontal homogeneity of all
physical quantities is assumed, as is assumed also in the
SWEAT model.

Interception of radiation by the vegetation is taken to be
purely a geometric effect, i.e. it is assumed that a beam of
radiation (shortwave or thermal) is attenuated by striking
the physical elements of the vegetation. Intercepted radia-
tion is assumed to be absorbed or scattered. The scattered
component is scattered with equal isotropic fluxes upward
out of the top of the vegetation, and downward from the
bottom. That is, the physical depth of the vegetation is
ignored, but it is assumed to intercept a portion of radia-
tion incident on it; of this, some is absorbed and the rest
scattered isotropically into the exitant hemispheres above
and below. However, the fate of intercepted radiation dif-
fers between shortwave and thermal. If a flux of shortwave
radiation is intercepted, a fraction is scattered given by the
single-scattering albedo a,. In the thermal spectrum, it is
assumed (as an approximation) that Kirchoff’s law applies
to the whole thermal waveband, i.e. the emissivity of the
vegetation, €,, is equal to its absorptivity, 4,. This implies
that the vegetation has a single-scattering albedo of 1 — ¢,
in the thermal waveband. It is not usual in simple thermal
models to take account of scattered thermal radiation.
Indeed, given the many approximations involved in the
model, and that typically 0.95 < €, < 0.99 [Monteith and
Unsworth (1990)], the flux of scattered thermal radiation
can probably be ignored as a reasonable approximation.
However, it is taken into account in RM to conserve
energy exactly in the model. This is possible because the
adding method used is efficient. It is assumed that inter-
cepted thermal flux is scattered equally and isotropically
upwards and downwards, exactly as the shortwave flux.

The assumed isotropy is not physically realistic, because
the light scattered by a canopy is generally rather
anisotropic, as discussed by Gerstl and Borel (1992) or
Pearson (1997). However, in the present context, only
fluxes of radiation are of interest and these are calculated
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by integrating the radiance (with a geometric factor) over
a hemisphere of exitance, thus erasing information about
anisotropy. So, the approximation is appropriate in this
context.

The soil is assumed to be a Lambertian reflector (see
Appendix A) with an albedo 4, in the shortwave and an
albedo 1 — ¢ in the thermal infrared, where € is the emis-
sivity of the soil.

An adding method

All relevant thermal and shortwave fluxes are calculated by
use of an adding method. This is a formalism by which all
orders of multiple scattering are implicitly and exactly
(within the assumptions of the model) taken into account.
A clear treatment of adding methods for scattering media
is given by Grant and Hunt (1969a, 1969b); it is a stan-
dard analytical tool in radiative transfer theory. However,
the optical addition of a substrate to a scattering medium
is not widely understood, so it is derived here.

In Fig. 1(a), consider a honzontally homogeneous field
of radiation quantified as D, incident on the surface of a
scattering medium. D can be a directional radiance or a
hemispherically integrated flux, as the notation to be
developed applies to both. Now, the medium transmits a
certain portion of D, given by a transmission operator T,
and reflects an amount given by a reflection operator R.
Let the substrate reflect a portion of the radiation incident
upon it, given by a reflection operator B. If the radiative
quantities in question are directional radiances, these oper-
ators are integral transforms (e.g. B could represent inte-
gration of the radiance multiplied by the bidirectional
reflectance distribution function); if fluxes, they are just
coefficients; if radiances discretized by a discrete ordinates
method, they are transfer matrices. Henceforth, it is
assumed that they are fluxes.

@

By transmission and reflection, the flux D gives rise to
further fluxes D, U, and U. The total upwelling flux U is
the sum of the portion of D that is reflected by the vege-
tation, and the transmitted portion of U:

U =RD+TU. 3)

Similarly, the downwelling flux D is the sum of the
transmitted portion of D and the portion of U that is
reflected by the vegetation:

D=1TD + RU. 0)
Because the soil is assumed to reflect a fraction B of the
flux incident on it:

A

= BD.

U )
If the flux D incident on top of the vegetation is given,
then equations 3-5 are three simultaneous linear equations
in the three unknown quantities D, U and U.

Elin}iilatior} of U between equations 4 and 5 yields
D = TD + RBD, from which the following solution fol-
lows by rearrangement:

=/ - RBY'TD, (6)

where [ is the identity operator. 3

Then Eqn. 5 gives U; and then Eqn. 3 gives U. Thus,
all relevant radiative quantities are obtained from know-
ledge of the incident radiation and the transfer operators.

Equation 6 can be understood by expanding [I — RB]
in a binomial series:

=[7 - RB+(RB) +(RB)’ +..1TD

=TD + RBTD + RBRBTD + RBRBRBTD +....(7)

(b)

%// ttering med vr 7 Scattering med "
3 /% ¢ BTD/ \RB1D /%

I

Reflective substrate

Reflective substrate

Fig. 1. Schematic illustration of the fluxes or radiances involved in a calculation by the adding method. Part (a) shows the total
fluxes that are discussed in the context of Eqns. 3—6. Part (b) shows some of the components of the total flux D.
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In reference to Fig. 1(b), the terms in this equation with
the various orders of reflection of 7D between the scat-
tering medium and the reflective substrate. The total
fluxes (D and U) that are represented in Fig. 1(a) and
Eqgns. 3-6 are the sums of the components that are shown
in Fig. 1(b). Remembering that the various operators are
applied from right to left, 7D is the fraction of D that pen-
etrates the scattering medium. Of this, a fraction B is
reflected from the substrate, and of this, a further fraction
R is reflected back downwards. This yields the term
RBTD in Eqn. 7. Further reflections add further terms to
the total flux D, each reflection up then down multiplying
the component flux by a further RB.

In the rest of this paper exitances and irradiances (i.e.
fluxes) are considered, so the transfer operators become
scalar coefficients. However, the above formalism is rec-
ommended to those wishing to extend the work. That is,
the adding method can be used to calculate the radiative
response of the soil-vegetation column even if complicated
models are used for the individual components (soil and
vegetation).

Nomenclature

We adopt the following notation and nomenclature.
Whether a flux is an irradiance or an exitance is deter-
mined by its interaction with the vegetation, as shown in
Fig. 2. That is, a flux incident on the vegetation is labelled
as an irradiance (E), and a flux exitant from the vegetation
is labelled an exitance (). The symbol M or E is aug-
mented if necessary by a superscripted arrow pointing
upwards or downwards, indicating the direction of the
flux. Furthermore, fluxes undergo multiple reflections
between the vegetation and the soil, as shown in Fig. 2.
Fluxes are labelled with a numerical subscript that indi-
cates how many times the radiation has interacted with the
vegetation. The subscripted ‘v’ indicates that the fluxes in
question originated in the vegetation. Subscripts ‘s’ and ‘r’

Reference
\
\
B s )
Vo N \ MT/,I MV,2
Vegetation
Ev1 M\flz
M?/,l
Soil

Fig. 2. Schematic illustration of the fate of thermal fluxes
emitted by the vegetation. The broken arrow indicates a ficti-
tious flux, invoked to simplify the derivations.

indicate fluxes whose origins are in the soil or atmosphere,
respectively. Finally, thermal fluxes are written in a plain
typeface, shortwave fluxes in bold. This notation is unam-
biguous.

For scattering and transmission operators, subscripts s
and ¢ indicate that the operators are applicable in the
shortwave and thermal wavebands, respectively. So R, and
R, are thermal and shortwave reflectances of the vegetation
respectively; and similarly with the transmittances 7; and
T;, and reflectances B, and B, of the soil.

Scattering coefficients.

It is convenient to define the following condensation of the
notation:

6; =1- e:, ‘ (8)
€ =1-¢, 9)

where € is the emissivity of the substance specified by its
subscript.

Let isotropic thermal radiation of radiance L, illuminate
a slab of vegetation of optical depth 7. At an angle 6 from
the perpendicular, a radiance L;e~** will be transmitted
unintercepted, where y = cos(6). The total transmitted,
unintercepted exitance is calculated by the formula of
equation A3, and is:

21LEy(0), (10)

where E3(-) is the exponential integral [Abramowitz and
Stegun (1972)]. By isotropy and the 7-rule, the irradiance
is wL,, so the intercepted flux is:

L[l - 2E5(7)). 1)

Of this, a fraction given by the single-scattering albedo e,
is scattered equally and isotropically upward and down-
ward. Thus, the reflected flux is:

L&l [1 - 2Ey(T)]. (12)

Thus the reflection operator for the flux of isotropic ther-
mal radiation is:

R = 1€l -2E,(7)] (13)

That is, the flux of reflected thermal radiation is given by
a fraction R; of the incident flux. Similarly, the transmis-
sion operator for isotropic thermal radiation is:

T, = 2Ey(1) + R. (14)

It is assumed that a fraction €; of any thermal flux inci-
dent on the soil is reflected. Thus, the reflection coefficient
for thermal fluxes incident on the soil is:

B =€ (15)

Similarly, the soil is assumed to have a constant albedo
a; in the shortwave waveband. Thus the reflection
coefficient for shortwave fluxes incident on the soil is:
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~

B =a, (16)

For incident isotropic shortwave radiation, the intercep-
tion is by assumption the same as for thermal radiation.
The single-scattering albedo is now a,, and the reflection
and scattering operators for shortwave radiation are:

R =141 - 2E,(7)), a7
T = 2E(7)+R.. (18)

Derivation of shortwave and thermal fluxes.

Shortwave and thermal radiative fluxes are considered to
originate above the reference height of the SVAT, and
thermal fluxes to originate in the soil and vegetation. The
adding method derived above is used in each case; but
fictitious fluxes must be invoked in some cases to force the
problem into the formalism of the adding method.
Although this may appear inelegant, it is the easiest way
to arrive at the correct results.

i) Thermal fluxes originating in the vegetation

The relevant fluxes are illustrated in Fig. 2. These are
component fluxes that are added to form the total fluxes
illustrated in Fig. 1. By an assumptlon of the model, the
upward and downward exitances le and le are equal—
they are quantified in Eqns. 24 and 28 and in Appendix B.
This problem can be solved by invoking an imaginary inci-
dent flux, Evo, as shown in Fig. 2. For consistency, we
must demand that:

My, = TEy,, 19)
and thus:
Ely =T7'M},. (20)

The transfer operators are merely coefficients, so that
inversion is achieved by taking the reciprocal.

Thus, using the adding method (remembering to
include M’, and to omit the fictitious R,E,o), the total
fluxes are:

M}y = - RBY'TE), =11 - RBY'M,;,  (21)
E 1‘mml B Mv total (22)
Mlmml = MJ,I + 7’:‘E'v,wtal‘ (23)

These and later formulae can be confirmed by expanding
the operator [/ — R,B,]™ in the binomial series of Eqn. 7,
thus explicitly revealing all orders of reflection between the
soil and vegetation.

This analysis must be completed by a specification of
MI’I and M, , the thermal fluxes emitted by the canopy
upwards and downwards. The vegetation is a complex
three-dimensional structure, not a simple surface, 50 it is
not sufficient to use the Stefan-Boltzmann law M,,l =
€,6T%, where o is the Stefan-Boltzmann constant and T
is the temperature of the vegetation. This can be seen by
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noting that, although each leaf is assumed to emit thermal
radiation of exitance €,073, the whole canopy will emit a
smaller quantity related to the density of the vegetation
composing it. This effect is modelled by multiplying the
exitance by a factor that is a function f of the leaf area
index Ay

w =M, = f(A,)0€,T;). (24)

Clearly,
lim, f(4,) =0, 25)
lim f(4,)=1, (26)

so that a canopy containing no leaves emits no radiation,
and one of infinite A7, is not perforated. Consideration of
the shadowing of leaves by one another leads to a further
criterion, that:

S

LA (0= A4, <),

@7)

i.e. that F(A;) increases rapidly with 4; when Ay is small,
but that it approaches its limit of 1 slowly. It is convenient
to set

f(A) =1-2E(A,/2), (28)
as this function satisfies Eqns. 25-27, and must be calcu-
lated because it is used elsewhere in the model. A further
justification of this choice is presented in Appendix B.

ii) Thermal fluxes originating in the soil

The fluxes are labelled as shown in Fig. 3. The analysis is
very similar to that above except that the originating flux
is E;o. It is assumed that the soil emits isotropic thermal
radiation according to the Stefan-Boltzmann law:

El, = 0T}, (29)
where T is the temperature of the soil’s surface.
A fictitious irradiance, Eio is required:
El, = T7'M}, = T7'RE),. (30)
Thus:
My =1 - RBT'RE, (31
E,T total = BM;, sporal T E:TO? (32)
M}y = TE . (33)

iii) Thermal fluxes originating in the sky
The fluxes are labelled as in Fig. 4. and the adding method
can be applied straightforwardly:

M, 't = [ = RBT'TE,, (34)
tomI B M;L total (3 5 )
M s = REN + TE] a. (36)
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Reference

\

Soil

Fig. 3. Schematic illustration of the fate of thermal fluxes
emitted by the soil. The broken arrow indicates a fictitious
Slux, invoked to simplify the derivations.

Reference

Ero 4\ /
s M ,1\
Vegetation sl M,

MY, 1 EII:, 1 MY‘.Z

Soil

Fig. 4. Schematic illustration of the fate of thermal fluxes
incident on the top of the vegetation.

An expression for the emissivity €, of the atmosphere in
the absence of clouds is given by Campbell (1985):

€, = 0.58¢ 37

where ¢, is the water vapour concentration in g m™ at the
screen height. Thus,

E}y = €,0T}, (38)

where T, is the temperature at screen height. The validity
of formulae such as this has been questioned, but they are

accurate enough for most applications of SVATSs
[Monteith and Unsworth (1990)].

iv) Shortwave fluxes

In Fig. 5, it is assumed that direct-beam solar radiation of
radiance L{*™" is incident as if from an infinitely distance
point source. If the Sun’s zenith-angle is 6y = arccos ly,,
then the incident flux is given by Eqn. A6:

e ®
\

Reference
EWo(sun)
A
A}
oy
\‘Eo
Vegetation ‘,v
Soil

Fig. 5. Schematic illustration of the fate of shortwave fluxes
incident on the top of the vegetation. The broken arrow indi-
cates a fictitious flux, invoked to simplify the derivations.

ES = pol§™, (39)
and the unintercepted transmitted flux is:

MiL(.nm) - e—'r / Ky I.LOLs(l;(mn)‘ (40)

By assumption, a fraction 4, of the intercepted flux is scat-
tered isotropically, equally upwards and downwards.
Thus:

M;r(sun) = %[l _ e—T/I-lo]E(J)«(Wﬂ), (41)
Mlum) _ %,, - e—z‘/ﬂo]Eg(ﬂm) + Eoi"“")e"”‘“. 42)

Skylight is assumed to be isotropic with an irradiance
E¢{*®, and thus:

M = 1B, 43)
M6 = REY®), (44)

To cast the problem into a form amenable to the adding
method, a fictitious irradiance is invoked:

E; = 77'M{, (45)

where
MY = My + M), (46)

Thus:
M, =l - RBT'M{, 47
El. = BM}., (48)
M. = M + M]“) L TE! . (49)
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v) Total fluxes

The complete solution is obtained by adding appropriate
flux components, as follows.
The total irradiance onto the soil is:

l i ! {
Mr,mml + Ms,total + Mv,toml + Mtaml . (50)
The total exitance from the soil is:
T T T T
Er,mml + Es,mal + Ev,wral + Emml . (5 1)
The total irradiance onto the vegetation is:
T T T T { { L(sk
Ef.wml + E:.mtal + E‘v.m‘al + Emml + Er.O + EO(M") + EO(J J')‘ (52)
The total exitance from the vegetation is:
T T T T l l
Mr,tatal + Mx,mml + Mv,mml + Mmml + Mr,roml + Ms,total
d $
Mv,mtal + Mtoml' (53)
The total reflected shortwave flux is:
T
Mmal . (54)

The net radiation is:
E}y + Eyo™ 4+ Eyeo) —
M+ M+ M+ ML (55
[ 7 total + sytotal v,total + mml]~ ( )

Although this array of equations appears complex, each
is formed merely by the addition of the basic fluxes
derived earlier in the paper. In turn, these contain only
functions that are found in standard mathematical FOR-
TRAN or C libraries, with the exception of the exponen-
tial integral E3(-). But there is a very fast and accurate
algorithm for computing it [Press et al. (1992)]; it need be
computed only once and the result stored in a variable for
repeated use in the various formulae that appear in the
model. Thus, the model can be executed very efficiently
on a computer.

Application

SWEAT has been discussed in the literature [e.g. Burke
(1997), Burke et al. (1998), Daamen (1993, 1997)], and
does not require further validation here. However, as RM
calculates thermal radiative fluxes that are determined by
the temperatures of the vegetation and soil, it cannot be
run without the use of a parallel program to estimate these.
Indeed, that program and RM must be mutually consis-
tent. For this reason, RM has been woven into SWEAT
to form a combined model SWEAT 2.

INTERNAL CONSISTENCY

Initially, purely artificial runs of SWEAT 2 were per-
formed, to ensure that it generates results qualitatively
consistent with experience for a completely specified sys-
tem. Simulated time series of hourly meteorological data
were generated for an 80-day period, to provide upper
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boundary conditions for SWEAT. Relative humidity and
air temperature were assumed to be sinusoidal with a 24
hour period, and a phase lag was assumed to produce a
maximum air temperature shortly after noon. Air temper-
ature swung between 22.5 °C and 32.5 °C, relative humid-
ity between 45% and 95%. Wind speed in m s was
drawn from a uniform random distribution on [0, 1],
cubed to skew it towards lower values, and multiplied by
5 to give a maximum of 5 m s~1. At each hourly time step,
a uniform random deviate on [0, 1] was drawn, and if it
was above a certain threshold, it was assumed that a num-
ber of millimetres of rain fell, drawn from another uniform
random deviate on [0, 5]. On the following time-step, the
probability of rain was increased if rain had fallen on the
previous time-step, thus increasing the average length of
rainy periods. Finally, insolation was calculated from a
simple solar declination model, assuming a latitude of
28.6° North, and solar noon of 12.00 local time. A simple
atmospheric attenuation was modelled as the negative
exponential of the optical depth divided by the solar zenith
angle, with an optical depth arbitrarily sat as 0.3. The
shortwave irradiance at the top of the atmosphere was
assumed to be 1360 W m=2. The incident shortwave radi-
ation was partitioned between the direct solar beam and
isotropic skylight according to a simple exponential atten-
uation law, where the flux lost by attenuation from the
direct solar beam was assigned to the isotropic skylight.
Short samples of simulated rainfall and solar irradiance are
illustrated in Fig. 6.

The vegetation was assumed to have a leaf area index Ay,
= 0.5 in the first simulation and, 4; = 5.0 in the second.
These will be referred to as the SWEAT 2/0.5 run and
the SWEAT 2/5.0 run, respectively. The soil profile was
initialized at a uniform temperature of 25.0 °C and the
volumetric water content of 16.1% was uniform from
the surface down to a depth of 3.6m. The soil had an
albedo 4, = 0.3, the vegetation a single-scattering albedo
a, = 0.18. The vegetation had an emissivity €, = 0.97 and
the soil € = 0.95. .

The 80-day runs of SWEAT 2 produced simulated time
series of net radiation as outputs. Part of the time series of
R, from the SWEAT 2/0.5 run is shown in Fig. 6. These
simulated net radiation time series were then used with the
same meteorological data and soil and canopy parameters
as the SWEAT 2/0.5 and SWEAT 2/5.0 runs, in calcu-
lations referred to as the SWEAT 1/0.5 and SWEAT
1/5.0 runs. For these, SWEAT was used with its original
Beer’s Law partitioning of R,, as in Eqns. 1 and 2.

In all runs, the rainfall was not enough to maintain the
water content of the profile, which dried out through the
80 day runs.

The behaviour of the partitioning of net radiation
between the SWEAT 1 and SWEAT 2 runs was qualita-
tively different. This is shown in Fig. 7(a) for the runs at
Ar = 0.5, and Fig. 7(b) for the runs at A7 = 5.0. In each
graph, the horizontal lines indicate the fraction of R, avail-
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Fig. 6. Part of simulated time series of rainfall, solar irradiance and net radiation. Net radiation was simulated by the SWEAT
2 model, using the solar flux shown here as input. This time series of net radiation was then used to drive the old formulation of

SWEAT, in the SWEAT 1/0.5 and SWEAT 1/5.0 runs.

able to the soil as:calculated by SWEAT using the formu-
lation of Eqns. 1 and 2. By definition, this does not vary
with time. Also in each graph, the vertical bars show one
standard deviation of the fraction of R, that is available to
the soil, at a given hour over each of the 80 days of the
SWEAT 2 runs. As expected, the fraction of R, that is
available to the soil is highest at noon, when the sun is
closest to the zenith. In the runs at A7 = 0.5, although the
total net radiation is the same for the SWEAT 2 and
SWEAT runs, the fraction reaching the soil is system-
atically lower as calculated by SWEAT 2, as well as having
diurnal variation. In these cases, the leaf area index is low,
so the radiation transport is dominated by the soil. That is,
a relatively large amount of shortwave radiation is absorbed
by the soil, and the high surface temperature reduces R, by
thermal radiation. By contrast, in the runs with high leaf
area index, the radiation is dominated by the vegetation.
The vegetation insulates the soil against thermal emission
into the atmosphere, with a consequent increase in the frac-
tion of R, that is available to the soil, as shown in Fig. 7(b).

The differences between heat fluxes into the atmosphere
between the two runs at low-Ay, are significant, but not
great; in both runs, the instantaneous available energy flux
(R,) is the same at all times. Figure 8 shows this for these
low-Ay runs. The two runs diverge at the start when the
profile is wet, but converge again as it dries out. It is not
possible to apply intuitive reasoning here, as the partition-
ing of radiation between vegetation and soil has complex
effects on evaporation from the soil surface, and on tran-
spiration as mediated by stomatal resistance. However, the

evaporative fraction reduces as the profile dries out, as one
would expect.

Figure 8(c) shows that the soil heat flux is higher for the
SWEAT 1/0.5 than for the SWEAT 2/0.5 run, because
the fraction of R, that is available to the soil is greater in
the former. This is confirmed in Fig.8(d), which shows
that soil surface temperature at midnight and noon is
greater in the SWEAT 1/0.5 run than in the SWEAT
2/0.5 run.

As discussed above, when Ay = 5.0, SWEAT 2 gave a
greater fraction of R, to the soil than did SWEAT. This
is confirmed in Fig. 9(a), which shows that SWEAT 2 led
to a higher soil heat flux. Further confirmation is provided
by Fig. 9(b), showing that SWEAT 2 resulted in higher
soil surface temperatures.

SIMULATIONS

SWEAT is designed to predict fluxes accurately for a
sparse canopy, so the radiation component of SWEAT 2
has been tested against data gathered over a millet crop at
the Southern Supersite of the HAPEX-Sahel experiment
[Goutorbe et al. (1997); Wallace et al. (1993)]. These data
consist of time series of the radiative and meteorological
conditions; profiles of root-length density; relevant fluxes;
and leaf area index. All of these data are to be found in the
HAPEX-Sahel Information System on the World Wide
Web at

http://www.orstom.fr/hapex
23
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Fig. 7. In part (a), the horizontal reference line indicates R,/ Ry, the fraction of net radiation that is avaslable to the soil, using
Beer’s law when Ar, = 0.5. The vertical bars show the value of this quantity as simulated by RM in SWEAT 2, over an

80-day period. Part (b) is as part (a), except Ap = 5.0.

except the data on roots which were supplied by one of the
authors (L.P.S). .

Initial profiles of soil water potential and temperature
were estimated by running the model from a long, arbi-
trary time before the period of interest, starting from arbi-
trary but plausible profiles.

The thermal emissivity of the soil was assumed to be
constant at 0.90, that of the vegetation was set at 0.97
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[Monteith and Unsworth (1990)]. The radiative intercep-
tion efficiency of millet has been determined experimen-
tally by Wallace et al. (1986) to be 0.41. Thus, and in
accordance with the discussion at the end of Appendix B,
the optical depth 7 in Eqn. B2 was replaced by

7 =0414;. (56)

The shortwave optical properties of the soil and vegeta-
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Fig. 8. Results of 80 day runs of SWEAT 2, using artificial meteorological data with Ar, = 0.5. In one run, shortwave irradi-
ance was the driving energy source. This run simulated net radiation, which was used in the second. In parts (a-c) of this figure,
the solid curve represents the SWEAT 2/0.5 run, the broken curve represents the SWEAT 1/0.5 run. Part (a) shows time-
integrated simulated latent heat flux into the atmosphere. Part (b) similarly shows cumulative sensible heat flux, part (c) cumu-
lative ground heat flux. Observe that the ordinate in part (¢c) has a much smaller span than in parts (a) and (b). In parts (a-
¢), small diurnal wiggles have been smoothed out by sampling only at noon each day. Part (d) shows soil surface temperatures
at noon and midnight for both runs. The curves, starting with the top one and moving down the graph represent respectively:
SWEAT 1/0.5 at noon; SWEAT 2/0.5 at noon; SWEAT 1/0.5 at midnight; SWEAT 2/0.5 at midnight.

tion were allowed to float in an optimisation process to
generate the best results over the period DOY247—249 in
1992. That is, the optical properties as estimated in the
field were not used. The optimal parameters were found to
be a; = 0.37, a, = 0.34, and Ay = 0.48. This compares
with a measured green leaf area index of 0.36 at DOY 247

in 1992, and a complete LAI of 0.661; and green LAI of
0.46 on DOY232 (complete LLAI on DOY 232 is not avail-
able). In view of the great spatial variability of Ay, the
modelled value of 0.48 may be considered as consistent
with the true value.

The observed and optimal simulated time series of
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M:,,ml (i.e. reflected shortwave radiation flux above the veg-
etation) are shown in Fig. 10(a). Figure 10(b) similarly
shows the observed and ‘optimal simulated time series of
R, above the millet crop. The simulation systematically
underestimates R, by about 10% at mid-day. The total
heat flux into the atmosphere is reproduced well, as shown
in Fig. 10(c). As the shortwave energy balance is simulated
very accurately, the shortfall in R, must be compensated
by too small a soil heat flux during the middle of the day.
This is consistent with the fact that radiative responses to
the horizontal heterogeneity of the canopy must also be
greatest in the middle of the day, when the Sun is closest
to the zenith.

Discussion and conclusions

A model (RM) for the interaction of shortwave and thermal
radiation with soil and vegetation has been created, for use
within a SVAT. The model is conceptually and mathemat-
ically simple (although the derivations are lengthy), so it is
not computationally expensive. Beer’s law requires mea-
surement of net radiation and determination of two para-
meters: A7 and an interception efficiency 7/A4;. The new
model requires measurement of downwelling shortwave
radiation and its partitioning between direct beam and sky
light; and determination of four additional parameters: €,,
€&, a5, and 4. In practice, rough estimates of €,, € are ade-
quate, as is a very crude assumption about the directional
partitioning of incident sunlight. The model predicts net
radiation and reflected shortwave flux and, when operated
as part of a SVAT, enables heat flux into the atmosphere to
be estimated well. The only significant problem with RM is
its underestimation of solar heating of the soil’s surface
under a clumped canopy around mid-day.

Although the radiative and heat fluxes are simulated
well, not all of the parameters in the optimised model are
physically realistic. In this case of 47 = 0.48, good simu-
lations of M:,,ml and R, could be obtained only by setting
a; = 0.37 and 4, = 0.34. As noted by Wallace ez al. (1990),
0.37 is a reasonable value for 4 but 0.34 is an unrealisti-
cally high value for 4,. At a more realistic lower value, the
simulated canopy would absorb more shortwave radiation,
overly increasing R, and decreasing M:,,m/. In simulations,
this could be compensated by decreasing Ay, to an unreal-
istic value, which made it impossible to simulate the
atmospheric heat flux adequately. This is probably a result
of attempting to simulate the radiative properties of a very
clumpy canopy by a horizontally homogeneous model.
This is consistent with physical intuition; the lower parts
of the clumped vegetation contribute little to radiative
effects, particularly during the middle of the day when
they are maximally shaded by the upper parts. Thus, a
given leaf area index in a clumped canopy will have simi-
lar radiative effects to a lower LAI in a horizontally homo-
geneous canopy, just as was found in the use of RM.
Despite this difficulty, the new model has advantages of

simplicity of inputs and physical realism under many cir-
cumstances, and presents an attractive alternative to the
formulations usually used in SVATs. The systematic dif-
ference between the modelled partitioning of net radiation
and that modelled by Beer’s law is significant; the diurnal
variation of the partitioning in the new model more so.
Experiments will now be performed to provide the consis-
tent datasets that will allow a more complete test of the
coupled SVAT and radiation model.

Appendix A: radiometric
nomenclature, notation and
conventions

The conventions and notation of Nicodemus et al. (1977)
are followed. In the rest of the paper, the notation is aug-
mented by arrows and subscripts to distinguish between
upwelling and downwelling radiation, and between differ-
ent orders of interaction with the canopy.

The total radiative flux exiting from a surface is known
as the exitance M, and the total radiative flux incident on
a surface is the irradiance E. Both have units of W m~2 in
the S.I. system. A more general radiometric quantity is the
radiance, L, with units W m~2 sr~!. It is defined such that,
if a spherical polar system of co-ordinates is set up with its
equatorial plane coincident with a flat surface, then the
irradiance and exitance are given by:

2T pm/2
E= J' _[ L,,(6, $) cos Osin 6 6 do
0 0
27 pl
= [ [ L, ) dadg, (A1)
0 0

where L,,(0,¢) is the incident radiance, and the substitu-
tion has been made

U = cosB, (A2)
and
2 pm/2
M= L,.(0,0)cosOsin0 40 do
0 0
2 pl
= [ [ Lt o du ag, (A3)
o Jo

where L,.(i, §) is the radiance exitant from the surface.
If the incident or exitant radiation is isotropic, i.e.
L,(6, ¢) or L;(6, ¢) is a constant Ly, then the ‘z-rule’ is
obtained by evaluation of the integrals in Eqns. Al and A3:
M = nL,, (A4)
E = nL,. (A5)
If the incident radiance is a Dirac delta-function, i.e.
Li(6, ¢) = Lo ¢ — ¢o)X1L — o), then the irradiance is

E = Lycos 6y = Loty (A6)

A Lambertian surface is defined as one that isotropically
reflects all radiation falling onto it. That is, whatever the
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angular distribution of the incident radiation, the reflected
radiation is isotropic. In this paper, this definition is
generalised (as is commonly done) to say that a Lambertian
surface isotropically reflects a fraction 4, of the incident
flux. That is, a; is the ratio of the exitance to the irradi-
ance, called shortwave albedo. Note that this is a constant
(by assumption), whereas real surfaces have an albedo
which varies with the angular distribution of incident radi-

ation, even when the surface is physically unaltered
[Nicodemus et al. (1977)].

Appendix B: Thermal emission from
a homogeneous, isotropic canopy

That f{A4;) = 1 — 2E3(A1/2) has a prima facie plausibil-
ity is evident. Here, a more rigorous argument is pre-
sented in its favour. Let us approximate the physics of
this problem by substituting for the canopy a homoge-
neous, isotropically-scattering medium, emitting radiation
homogeneously and isotropically with some source-
strength S. Such a problem is amenable to the methods
of radiative transfer [Chandrasekhar (1960); Busbridge
(1960)]. According to Busbridge, the radiance L in such
a medium obeys the following integrodifferential equa-
tion:

aL(,u,t)_ _ 4% ! ’ ’_
w=ED = - % [ naw-s, @

where ¢ is the incremental optical depth of the medium,
which has a total optical depth of 7.

If, now, the canopy is composed of similar 2-
dimensional leaves, oriented randomly according to a
spherical distribution function (i.e. the probability density
function describing the directions of leaf-normal vectors is
isotropic), then, for a layer of a given thickness, the layer’s
optical depth and leaf-area index are related as follows:

Ay
2

[Monteith and Unsworth (1990)]. This implies that a ray
of light incident on the canopy will be intercepted with a
probability equal to the factor by which a beam would be
attenuated if it were incident on a homogeneous medium
of optical depth given by Eqn. B2. Further, if the thermal
exitance from a leaf is My, it can be shown that the source-
strength is given by

T= (B2)

(B3)

Busbridge gives a solution to Eqn. Bl in her §42.2 and
§42.1. She shows that the radiance exitant from the top
and bottom of the canopy is given by:

LO, ) = L(t, ) =

28

S = x5 — ),

X(\;i\)_— Y(u) Eb

v

where X(i) andY(u) are special functions (defined by
Chandrasekhar and Busbridge) which depend on 4, and 7;
x, and y, are constants given by:

_ 4 [ . =% [y
5= jo X(@wdy, v = [ Yeowran. ®s)

Thus, the exitances from the bottom and top of the canopy
can be calculated using Eqns. Al and A3, and are given
by:

4rS

M=————(1=x = yo)xr — N), (B6)
a,(1-a,)
where M denotes the exact value of the exitance.
Our numerical experiments indicate that Mo[1 — 2E3(7)]
is a good approximation to M when a4, < 0.1, but diverges
significantly as a, increases, for many plausible values of 7.

To understand this, let 4, = 0 in Eqn. B1. Thus:

oL(u,¢
D - L, - s. ®7)
This has solutions of the form
L(u,1) = constant X ¢'’* + 8. (B8)

Boundary conditions are obtained by noting that no radi-
ation is incident on the top or bottom of the canopy-—we
are only considering the effects of the thermal source
within the canopy. Thus:

LO,m =0, (u<0) (B9)
Liz,w)=0, (u>0). (B10)
Hence:
Lit,wy = SA—e"*], (<0 (B11)
L@, p) = S[1 — e 4] (1> 0). (B12)

Thus, the exitances at the top and bottom of the canopy
are given by:

M =27S[4 - Ey(1)]

= M|l - 2E;(v)), (B13)

Now the emissivity of vegetation is typically in the range
0.95 < €, < 0.99, [Monteith and Unsworth (1990)] so the
single-scattering albedo €, is small, and it is thus reason-
able to use Eqn. 28. This result is equivalent to treating
the vegetation as a thin, perforated layer, with a specific
area given by f(Ar).

One may wish to replace equation B2 by a more accu-
rate result based on the true leaf-angle distribution func-
tion of the vegetation; or, indeed, by some other ad hoc
formula. The same is true of the scattering and intercep-
tion terms in the transfer operators.
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Table of symbols

Here are listed and defined the main mathematical sym-
bols used in the paper. ‘

A, Leaf area index

a;  Shortwave albedo of the soil

a,  Single scattering albedo of the vegetation
B Defined in Eqn. 5

E A thermal irradiance

E A shortwave irradiance

E3(-) An exponential integral

M A thermal exitance

M A shortwave exitance
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Net radiation

Net radiation available to the soil

Net radiation available to the vegetation

Reflection operator for isotropic shortwave radiation
incident on the vegetation

Reflection operator for isotropic thermal radiation
incident on the vegetation

Temperature at the reference height

Temperature of the surface of the soil
Temperature of the vegetation

Transmission operator for isotropic shortwave radi-
ation incident on the vegetation

Transmission operator for isotropic thermal radia-
tion incident on the vegetation

Extinction coefficient or scattering efficiency
Thermal emissivity of the sky or reference height
Thermal emissivity of the soil

Thermal emissivity of the vegetation

The Stefan-Boltzmann constant

An optical depth



