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Abstract

This paper describes a strategic approach for providing documentation of the surface energy exchange for heterogeneous land sur-
faces via the simultaneous, four-dimensional assimilation of several streams of remotely sensed data into a coupled land surface-
- atmesphere model. The basic concepts and underlying theory behind this proposed approach are presented with the intent that
this will guide, facilitate, and stimulate future research focused on its practical implementation when appropriate data from the
Earth Observing System-(EOS) become available. The theoretical concepts that underlie the approach are derived from relation-
ships between the values of parameters which control surface exchanges at pixel (or patch) scale and the area-average value of
equivalent parameters applicable at larger, grid scale. A three-step implementation method is proposed which involves (a) esti-
mating grid-average surface radiation fluxes from appropriate remotely sensed data; (b) absorbing these radiation flux estimates
into a four-dimensional data assimilation model in which grid-average values of vegetation-related parameters are calculated from
pertinent remotely sensed data using the equations that link pixel and grid scales; and (c) improving the resulting estimate of the
surface energy balance—again using scale-linking equations by estimating the effect of soil-moisture availability, perhaps assum-

ing that cloud-free pixels are an unbiased subsample of all the pixels in the grid square.

Introduction

The earth system science community stands on the brink
of a new era of data availability with the advent of the
Earth Observing System (EOS) (Asrar and Dozier, 1994;
Asrar and Dokken, 1995; Asrar and Greenstone, 1995).
There is potential to use these new data in combination
with in situ observations and data from existing operational
satellites to provide improved documentation of land-sur-
face energy balance in (near) real time. This paper pro-
poses a strategy for exploiting remotely sensed data to
document land-surface energy exchanges through the
development of theory that links the model parameters
which control surface exchanges at pixel (or patch) scale
with the area-average value of equivalent model parame-
ters applicable at larger, model grid scale. The proposed
method is thus relevant to land surfaces which comprise
landscapes of heterogeneous vegetation cover. It is based
around the concept of four-dimensional data assimilation
(4DDA).

‘Assimilation is the process of finding the model repre-
sentation which is most consistent with observations’
(Lorenc, 1995), but there are insufficient observations at
any one time to determine the state of the Earth’s system.
Integration of observations in a forecast model enables the
use of observations that are distributed in space and time

to provide a representation of earth system processes.
Charney et al. (1969) first suggested combining current
and past data in an explicit dynamical model, using the
model’s prognostic equations to provide time continuity
and dynamical coupling between the available data fields.
This concept has evolved into the family of techniques
known as four-dimensional data assimilation (Stauffer and
Seaman, 1990). In essence, 4DDA incorporates a range of
diverse data fields to update the state variables in a numer-
ical model to provide that model with the best estimate of
the current state of the natural environment, often so that
it can then make more accurate predictions. In the context
of this paper, the model used for data assimilation must be
one in which the atmosphere and the land surface (and the
processes that couple them) are simultaneously repre-
sented. Such a model is likely to result from improvement
of the representation of the heterogeneous land-surface
processes in a meteorological model.

One way to describe heterogeneous vegetation in mete-
orological models is to make calculations for separate
patches of vegetation corresponding to several biomes
present in each modelled grid square, and then to derive
grid-average values by weighting the surface energy fluxes
calculated for each patch by the fractional area of the cor-
responding vegetation class present in the grid square.
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This is the so-called ‘mosaic’ approach (e.g., Koster and
Suarez, 1992; Bonan, 1996). It is a conceptually simple and
technically feasible way to represent the effect of surface
heterogeneity in the case of predictive weather and climate
models when there is no attempt to distribute meteoro-
logical variables spatially within the modelled grid area.

When used in predictive models, one of the attractive
features of a mosaic model is that the soil moisture status
of each patch of vegetation represented in the model is cal-
culated separately. However, in the case of a model used
to document surface energy balance via 4DDA, this
feature is likely to complicate the use of mosaic models
because of the nature of the data that must be assimilated
to update soil moisture. One possible source of relevant
data is space-borne, L-band, passive microwave sensors.
The technical constraints on these satellite-borne
microwave sensors are such that in the foreseeable future
(and certainly in the EOS era), the data they will provide
will correspond to spatial average, near-surface soil mois-
ture over areas which are often much greater than that of
the patches of vegetation in a heterogeneous landscape.
Thus, it might be considered inconsistent to assimilate
these data with separately-modelled patches of vegetation
(with different soil moisture states) in a mosaic model.
Other potential sources of information on soil moisture
information, such as surface temperature (see later), are
often only available for portions of the grid area used in
the 4DDA model. Later in this paper it is suggested that
this may not preclude their use, providing the soil mois-
ture status deduced for the cloud-free portion of the grid
square can be assumed representative of the whole grid
square. Implementing this assumption is reasonably
simple if aggregate parameter sets which specify a single
‘representative’ vegetation cover are calculated for both the
cloud-covered and cloud-free portions of the grid area.
However, if, as in the case of the mosaic model, several
independent patches of vegetation are used, and if updat-
ing is required for each of the separately modelled soil
moisture stores represented in such a model, then calcula-
tions are required for the cloud-free and cloud-covered
pixels corresponding to each vegetation class represented
in each model modelled grid square. The calculation may
thus become cumbersome.

An alternative way to represent heterogeneous land
cover involves using a single model of the grid-average
surface exchanges, with the values of vegetation-related
parameters chosen to represent the area average or ‘aggre-
gate’ behaviour of the heterogeneous vegetation mix pre-
sent in the area represented. There has been progress in
specifying area-average parameters on two fronts, one
being essentially empirical and the other theoretical. The
empirical approach (e.g. Mason, 1988; Blyth ez al, 1993;
Noilhan and Lacarrere, 1995; Arain et al., 1996, 1997) is
to postulate and then to test hypothetical rules (often
called ‘aggregation rules’; Shuttleworth, 1991) to give
parameters applicable at larger scales by combining the
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parameters that control surface exchanges for small plots
of uniform land cover. In the theoretical approach to
defining aggregate parameters (e.g. Lhomme, 1992;
McNaughton, 1994; Raupach, 1995; and Raupach and
Finnigan, 1995, 1997), a model is adopted which provides
reasonable descriptions of surface-atmosphere exchanges
for small plots of uniform land cover, such models usually
being based on the Penman-Monteith equation (Monteith,
1965). Assuming that this same model can also be used to
describe the area-average behaviour of heterogeneous land
cover, it is possible to derive theoretical equations that link
the parameters required in the model when applied at large
scale with those which apply for individual small plots.

General approach

An aggregation algorithm is conceived as a method which
seeks to make optimum, simultaneous use of several par-
allel streams of spatially distributed remotely sensed data
which are available at a (pixel) scale that is less than the
grid scale of the model used to assimilate the data. In the
context of four-dimensional data assimilation (4DDA)
within meteorological models, the words ‘data assimilation’
have come to imply the altering of modelled state variables
by way of a balance between observational and model
errors. However, in the context of the method proposed
here, the word ‘assimilation’ retains its broader, original
meaning, and thus data assimilation may include the direct
replacement of model estimates with values based on satel-
lite observations.

The objective is to give improved diagnosis of surface-
atmosphere exchanges by developing mathematical
methods which are similar to those which have been sug-
gested for blending the values of vegetation-related param-
eters for a heterogeneous landscape to give equivalent
area-average parameter values (e.g. McNaughton, 1994;
Raupach, 1995; Raupach and Finnigan, 1995; 1997). The
proposed strategy is explicitly structured around the three
main factors that control land-surface energy exchange
which are, in approximately descending order of impor-
tance, (a) the energy available at the Earth’s surface for
return to the atmosphere; (b) the nature of the land sur-
face (e.g. the vegetation cover present); and (c) the avail-
ability of water which is accessible to the atmosphere in
the soil. Different types of remotely sensed data relate to
each of these controls.

In the case of the first control, i.e. available surface
energy, the relevant remotely sensed data are instanta-
neous estimates of surface radiation fluxes made at regular
(perhaps half-hourly) intervals, most likely derived using
operational satellites such as those in the Geostationary
Operational Environmental Satellite (GOES) series. There
are several existing, well-proven algorithms available for
deriving such surface radiation estimates (e.g. Pinker and
Ewing, 1985; Pinker and Laszlo, 1990; 1992), and there is
evidence that remotely sensed estimates of (at least solar)
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surface radiation fluxes are reasonably reliable, and that
they are superior to many model-calculated estimates
(Pinker et al., 1994). Applying algorithms that yield
remotely sensed estimates of surface radiation fluxes often
involves averaging over all the pixels in a model’s grid
square to give grid-average estimates of the surface radia-
tion fluxes. Such averaging helps mitigate against the fact
that the sampled satellite image provides only an instanta-
neous measure of the spatial distribution of surface radia-
tion. Spatial averaging is thus used as a substitute for time
averaging, under the assumption that there is little persis-
tent correlation between surface features and overhead
cloud cover.

One feature frequently present in surface radiation algo-
rithms is a classification of pixels as cloud-free (as opposed
to cloud-covered or partially cloud-covered), and this
classification is used in the third step of the aggregation
algorithm approach described later. If such a classification
is not made during the calculation of remotely sensed esti-
mates of surface radiation, it will need to be carried out as
an additional process in the aggregation algorithm. The
particular nature of the algorithm used to derive surface
radiation fluxes is irrelevant in this paper. However, it is
assumed here that grid-average values of surface radiation
fluxes are indeed being derived routinely and regularly
from satellite data using an appropriate algorithm, and that
these data are available to be assimilated into the model
used for 4DDA as an important (and arguably the pri-
mary) control on a model-calculated documentation of
land surface-atmosphere energy exchange.

If water accessible by the atmosphere in the soil is plen-
tiful, the nature of the underlying land surface provides
the next most important control on land-surface energy
exchange. Two categories of remotely sensed information
are relevant in this case. The first category includes maps
of land-cover class. The general nature of the vegetation,
i.e. its classification into one of several (often model-spe-
cific) biomes is important because vegetation class influ-
ences important, plant morphology-dependent and
physiology-dependent parameters. In addition, remotely
sensed data may provide an indirect measure of seasonal
variations in the amount of green vegetation present for
each land-cover class.

The character of the relevant remotely sensed informa-
tion used to specify vegetation cover class and the extent
of leaf cover is fundamentally different to that for surface
radiation. Land-cover parameters change more slowly with
time, which is fortunate because the relevant remotely
sensed information is usually only intermittently available
because of cloud cover. There are several methods already
available for classifying the general nature (or biome) of
land cover (e.g. Eidenshink and Faundeen, 1994; Running
et al., 1994), and also methods for determining season
changes in the amount of green vegetation present in each
pixel (e.g. Reed et al, 1994; Sellers et al, 1996b).
Improved classification methods and algorithms will no

doubt appear in due course, but the details of these are
again independent of the present paper.

Using the procedures outlined above, it is reasonable to
propose the use of a coupled land surface-atmosphere
model to provide a grid-average diagnosis of surface energy
exchanges by assimilating remotely sensed estimates of
grid-average surface radiation fluxes, while at the same
time making use of remotely sensed information on land-
cover class and green vegetation cover. To go further, and
to assimilate remotely sensed information relevant to the
third control—soil moisture availability—is more complex.
In this case, the remotely sensed information will often be
indirect (e.g. radiometric surface temperature) or incom-
plete (e.g. near-surface soil moisture only). To compound
the problem, because of cloud cover, indirect measures of
soil-moisture availability might be intermittently available
or might be available only for portions of the grid square.
Thus, when diagnosing surface energy balance, the details
of an aggregation algorithm will vary depending on the
nature and assumed reliability of the remotely sensed data
used to estimate the grid-average soil-moisture availability.

This paper seeks to provide the underlying concepts and
basic theory behind the aggregation algorithm approach.
To do this, remotely sensed surface temperature is selected
as an example diagnostic of soil-moisture availability. If
the surface radiation and the nature and behaviour of the
vegetation and soil are correctly described, soil moisture
availability becomes the primary control on the difference
between the surface temperature and that of the overlying
air. Alternative diagnostic variables of soil moisture are
potentially available, and these might well ultimately prove
superior—near-surface soil moisture derived from
microwave sensors is an obvious example. It is anticipated
that the aggregation algorithm method which is proposed
here in rudimentary form will evolve and improve through
the use of alternative or supplementary measures of grid-
average soil-moisture availability. Ultimately, several dif-
ferent measures of moisture availability might be used,
with appropriate weighting applied in the 4DDA process
between these alternatives according to their reliability.

In fact, selecting the example of remotely sensed surface
temperature in the present paper is instructive because it
allows discussion of methods required when data relevant
to soil moisture are available for only some of the pixels in
a grid square. In this case, it is necessary to assume that
there is no persistent correlation between the location of
clouds and the location of available soil water in the grid
square. In other words, it is necessary to assume that, on
average, the visible portion of the grid (if any is visible at
all) corresponds to an area which is representative of the
grid-average available soil moisture. Clearly, there may be
problems with this assumption if the grid size of the model
is large enough to allow within-grid correlation between
precipitation and (say) topography or earlier precipitation.

Nonetheless, making this assumption, and using
remotely sensed information for surface radiation and for
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vegetation class and leaf cover for the cloud-free portion
of the grid, it is possible to estimate the area-average sur-
face energy balance for the cloud-free portion. Comparing
this with the surface energy balance derived using
remotely sensed surface temperature (rather than modelled
surface temperature) should allow the correction of the
modelled soil moisture for the cloud-free portion (e.g.
Toth et al., 1998). Assuming that, on average, the
cloud-free pixels are a reasonable subsample of all the
pixels in the grid square, the modified available soil mois-
ture can then be applied to the grid as a whole, and
arguably the modelled grid-average surface energy balance
so improved.

Thus, in summary, the aggregation algorithm approach
to documenting surface energy balance using remotely
sensed data involves three steps, as follows:

(a) The first step is to make estimates of grid-average sur-
face radiation fluxes from appropriate remotely sensed
data and, if not already part of the algorithm used to
estimate radiation, to identify pixels in the grid square
which are totally cloud-free.

(b) The second step is to absorb these radiation estimates
into a four-dimensional data assimilation model in
which the area-average vegetation parameters applica-
ble at grid scale are calculated at each model time step
from remotely sensed data using linking equations
between grid scale and pixel scale parameters. Running
the 4DDA model will provide a source of transient,
model-calculated, area-average atmospheric variables
and soil moisture for each grid square, and an estimate
of grid-average surface energy fluxes which acknowl-
edges the presence of heterogeneous vegetation and
which responds to the remotely sensed surface radia-
tion fluxes.

(c) The third step is to estimate the surface energy fluxes
for the cloud-free portion of each grid square, perhaps
using some indirect, remote-sensing measure; in this
paper, surface temperature is used as an example.
Comparison between these estimated surface fluxes
with the calculated surface energy balance for the same
cloud-free area in the 4DDA model allows an estimate
of available soil moisture in the cloud-free area. It is
then assumed that nudging the grid-average soil mois-
ture towards the estimated soil moisture for the cloud-
free portion will improve the 4DDA model’s ability to
document grid-average surface energy exchange by
modifying the surface energy partition.

Use of an aggregation algorithm approach should allow
a diagnosis of the grid-average surface latent and sensible
heat fluxes which makes best simultaneous use of several
streams of pixel-scale remote-sensing data. This likely also
contributes towards improved diagnosis of the grid-
average near-surface weather variables.
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Aggregation theory

Two requirements are often applied to define relationships
that combine vegetation-related parameters relevant at
pixel scale to give a description of area-average surface
fluxes. The first is fundamental, namely that the area-
average scalar fluxes must be the same at the two scales.
The second is that it is convenient if the ‘model’ used to
describe area-average land-surface-atmosphere exchanges
at grid scale has the same form as the ‘model’ used to
describe such land-surface-atmosphere exchanges at pixel
scale (McNaughton, 1994). In principle, these require-
ments might be used to provide linking equations for the
parameters used with a model of any complexity.
However, to maximise the generality of the present analy-
sis, here we adopt linking equations that result when these
two requirements are applied to very simple (but widely
used) models of surface exchanges. In the case of momen-
tum exchange, the ‘model’ used is to assume that mixing
length theory applies in the surface layer, with wind speed
following a logarithmic profile. In the case of energy
fluxes, the ‘model’ adopted is the Penman-Monteith equa-
tion (Monteith, 1965). In practice, the majority of physi-
cally realistic land surface-atmosphere models are based on
these two simple models, albeit they may be applied
implicitly and with seemingly greater complexity.

In the case of momentum exchange, applying the above
requirements yields the result:

T oM

where R, u and r, 5, are the grid-average and pixel-aver-
age aerodynamic resistances, respectively, w; is the frac-
tional area of pixel 7 in the grid square, and N is the total
number of pixels in the grid square. For convenience, the
symbols used in this and subsequent equations are listed in
Appendix 1. This equation, when applied in neutral condi-
tions, has been used to define the grid-average aerodynamic
roughness length in terms of the aerodynamic roughness
length applicable to individual pixels (Wieringa, 1986,
Mason, 1988; Shuttleworth, 1991; Arain et /., 1996, 1997).

In the case of surface energy fluxes, the albedo of the
surface is an important parameter at both pixel scale and
grid scale. Assuming the surface energy balance is
described by the Penman-Monteith equation, so are the
(vegetation-related) aerodynamic resistance and the surface
resistance and, if considered appropriate, the radiative
resistance used in that equation. The analysis of Raupach
(1995) is adopted here for his ‘simple case’, i.e. when the
aerodynamic resistances between the canopy and the over-
lying atmosphere for latent and sensible heat are assumed
equal and when the longwave radiative coupling between
canopy level and the near-surface atmosphere is deemed
negligible. With these simplifications, the Penman-
Monteith equation applied at grid scale and pixel scale has
the form:
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E= .MQ_ ¥)
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respectively, where E and E; are the grid-average and
pixel-average latent heat fluxes, respectively; 4 and A; are
the grid-average and pixel-average available energy,
respectively; R, and 7, ; are the aerodynamic resistances for
energy fluxes at grid scale and pixel scale, respectively; R,
and r,; are the surface resistances applicable at grid scale
and pixel scale, respectively; p is air density; A is the latent
heat of vaporisation of water; D [= g4,:(6) — 4] is the poten-
tial saturation deficit of the ambient air at a specified level,
with O the potential temperature and 4 specific humidity
at that height; and A [= (A/¢) dg;e/dT) is the dimension-
less slope of the saturation specific humidity g,,{7) as a
function of temperature 7, where ¢, is the isobaric specific
heat of air. The surface energy balance (already implicit in
Eqgns. 1 and 2) gives the sensible heat fluxes at grid scale,
H, and pixel scale, Hj, thus:

H=A-E )
H;=A;-E; (5)

By applying McNaughton’s (1994) requirements for link-
ing between scales to Eqns. 2 and 3, Raupach (1995)
derived the relationships:

N
R=Ruy_ mAn ©)
A&y (A+D)+r,;
and:
N
Rx = &_ wi'Ai’.;,i (7)
A&t A+ +r;
where:

— N »; i
Re= [Z n{A+D)+ ’E,i:| ®

Equations 1, 6, 7 and 8 are the basic equations that link
aerodynamic and surface resistance between pixel scale and
grid scale and provide the basis for the analysis given in
this paper.

Implementing an Aggregation
Algorithm

In the following, the theory which underlies essential
aspects of the application of an aggregation algorithm is
described, taking as an example the case when available
soil moisture is indirectly estimated from remotely sensed
surface temperature.

SURFACE RADIATION FLUXES

Many surface radiation algorithms can only reliably esti-
mate S, the grid-average downwelling surface radiation in
the solar wave band. For simplicity, it is convenient to
neglect any dependence of albedo on the zenith angle of
incident radiation. Thus, assuming that, at each time step
the 4DDA model calculates A,,, the grid-average surface
energy available at the land surface (i.e. the so-called avail-
able energy), and that in so doing it also calculates S,
the grid-average net solar radiation. It may be possible to
calculate an improved estimate of .4, the grid-
average available energy, by replacing the model-calculated
net solar radiation by the remotely sensed estimate of net
solar radiation for the observed (as opposed to modelled)
cloud cover, thus:

A=4,-S,,+5Y w(l-a) O)

where N is the number of pixels in the grid square; and o
is the albedo for pixel s, this being ascribed via a look-up
table from the remotely sensed land-cover class for that
pixel.

Some remote-sensing algorithms may attempt to esti-
mate longwave radiation. If, for instance, an estimate of,
L,, the grid-average net longwave radiation, is available,
and if this estimate is deemed reliable, then an improved
estimate of grid-average available energy would be given
by additionally replacing the model-calculated net long-
wave radiation by the remotely sensed estimate of net
longwave radiation, thus:

N
A=A4,-8,,+SY w(-0)- L, +L, (10)

where L,, is the grid-average net longwave radiation
exchange at the surface calculated in the 4DDA model.

AREA-AVERAGE COVER-RELATED PARAMETERS

The following analysis closely parallels that in
Shuttleworth et al. (1997) and is therefore most easily
understood after reading that paper.

Aerodynamic Resistance

Given a pixel-scale land-cover classification, the values of
aerodynamic roughness length and zero plane displace-
ment can be considered available at pixel scale via a (usu-
ally model-specific) look-up table. By analogy with the
procedure used to evaluate the grid-average aerodynamic
roughness (Wieringa, 1986; Mason, 1988; Shuttleworth ez
al., 1997), in neutral conditions:

tum; = °U,)" IHZLMJ (11

ht

where x is the von Karman constant, and Uy is the grid-
average wind speed predicted at a ‘blending height’, z;, by
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the 4DDA model. For a discussion of blending height, see
Wieringa (1986), Mason (1988) and Arain ef al. (1996)—
often it is assumed to be the lowest modelled level. With
a prescribed value of Uj, Eqn. 1 might be used with Eqn.
11 to calculate R, 4 (e.g. Mason; 1988). In practice, this is
equivalent to applying the two rules:

d= iw,-d,» 12)

—2f (%, — d) & | (2, — ;)
1 =t | = ;1 = 13
n ( - ] Zm n [ w J (13)

t
where 4 is the grid-average value of zero plane displace-
ment, and 2, is the grid-average aerodynamic roughness
length.

All land-surface-atmosphere models make assumptions
regarding the relationship between the aerodynamic
roughness relevant for momentum transfer and that rele-
vant for energy flux transfer. At grid scale, this relation-
ship is written in the generic form as the function F in the
equation:

R, = F(R ) (14)

where R, is the required value of aerodynamic resistance
for energy transfer, and R, 4 is the aerodynamic resistance
for momentum transfer applicable at grid scale. This rela-
tionship will often involve the grid-average values of zero
plane displacement, 4, and the grid-average aerodynamic
roughness length, z,, derived from Eqns. 12 and 13 when
making the grid-scale calculations of the aerodynamic
resistance applicable for latent and sensible heat fluxes.

Surface Resistance

In the following, it is assumed that, for each pixel in the
grid, the radiation fluxes are equal to the grid-average val-
ues derived from the radiation flux algorithm. In principle,
the remotely sensed image contains information on the
spatial distribution of radiation, but this is an instanta-
neous distribution. As mentioned earlier, radiation algo-
rithms often assume that spatial averaging provides a
surrogate for time averaging, so that taking a spatial aver-
age across the grid square partly compensates for the fact
that the remotely sensed image is instantaneous. Here, it
is necessary to assume uniform radiation fluxes across the
4DDA model grid in order to be consistent with this strat-
egy. Thus, the grid-average available energy, A4, is
assumed to apply uniformly across the model grid, and
weighting by A; in Eqns. 7 and 8 is irrelevant. Removing
such weighting gives the simpler equations:

N
w.r, .
=R Pl 15
R=RY ~Geher, @)
N
R = R"ZA-— (16)

n(A+1])+r,

At some future time (but perhaps not within the currently
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defined lifetime of EOS), it is possible that operational
satellites will provide data from which surface radiation
fluxes can be derived with sufficient frequency to enable
calculations of pixel-specific values of net solar radiation
averaged over the time step of the 4DDA model.
Calculation of area-average surface resistance would then
merely be made using Eqn. 7 rather than Eqn. 16.

Equations 8 and 16 (or perhaps in the future Eqns. 7
and 8) can be used to give the effective, grid-average value
of surface resistance, Ry, as long as it is possible to provide
estimates of 7, and r;; for each pixel in the grid square.
The requirement that the models used at grid scale and
pixel scale have the same form (McNaughton, 1994) means
that the equation used to calculate aerodynamic resistance
for energy transfer applicable at pixel scale, 7, ;, must have
the same form as Eqn. 14, thus:

rai = Flram,) 17

For the purposes of illustrating the aggregation algo-
rithm approach, a generic form for the surface resistance,
75,i, is adopted, namely:

r5,; = 15 /(8,0 Tye, M, L;,V;,C; . . ) (18)

In this equation, L;, V;, and C; (which may be required to
calculate 7;; in the model) are, respectively, the leaf area
index, the fractional vegetation cover, and a model-specific
constant for the ith pixel. The constant C; can be identi-
fied variously as, for example, the minimum surface resis-
tance for the entire canopy (Dickinson et al., 1986, 1993;
Sellers et al., 1986), the maximum photosynthetic rate
(Sellers ez al., 1996a; 1996b), or the minimum surface
resistance at the top of the canopy (Dickinson et a/., 1998).
Here, we assume that the pixel-specific values of C; are
available, these being derived from a look-up table which
is indexed to the remotely sensed land-cover class for each
pixel. It is also assumed that values of L; and V; can be cal-
culated from remotely sensed data using an algorithm
which has been appropriately formulated for each land-
cover class represented in the 4DDA model. However, in
the absence of any knowledge of pixel-specific values for
S, the solar radiation; D, the vapour pressure deficit; T,
the near-surface air temperature; ¢, the carbon dioxide
concentration in the atmosphere; and M, the available soil
moisture, and, indeed, any other near-surface variables
that may be required in the 4DDA model, it is necessary
to assume that their grid-average values apply in Eqn. 18.
Equations 8 and 16 can then be combined to give the
grid-average value of R; for each model time step, thus:

Dyl LTI S
k= [Z((A + D41, ]]/ [Z(%m +D+r, ]] (19)

with A evaluated at the modelled near-surface air temper-
ature, 7;; given by Eqn. 18, and 7, ; given by Eqn. 17 with
the required value of Uj taken from 4DDA model.
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SOIL MOISTURE ESTIMATES

The fact that such data might not be available at each time
step is not necessarily a critical problem because soil mois-
ture is a reasonably conservative state variable in the
4DDA model. Knowledge that improves the estimated
value of soil moisture at one time step will propagate for-
ward in time and, to some extent, improve subsequent
estimates of surface energy exchanges. However, ulti-
mately, of course, this improvement is lost through model
drift.

Here, it is assumed that cover-specific algorithms are
available that relate the remotely sensed surface tempera-
ture, T g ;, to T, ;, the ‘acrodynamic’ surface temperature
which is implicit in the Penman-Monteith equation. For
the land cover present in pixel ¢, such relationships are
represented in generic form by the function t in the equa-
tion:

T4 = ti(TsR) (20)

>

From simple aerodynamic theory, the area-average sensi-
ble heat flux for the cloud-free portion of the grid square
can be estimated from the equation:

, 1 < T - 4,(T z;)
H = W,Z{&-w-pc,—r—— 1)

i ayi

where §; is a function which is unity for cloud-free pixels
and zero for pixels that are partially or entirely covered by
cloud, and weighting factor for cloud-free pixels, W', is
given by:

W= i 5w, (22)

The discrepancy between H' and H,,, the 4DDA model-
calculated, area-average sensible heat flux for the clear-sky
pixels in the grid square (calculated with available energy
derived using solar radiation from the remote-sensing
algorithm for this subset of pixels), arguably provides a
measure of the error in the modelled soil moisture, M.
Changing soil-moisture status will likely have the most
effect on the modelled sensible heat by changing the sur-
face energy partition, but there could also be some effect
resulting from changes in the available energy associated
with (soil surface temperature-dependent) modifications in
upward longwave radiation and the ground heat flux.
Thus, an iterative procedure is required with the improved
soil-moisture estimates, M;, within each iteration made on
the basis of a Taylor expansion from:

M =~ M, - QH, /M, (H' - H}) (23)

and the available energy then re-calculated from the land-
surface model prior to the next iteration.

Making this (albeit model-dependent) improved esti-
mate of soil moisture in any case requires that additional
calculations are made to provide area-average variables and

parameters which relate only to the clear-sky pixels pre-
sent in the grid square. Thus, the available energy for
cloud-free pixels, Ay, is needed and it is given by an equa-
tion equivalent to Eqn. 9, that is:

, NN
A=A, = S, + Wg,&wia - ) 4

where S’ is the value of downwelling solar radiation at the
surface estimated in cloud-free conditions within the sur-
face radiation algorithm. The area-average sensible flux for
the cloud-free portion of the grid follows from the surface
energy balance, thus:

H, =4, - E, 25)

where E}, is the area-average latent heat flux for the cloud-

free portion of the grid, which is given by an equation

equivalent to Eqn. 2, that is:

_ AR, + pAD
AR + (R, + R)

In Eqn. 26, the value of the surface resistance appropriate

for cloud-free pixels is given by:

,_ 3 Dt N i

@7)

E, (26)

and the value of R; is given by:

R = F(R, ) (28)

in which R; y is the effective area-average aerodynamic
resistance for momentum transfer for the cloud-free pixels
which is now calculated using the zero plane displacement,
d’, and aerodynamic roughness length, z;, derived from:

, 1
4 = W,Z(?iwid,- (29)

2((ZB-d))_ 1 < 2| (B4
In [—zo )_W,25,m, ln( o ] (30)

The value of (0H,/dM;) required to implement the soil-
moisture correction from Eqn. 23 within each iteration
cycle is estimated by applying the chain rule from:

oH,, JH, \ JR!
m = m S 31
=53 o
Combining Egns. 25 and 26 and differentiating with
respect to Ry gives:

oH, ___E,
R ~R(A+)+R

(32)

while differentiating Eqn. 27 with respect to M; gives:
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IR _ a3\ _ yf v
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Substituting Eqns. 32 and 33 with the model-specific
function (dr,;/0M;) into Eqn. 31 provides the required
value of (0H,,/0M;) to allow successive correction of the
soil moisture using Eqn. 23 during the iterative cycle.

with:

Y

]

X

Concluding Comments

It is clear that much research is required before the aggre-
gation algorithm approach proposed in this paper can be
implemented with confidence because the method assumes
that acceptable, remotely sensed observations relevant to
the surface energy balance are readily available. This is not
yet the case. Thus, continued effort is required to improve
and validate algorithms which estimate radiation fluxes
from satellite data and, as computer resources improve,
there will likely be a greater emphasis on providing esti-
mates for smaller grid scales. Demand for radiation esti-
mates at smaller scale will in turn generate demand for
more frequent remotely sensed images because some of the
benefit of spatial averaging will be lost and additional tem-
poral sampling is needed to compensate for this. There is
also a continuing need to improve the definition of land-
cover classes from remotely sensed data and for research
to validate the accuracy of such classification methods. The
aggregation algorithm approach also motivates further
research to improve and validate the relationship between
green leaf area and relevant satellite data for different land-
cover classes.

Understanding the difference between the radiometric
surface temperature observed from satellites and the aero-
dynamic surface temperature implicit in the Penman-
Monteith model is particularly important. Reconciling
these two is critical if remotely sensed surface temperature
data are to have value for documenting the surface energy
balance in general and for estimating soil-moisture avail-
ability in particular. Understanding the difference between
radiometric and aerodynamic surface temperature is likely
to be particularly challenging in the case of sparse canopies.
However, most of the issues involved are not addressed by
the aggregation theory that underlies the aggregation algo-
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rithm approach because they are associated with physical
processes which occur at patch scale or less. Developing the
capability to estimate soil moisture directly from remotely
sensed data is a high priority because of the inherent diffi-
culties of using indirect measures of soil moisture avail-
ability. L-band sensors are known to have potentially
greater capability and providing relevant algorithms and
quantifying their reliability as a function of land-cover class
therefore clearly merits emphasis. A space-borne, passive
microwave L-band system is currently a major omission
from the range of EOS sensors.

Within-grid variations in near-surface wind speed are
ignored in the present paper. Such variations are possible
and, indeed, likely in regions of marked topography. Their
effect might be significant for models with a large grid
scale because they may generate variations in the aerody-
namic resistance inside the grid which influences the sum-
mations used in the aggregation algorithm. Studies with
coupled surface-atmosphere models operating at mesoscale
in regions with significant topography would help deter-
mine the importance or otherwise of such wind speed vari-
ations on the grid surface energy balance.

Notwithstanding the substantial challenges that evi-
dently remain, the purpose of this paper is to provide
guidance on how diverse streams of remotely sensed data
available at different pixel scales can be brought together
at a 4DDA model grid scale to give diagnosis of the sur-
face energy balance. The present paper is motivated by the
author’s perceived need for greater organisation and struc-
ture in the strategy behind research relevant to meeting
this goal, and by a desire to share this suggested strategy
in a timely manner. The practical application of the pro-
posed strategy described in this paper is the subject of
ongoing research (http//:www.hwr.arizona.edu/~shuttle/
aggregate. htmh). The expectation is that such investiga-
tion and additional research which is hopefully stimulated
by this paper will yield a system capable of documenting
surface exchanges when data from EOS become available.
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Appendix: List of Symbols

A

available energy for the whole model grid

available energy for pixel ¢

available energy for the whole model grid in the 4DDA
model

available energy for cloud-free pixels in the 4DDA
model

isobaric specific heat of air

zero plane displacement for the whole model grid
effective zero plane displacement for the cloud-free por-
tion of the grid

[= ¢4:4(0) — q] potential saturation deficit of ambient air
at blending height

average latent heat flux for the whole model grid

latent heat flux for pixel ¢

average model-calculated latent heat flux for the cloud-
free portion of the grid

generic function relating aerodynamic resistance for
energy transfer to that for momentum transfer

sensible heat flux for the whole model grid

sensible heat flux for the clear-sky pixels in the grid
square

sensible heat flux for pixel ¢

sensible heat flux for the clear-sky pixels in the 4DDA
model

pixel number in grid square

generic function describing relationship between surface
resistance and leaf area index

net longwave radiation for the whole model grid

net longwave radiation for the whole model grid calcu-
lated by the 4DDA model

leaf area index of the pixel ¢

improved soil-moisture estimate for successive iterations
available soil moisture in the 4DDA model

number of pixels in the grid square

specific humidity at blending height

¢s2{T) saturation specific humidity as a function of temperature
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T

YoM,

S/

Sum

T},a,i
TR
U,

S

T DR

aerodynamic resistance for energy transfer for pixel ¢
aerodynamic resistance for momentum transfer for pixel §
surface resistance for pixel ;

aerodynamic resistance for energy transfer for the whole
model grid 4
effective aerodynamic resistance for energy transfer for
the cloud-free pixels

aerodynamic resistance for momentum transfer for the
whole model grid

effective average aerodynamic resistance for momentum
transfer for the cloud-free pixels

effective surface resistance for the cloud-free pixels
surface resistance for the whole model grid

average downwelling solar radiation for the whole model
grid ,

downwelling surface solar radiation within radiation
algorithm in cloud-free conditions

average net solar radiation for the whole model grid cal-
culated by the 4DDA model

generic function relating aerodynamic surface tempera-
ture to remotely sensed surface temperature for pixel i
‘aerodynamic’ surface temperature for pixel ¢

remotely sensed surface temperature for pixel

average wind speed predicted at the blending height in
the 4DDA model

fractional area of pixel ¢

blending height (often taken as the lowest model level)
aerodynamic roughness length for the whole model grid
effective aerodynamic roughness length for the cloud-
free portion of the grid

albedo for pixel ¢

[= 1] for cloud-free pixels, [ = 0] for pixels partially or
wholly covered by cloud i

[= (M ¢)) 44501/ dT] dimensionless slope of the saturation
specific humidity

von Karman constant

latent heat of vaporisation of water

potential temperature at blending height

air density



