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Abstract. Two data assimilation (DA) methods are compared

for their ability to produce an accurate soil moisture analysis

using the Météo-France land surface model: (i) SEKF, a sim-

plified extended Kalman filter, which uses a climatological

background-error covariance, and (ii) EnSRF, the ensemble

square root filter, which uses an ensemble background-error

covariance and approximates random rainfall errors stochas-

tically. In situ soil moisture observations at 5 cm depth are

assimilated into the surface layer and 30 cm deep observa-

tions are used to evaluate the root-zone analysis on 12 sites in

south-western France (SMOSMANIA network). These sites

differ in terms of climate and soil texture. The two methods

perform similarly and improve on the open loop. Both meth-

ods suffer from incorrect linear assumptions which are par-

ticularly degrading to the analysis during water-stressed con-

ditions: the EnSRF by a dry bias and the SEKF by an over-

sensitivity of the model Jacobian between the surface and the

root-zone layers. These problems are less severe for the sites

with wetter climates. A simple bias correction technique is

tested on the EnSRF. Although this reduces the bias, it mod-

ifies the soil moisture fluxes and suppresses the ensemble

spread, which degrades the analysis performance. However,

the EnSRF flow-dependent background-error covariance ev-

idently captures seasonal variability in the soil moisture er-

rors and should exploit planned improvements in the model

physics.

Synthetic twin experiments demonstrate that when there

is only a random component in the precipitation forcing er-

rors, the correct stochastic representation of these errors en-

ables the EnSRF to perform better than the SEKF. It might

therefore be possible for the EnSRF to perform better than

the SEKF with real data, if the rainfall uncertainty was ac-

curately captured. However, the simple rainfall error model

is not advantageous in our real experiments. More realistic

rainfall error models are suggested.

1 Introduction

Soil moisture has a significant influence on heat and wa-

ter exchanges between the land and the atmosphere, which

makes it an important factor in numerical weather predic-

tion (NWP) (Dharssi et al., 2011). It is also useful for a vari-

ety of other applications, including drought monitoring, crop

irrigation and water management.

An important application of data assimilation (DA) for

land surface models is to assimilate observed surface soil

moisture to produce an analysis of root-zone soil moisture.

Root-zone soil moisture is usually of more interest than sur-

face soil moisture because it has a much greater water ca-

pacity and a far longer memory. The interest in soil mois-

ture DA is partly driven by the wealth of satellite data avail-

able from low-frequency microwave instruments, which can

be used to retrieve global-scale surface observations. Recent

satellite launches have considerably improved coverage over

the last decade, namely the Advanced Scatterometer (AS-

CAT) instrument on board the METOP satellites (Wagner

et al., 2007), the Soil Moisture and Ocean Salinity (SMOS)

mission (Kerr et al., 2001) and the Soil Moisture Active

Passive (SMAP) mission (Entekhabi et al., 2010). However,

these instruments are subject to significant retrieval errors

and can only measure the top few centimetres of the soil.

DA methods are used to account for the errors in the model

and the observations. They also distribute information from
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the surface observations to the deeper layers. In situ obser-

vations of root-zone soil moisture do exist, but are not dense

enough over large areas.

A simplified extended Kalman filter (SEKF, Mahfouf

et al., 2009) is embedded in the surface externalized (SUR-

FEX) modelling platform of Météo-France (Masson et al.,

2013). The SEKF simplifies the extended Kalman fil-

ter (EKF) by assuming that errors in the prior state (the

background) are climatological (i.e. there is no flow depen-

dence in the errors) and uncorrelated between layers and

grid points. The use of a linear model in the analysis up-

date does extract information from the surface to the root

zone. The SEKF is not yet coupled with an NWP model

at Météo-France. Instead it is used to provide soil mois-

ture analyses and carbon fluxes for a variety of other ap-

plications, including hydrological models (see e.g. Draper

et al., 2011), and the European Copernicus programme (http:

//www.copernicus.eu/). An SEKF is currently coupled with

the NWP model of the European Centre for Medium range

Weather Forecasts (ECMWF) for the assimilation of screen-

level variables (de Rosnay et al., 2013) and for the assimila-

tion of ASCAT soil moisture observations since April 2015

(Patricia de Rosnay, personal communication). Ensemble DA

methods are becoming increasingly popular for land surface

models (see e.g. Reichle et al., 2002, 2008; Zhou et al., 2006;

Muñoz Sabater et al., 2007; Draper et al., 2012; Carrera et al.,

2015). There are four main reasons at Météo-France for de-

veloping an ensemble Kalman filter (EnKF) for soil mois-

ture assimilation: firstly, the EnKF uses a flow-dependent es-

timate of errors in the background, rather than a climatolog-

ical estimate. Secondly, the EnKF can stochastically repre-

sent random forcing and model errors, which is not feasible

with an SEKF. Thirdly, a diffusion-based multi-layer model

(Decharme et al., 2011) has been developed to replace the

current three-layer force-restore land surface model. Increas-

ing the number of layers would substantially increase the cost

of the SEKF Jacobian calculations, which require a model in-

tegration for each prognostic variable. Finally, the EnKF may

take into account background-error covariances between grid

points, although each grid point is assumed to be independent

in this study.

The EnKF has extensively been compared with the EKF

on land surface models for assimilating soil moisture obser-

vations. Experiments have been conducted with both syn-

thetic observations (e.g. Reichle et al., 2002) and real ob-

servations (e.g. Muñoz Sabater et al., 2007). In most cases

the EnKF delivered modest improvements over the EKF. It

was not obvious beforehand which of these methods would

perform better, since they both make incorrect linear assump-

tions in the analysis update: the EKF by using a linear model

and the EnKF by using a linear combination of ensemble

members.

The experiments in this paper are partly motivated by

studying the results of the experiments by Muñoz Sabater

et al. (2007), Draper et al. (2009) and Mahfouf et al. (2009).

They performed comparisons of the SEKF and the EKF on

previous versions of the land surface model used by Météo-

France. They found that not only is the SEKF less computa-

tionally expensive than the EKF, but that its performance is

slightly better. Muñoz Sabater et al. (2007) also demonstrated

that a simple 1-D variational DA method (1DVar) (theoreti-

cally similar to the SEKF) performs similarly to an EnKF

with a large ensemble size (≈ 200 members). Their results

may seem counter-intuitive since the SEKF/1DVar methods

cannot represent flow-dependent background errors, which

can be estimated by the EKF and the EnKF. However, as the

authors acknowledge, when they implemented the EKF and

EnKF they did not use accurate specifications of model errors

and forcing errors. The incorrect specification of these errors

leads to sub-optimal filter performance (Crow and Van Loon,

2006; Reichle et al., 2008; Crow and Van den Berg, 2010).

Various formulations of the EnKF exist, which differ in

the way they perform the analysis update. This study exam-

ines an implementation called the ensemble square root filter

(EnSRF, Whitaker and Hamill, 2002). The EnSRF is chosen

because it does not perturb the observations, which would

incur sampling errors. In this paper, the EnSRF is compared

with the SEKF in terms of their ability to provide an accurate

deterministic soil moisture analysis. The aim of this study is

to compare and analyse the performances of these DA meth-

ods by examining the impact of

i. random errors in the precipitation forcing;

ii. the Gaussian assumptions made by the DA methods;

iii. influences of climate and soil texture; and

iv. a flow-dependent background-error covariance.

A linear rescaling technique is used in this study, which bias-

corrects the observations with respect to the model simula-

tion (Calvet and Noilhan, 2000; Scipal et al., 2008). How-

ever, ensemble perturbations can introduce additional biases

as a result of the nonlinear water fluxes (Ryu et al., 2009).

A simple bias correction technique is also tested on the En-

SRF as a means of reducing the biases caused by ensemble

perturbations (Ryu et al., 2009).

Twelve grassland sites over south-western France, where

in situ observations are available (the SMOSMANIA net-

work, Calvet et al., 2007; Albergel et al., 2008), are used to

compare the methods. These sites include various climates

and soil textures that can influence soil water transfers. In

situ 5 cm deep soil moisture observations are assimilated into

the surface layer. The performance is validated by comparing

the root-zone soil moisture analysis (80 cm depth) with 30 cm

deep in situ observations. The results are collected over a 3-

year period (2008–2010).

The methods and materials are described in Sect. 2. In

Sect. 3.1, the results of the experiments without DA are pre-

sented. The objective here is to show the physical mecha-

nisms behind the ensemble perturbation bias and the impact
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of applying a bias correction scheme. In Sect. 3.2, the DA

methods are compared using a synthetic “identical twin” ex-

periment designed to represent only random errors in the

precipitation forcing. This is a test of the ability of the DA

methods to represent these errors. Then in Sect. 3.3 the DA

methods are tested using real in situ observations. Section 4

discusses the results and Sect. 5 summarizes the main con-

clusions of the experiments.

2 Methods and materials

The ISBA-A-gs model and the atmospheric forcing are intro-

duced in Sects. 2.1 and 2.2 respectively. The DA methods are

explained in Sect. 2.3. A list of the experiments that were per-

formed is summarized in Sect. 2.4. The experimental set-ups

for the real and synthetic experiments are given in Sects. 2.5

and 2.6 respectively. The experimental set-ups include a de-

scription of the observations and the calibration of the error

representations of the DA methods. The performance diag-

nostics of the DA methods are given in Sect. 2.7.

2.1 ISBA-A-gs model

The experiments were all conducted on version 7.2 of SUR-

FEX, which incorporates the Interactions between Soil, Bio-

sphere and Atmosphere (ISBA) land surface model (Noilhan

and Mahfouf, 1996). This model is based on the force-restore

method of Deardorff (1977). The A-gs version of ISBA ac-

counts for leaf-scale physiological processes, including the

effects of carbon dioxide concentration and photosynthesis

(Calvet et al., 1998). The simulated leaf biomass is used to

compute the leaf area index (LAI), a key variable govern-

ing plant transpiration. The nitrogen dilution (NIT) version

of the model is applied in this work, which can dynamically

simulate LAI evolution (Gibelin et al., 2006). The seasonal

variability in LAI has a significant impact on the soil mois-

ture variables (Barbu et al., 2011). The three-layer version

of ISBA-A-gs is used in this study (Boone et al., 1999). The

three soil moisture variables are defined here with the depths

used for the experiments:

– the surface soil moisture (WG1), with depth d1 of 1 cm.

But the effective depth is d1/C1, where C1 is the surface

restore coefficient, which depends on soil texture and

soil moisture;

– the root-zone soil moisture (WG2), with depth d2 of

0.8 m, which includes WG1; and

– a recharge layer (WG3) with thickness d3 of 0.2 m,

which exists below WG2 (see Fig. 1).

All the variables are measured in terms of volumetric soil

moisture concentration (m3 m−3). A diagram illustrating the

soil moisture fluxes is presented in Fig. 1. The surface

layer (WG1) and the root-zone (WG2) layers are forced by

Figure 1. The soil moisture fluxes for the three-layer version of

ISBA. The variables Pg ,Eg andEtr represent the precipitation, bare

soil evaporation and transpiration respectively. The fluxes K and D

represent the drainage and diffusion at the bottom of the layer.

interactions with the atmosphere and restored towards an

equilibrium value. At equilibrium, the gravity forces match

the capillary forces. The drainage from WG2 supplies water

into a recharge zone (WG3), which conserves the total water

volume.

In these experiments 12 model points were used, which are

the closest points to the 12 grassland in situ observation sites

(introduced in Sect. 2.5). The model points were represented

by the grassland vegetation type and were located such that

the nearest observation to each site was always less than 6 km

away.

2.2 Forcing

The Système d’Analyse Fournissant des Renseignements à la

Neige (SAFRAN) forcing was used, which is derived from a

meso-scale analysis system with a horizontal resolution of

8 km (Durand et al., 1993). This provides values of precipi-

tation, wind, incoming short-wave and long-wave radiation,

relative humidity and air temperature, mostly derived from

a surface network of weather stations. The hourly forcing

values were input into the ISBA-A-gs model for the 12 grid

points. We have adopted a version of SAFRAN that enables

the additional use of 3000 climatological observing stations

over France, including rain gauges (Quitana-Ségui et al.,

2008; Vidal et al., 2010).

2.3 DA methods

The DA methods employed in this work are derived from

the Kalman filter (Kalman, 1960). The vector of prognostic

variables is x= (WG1, WG2). The background state (xb(ti))

is a nonlinear model propagation of the previous analysis:
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xb (ti)=Mi−1

(
xa (ti−1)

)
, (1)

where M is the (nonlinear) ISBA-A-gs model. The analysis

and the observation time (ti) are at the end of the 24 h assim-

ilation window. The Kalman filter analysis update is

xa (ti)= xb (ti)+Ki

(
yo
i − yi

)
, (2)

where yo is the assimilated observation and yi =H(x
b(ti))

is the model-predicted value of the observation (H = (1, 0) in

our case). The model state and the observations are weighted

using the Kalman gain (K)

Ki = BiH
T
i

(
HiBiH

T
i +Ri

)−1

, (3)

where H is the linearized observation operator, B is

the background-error covariance matrix and R is the

observation-error covariance matrix. These matrices mea-

sure the expected errors and the covariances are a measure

of the correlations in the errors between the different vari-

ables (i.e. between WG1 and WG2). The R matrix is as-

sumed to be diagonal, i.e. with covariances equal to zero.

It is also assumed that each grid point is independent, that

is, the background-error covariance is assumed to be zero

between grid points. The observation is present at the end

of the assimilation window, so the background-error covari-

ance needs to be propagated from the beginning to the end of

the window. This is implicitly calculated via H for the SEKF

(Sect. 2.3.1) and via the ensemble perturbations for the En-

SRF (Sect. 2.3.2). A summary of the DA methods is given in

Table 1.

2.3.1 SEKF

The simplified extended Kalman filter (SEKF, Mahfouf et al.,

2009) is based on the EKF (Jazwinski, 1970). The SEKF sim-

plifies the EKF by using both a diagonal and climatological

background-error covariance at the start of the assimilation

window.

The SEKF was originally designed to assimilate screen-

level temperature and humidity, which are not prognostic

variables and therefore cannot be assimilated directly (Hess,

2001; Balsamo et al., 2007). For this reason the SEKF uses

the linear observation operator H to relate the observed quan-

tity to the prognostic variables. Following the notation of

Mahfouf (2010), there are two steps in the calculation of H.

The first step H1 is simply a transformation into observa-

tion space (H1= (1, 0) in our case). The second step is the

calculation of the tangent linear version of the nonlinear

model (M). This linear model is a finite difference approx-

imation between a perturbed and reference nonlinear model

simulation:

Ml
i−1 =

Mi−1

(
x (ti−1)+1x

l
i−1

)
−Mi−1 (x (ti−1))

1xli−1

, (4)

Table 1. Table summarizing the different methods. “Cov” stands for

covariance matrix.

Method Background Cov propagation Maintaining

cov source ensemble

spread

SEKF Climatological Implicitly via H n/a∗

EnSRF Ensemble Implicitly via ensemble Eq. (11)

∗ n/a= not applicable.

where 1xl is a model perturbation applied to model vari-

able l. Therefore the Jacobian between the observation k and

the model variable l is simply

Hkl
i =Hk

1Ml
i−1. (5)

Equation (4) requires a model integration for each prog-

nostic variable. This formulation of H implicitly prop-

agates the B matrix from the start of the assimilation

window to the time of the observation at the end of

the window (Hi Bi HT
i =H1 Mi−1 Bi−1 MT

i−1 HT
1 ). Although

screen-level temperature and humidity observations are not

assimilated in this study, the same formulation is applied to

soil moisture observations.

The 1xl size is important – it needs to be sufficiently

small that the linear approximation in deriving M is satisfac-

tory but large enough to not incur significant computational

round-off errors. A measure of the nonlinearity of the non-

linear model (M) can be calculated by the magnitude of the

difference between Hkl for positive and negative values of

1xl (Walker and Houser, 2001; Balsamo et al., 2004; Draper

et al., 2009), with values close to zero indicating quasi-linear

model behaviour. Draper et al. (2009) and Duerinckx (2015)

have demonstrated that over 6 and 24 h windows, the be-

haviour of the model is generally quasi-linear for other ver-

sions of ISBA. However, in both studies there were occa-

sions when the model behaviour was highly nonlinear and

in these situations the tangent linear approximation is inade-

quate. Following Draper et al. (2009), we use a perturbation

size of 10−4 (wfc−wwilt) and a 24 h assimilation window.

Draper et al. (2009) demonstrated that during dry periods the

H12 values can become much larger than 1.0, which is un-

realistic and indicates highly nonlinear behaviour. For this

reason we imposed a maximum limit on H12 of 1.0.

The validity of the tangent linear approximation was not

tested explicitly in this study. Instead, the WG2 Kalman gain

was compared before and after imposing the 1.0 Jacobian

limit. It was clear when the linear assumption broke down

because the WG2 Kalman gain was noticeably reduced by

imposing the limit. The WG2 Kalman gain is defined by

Hydrol. Earth Syst. Sci., 19, 4811–4830, 2015 www.hydrol-earth-syst-sci.net/19/4811/2015/
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Table 2. Table showing the experimental set-up for the synthetic and real DA experiments.

DA component Synthetic DA experiment Real DA experiment

Truth Model run Unknown

Model Model run+Eq. (17) Model run

Assimilated obs. WG1: model run+ obs. error WG1: 5 cm depth in situ obs.+ linear rescaling

EnSRF calibration Eq. (17) Eqs. (15)+ (17)

SEKF calibration Eq. (14) Eq. (14)

Validation data WG2: truth simulation WG2: 30 cm depth in situ obs.+ linear rescaling

KWG2 =H12B
(

HBHT
+R

)−1

=H12
(
σ b

WG2

)2

((
H11σ b

WG1

)2

+

(
H12σ b

WG2

)2

+
(
σ o
)2)−1

, (6)

where σ o and σ b are the expected observation and back-

ground errors. The R matrix in our study is equal to the

scalar (σ o)2.

2.3.2 EnSRF

The EnKF (Evensen, 1994) is a way of representing the un-

certainty in the prognostic variables by using an ensemble of

model trajectories. This circumvents the high computational

cost of explicitly storing and propagating the background-

error covariance for a large model dimension. First, each en-

semble member is propagated using the nonlinear model:

xb
j (ti)=Mi−1

(
xa
j (ti−1)

)
, for j = 1, . . .,m, (7)

where m is the ensemble size and j is the ensemble member.

The following steps then occur at the analysis time (ti). The

ensemble background-error covariance is defined as

Pb
=

1

m− 1
Xb
(

Xb
)T

(8)

and the perturbation matrix (of dimension n×m) is given by

Xb
=

1
√
m− 1

[
δxb

1 . . . δx
b
m

]
, (9)

where δxb
j = xb

j − xb are the perturbations from the ensem-

ble mean (xb) and n is the model state dimension. Note that

B in Eq. (3) is expressed as Pb for the EnSRF. The determin-

istic analysis is calculated from the ensemble mean:

xa
= xb

+K
(
yo
− y

)
. (10)

An additional step is required to avoid ensemble collapse.

The traditional EnKF of Burgers et al. (1998) maintains the

ensemble spread by perturbing the observations. The se-

rial ensemble square root filter (EnSRF) was introduced by

Whitaker and Hamill (2002) as a means of avoiding the sam-

pling error from the perturbed observations. The ensemble

perturbations are updated by

xa
j = xa

+ δxb
j −αKyj , for j = 1, . . .,m, (11)

where

α =
1.0

1.0+
√

R

HP bH T+R

. (12)

Here R and H P bH T are scalars representing the variances

at the observation location. The variable of interest WG2 is

linked to WG1 via the Kalman gain:

KWG2 = Xb
WG1

(
Xb

WG2

)T (
Xb

WG1

(
Xb

WG1

)T
+
(
σ o
)2)−1

, (13)

where XWG1 XTWG2 represents the cross-product between

the WG1 and WG2 ensemble perturbations. The WG1 and

WG2 ensemble spreads are defined by Xb
WG1(X

b
WG1)

T and

Xb
WG2(X

b
WG2)

T respectively.

2.4 Experiment list

The experimental set-up for the DA experiments is summa-

rized in Table 2. This includes the representation of the truth,

the observations, and the data used for evaluation. Descrip-

tions of the real and synthetic experiments with DA are given

in Sects. 2.5 and 2.6 respectively.

A summary of the calibrated values and the results of each

experiment are given in Table 3. The first experiment (Ens)

was performed by perturbing an ensemble without DA in or-

der to investigate the cause of the perturbation bias. The bias

correction scheme (Eq. 16) was then tested on this ensem-

ble, which is labelled as “Ensbc”. Thereafter the synthetic

and real DA experiments are denoted by the subscripts “S”

and “R” respectively. For each experiment the calibrated er-

ror variances are specified. For the real experiments the En-

SRF was tested with three different configurations: EnSRFR1

is the baseline EnSRF without perturbed precipitation forc-

ing nor bias correction. The EnSRFR2 and EnSRFR3 experi-

ments include perturbed precipitation forcing and bias cor-

rection respectively. Bias correction was not performed in

www.hydrol-earth-syst-sci.net/19/4811/2015/ Hydrol. Earth Syst. Sci., 19, 4811–4830, 2015
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Table 3. Table showing the calibrations and the performances of the experiments (averaged over 2008–2010 and averaged over all sites). The

open loop is abbreviated to OL. The first two experiments were perturbed ensembles performed without DA and compared with the open

loop. The synthetic and real experiments (denoted by subscripts “S” and “R”) were compared against the synthetic and real observations

respectively. The variable “Pr” stands for hourly accumulated precipitation and εPr is the standard deviation of the hourly precipitation

perturbation (defined in Eq. 17).

Exp. Calibration: Add. WG2 RMSE WG2 WG2 bias

Obs. λo WG1 λb
1

WG2 λb
2

criteria (m3 m−3)× 103 ACC (m3 m−3)× 103

Ens – – 0.025 – 9 0.97 −4.9

Ensbc – – 0.025 Bias correct 4 0.99 0.6

OLS – – – εPr= 50 % Pr 2.2 0.995 0.0

EnSRFS 0.05 – – εPr= 50 % Pr 1.1 0.999 0.02

SEKFS 0.05 0.04 0.02 – 1.8 0.996 0.01

OLR – – – – 24.7 0.607 0.03

EnSRFR1 0.5 0.2 0.03 – 20.8 0.720 −5.32

EnSRFR2 0.5 0.1 0.03 εPr= 50 % Pr 21.2 0.722 −5.82

EnSRFR3 0.5 0.25 0.035 Bias correct 21.3 0.690 −2.79

SEKFR 0.5 0.25 0.25 – 20.1 0.716 −2.21

the synthetic experiments. Note that in the synthetic exper-

iments, the EnSRFS was designed to capture the precipita-

tion forcing uncertainty perfectly. The same precipitation er-

ror specification was used to estimate the precipitation errors

in the real experiments (EnSRFR2).

2.5 Experimental set-up: DA with real observations

2.5.1 Observations

For the experiments with real observations, in situ obser-

vations at 12 grassland sites in south-western France were

assimilated. These experiments are hereafter referred to as

“real experiments”. These grassland sites are part of the Soil

Moisture Observing System Meteorological Automatic Net-

work Integrated Application (SMOSMANIA) network (Cal-

vet et al., 2007; Albergel et al., 2008). A map of the sites

is shown in Fig. 2. Also included in Fig. 2 is a bar chart

of the average daily precipitation for the sites (from west

to east). The observations are spaced approximately 45 km

apart. The SMOSMANIA network was selected partly be-

cause of the large variability in the climatologies and soil

textures between the different sites. The more westerly sites

are generally wetter as they are more exposed to weather sys-

tems arriving from the Atlantic Ocean. The most westerly

site (Sabres) receives more than twice the average rainfall of

the most easterly site (Narbonne), with a mean daily rain-

fall of 3.5 mm, compared with 1.5 mm for Narbonne. Sabres

also has a smaller clay to sand ratio than Narbonne. For the

interested reader, Table S1.1 of the Supplement shows mod-

elled and observed sand and clay percentages for each site.

The larger sand particles have a smaller aggregate surface

area than the finer clay particles, which means that sand can

hold less water than clay. This leads to faster water transfers
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Figure 2. Locations of the 12 sites used for the experiments (red

crosses), selected from the SMOSMANIA network. Also shown is

a bar chart of the daily average rainfall for each site (plotted from

west to east). The rainfall is measured from the SAFRAN forcing

database over the analysis period (2008–2010).

for sandier soils. This study examines the influences of these

factors on the performance of the DA methods.

The 5 cm deep observations were simulated by WG1 and

were assimilated daily at the end of a 24 h assimilation win-

dow (06:00 UTC). The WG2 variable was represented by in

situ observations at 30 cm depth, which were used to eval-

uate the performance of the DA methods. It is possible to

inter-compare in situ observations and model simulations,

provided the observations are a good representation of the
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depth of the layer. The observations and the model were well

correlated for our experiments. The average anomaly corre-

lation coefficients (ACC, defined in Sect. 2.7) for the sites

between the simulated and observed WG1 (WG2) variable

is 0.53 (0.68). Table S1.1 shows the WG1 and WG2 ACC for

each site.

A linear rescaling technique was employed in this study,

which scales the observations such that the mean and the

variance match that of the model (Calvet and Noilhan, 2000;

Scipal et al., 2008). The rescaling was performed over 2007–

2010. The results were calculated over 2008–2010 because a

1-year spin-up was used in the experiments. The small bias

that remained, as a result of the different time periods, is not

significant. There were significant biases in the in situ ob-

servations (relative to the model simulation) prior to rescal-

ing. The rescaling reduced the site-averaged WG1 (WG2)

RMSE between the model simulation and the observations

from 0.089 (0.062) to 0.060 (0.025) m3 m−3, without chang-

ing the ACC.

It was necessary to estimate the observation errors for

the DA experiments. All the ThetaProbe sensors used to

measure soil moisture in the SMOSMANIA network were

calibrated using gravimetric reference observations (Cal-

vet et al., 2007). Overall, the RMSE after calibration was

0.038 m3 m−3. This error includes instrumental errors and lo-

cal representativeness errors (gravimetric samples were col-

lected a few metres around the probes). However, other rep-

resentativeness errors were also likely in this study, since

the point observations were assumed to represent 8× 8 km2

model pixels. The observation error standard deviation (σ o)

for WG1 was tested with values of λo(wfc−wwilt) m3 m−3,

with λo equal to 0.5 or 0.35. The variable λo is a dimension-

less scaling coefficient for the observation error. The wfc and

wwilt parameters are the field capacity and the wilting point

respectively, and they depend on the soil texture and veg-

etation type of each site. With the scaling by (wfc−wwilt)

the two values of λo correspond to site-averaged σ o val-

ues of 0.030 and 0.044 m3 m−3, which are either side of

the RMSE measured by Calvet et al. (2007). The scaling by

(wfc−wwilt) is based on the assumption of a linear relation-

ship between the dynamic range of soil moisture values and

the errors (Mahfouf et al., 2009).

2.5.2 SEKF calibration

The representation of errors by the DA methods can signif-

icantly influence their performance (Reichle et al., 2008).

The SEKF uses a climatological background-error covari-

ance matrix. This matrix theoretically captures the total con-

tribution from background errors and additive model/forcing

errors. In this study, the SEKF background-error standard de-

viations (σ b) for WG1 and WG2 were tuned to produce the

best ACC, with sizes

σ b
WG1 = λ

b
1× (wfc−wwilt) ,

σ b
WG2 = λ

b
2× (wfc−wwilt) . (14)

In the real experiments, λb
1 and λb

2 were tuned between 0.0

and 0.5, in steps of 0.05. The variable λb is a dimen-

sionless scaling coefficient for the calibration of the back-

ground errors. The background error variances were scaled

by (wfc−wwilt) for each site.

2.5.3 EnSRF calibration

The background errors in the EnSRF are implicitly captured

by the ensemble spread. Hamill and Whitaker (2005) demon-

strated that the addition of random perturbations to the model

state (additive inflation) at the start of each cycle can be used

to represent model errors. For the real experiments, Gaussian

noise with zero mean and standard deviation ε was added to

each ensemble member after the daily analysis update. The

values of ε for WG1 and WG2 were tuned to produce the

largest ACC:

εWG1 = λ
b
1× (wfc−wwilt) ,

εWG2 = λ
b
2× (wfc−wwilt) , (15)

with λb
1 varying between 0.0 and 0.5, in steps of 0.05, and

λb
2 varying between 0.0 and 0.05, in steps of 0.005. Time-

correlated additive inflation was implemented using a first-

order auto-regressive model. It was decided to use time cor-

relations of τ = 1 day for εWG1 and τ = 3 days for εWG2. This

is similar to previous studies (Reichle et al., 2002; Mahfouf,

2007) and is consistent with the longer time correlations of

the WG2 variable compared with WG1. An ensemble size of

20 members was chosen for the calibration of the additive in-

flation. The calibrated EnSRF was then tested with ensemble

sizes ranging from 3 to 200 in order to explore the effects of

sampling errors.

The EnSRF ensemble used hourly perturbations of the pre-

cipitation forcing in order to estimate the precipitation un-

certainty. The same perturbations were also used to capture

precipitation errors in the synthetic experiment, and this tech-

nique is described in Sect. 2.6. The performance of the En-

SRF with perturbed precipitation was also compared with the

performance without perturbed precipitation.

2.5.4 EnSRF bias correction

A bias correction technique was tested on the EnSRF as a

means of correcting the biases caused by the ensemble per-

turbations themselves (Ryu et al., 2009). The perturbation

bias correction uses the forecast from the previous analysis

ensemble mean as an anchor to modify the background en-

semble:
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x̃b
j (ti)=xb

j (ti)− xb
j (ti)+M

(
xa (ti−1)

)
,

for j = 1, . . .,m, (16)

where x̃b
j is the bias-corrected xb

j . Equation (16) prevents the

mean of the ensemble forecasts from becoming biased with

respect to the forecast of the analysis ensemble mean. The

perturbation bias correction was implemented on all three

layers before the analysis update step.

2.6 Experimental set-up: DA with synthetic

observations

For the synthetic experiments, the in situ observations were

not used, although the model was used for the same 12 sites.

The truth was generated from a single model simulation.

The WG1 observations were extracted from the truth with

the addition of a random normally distributed observa-

tion error with zero mean and standard deviation equal

to 10 % of the higher value used in the real experiments

(σ o
= 0.05(wfc−wwilt)). The size of the observation error

was small enough for the observations to have a noticeable

impact on the analysis. We also tested an observation error

equivalent to the value in the real experiments, and the im-

pact on the analysis was about 10 times less (not shown).

A perfect model was used for the DA. However, errors

were introduced in the precipitation forcing by adding ran-

dom hourly perturbations εPr to the hourly precipitation ac-

cumulations (Pr):

Pr∗ = Pr+ εPr, (17)

where Pr∗ is the perturbed hourly precipitation. The hourly

perturbations were randomly sampled from a normal distri-

bution with standard deviation equal to 50 % of the hourly

precipitation and zero mean. The probability distribution

function (pdf) was truncated in order to prevent negative val-

ues of Pr∗ and to maintain a mean of zero (−Pr≤ εPr≤Pr). A

single precipitation time series from Eq. (17) was generated

over 2007–2010. This was used to force the model. A stan-

dard deviation of 50 % of the hourly precipitation was judged

as an appropriate order of magnitude by Reichle et al. (2002),

by comparing the magnitude of the resulting errors with the

difference between two precipitation data sets. Other forcing

parameters were not perturbed, since it was found through

a sensitivity study that perturbing these values had little im-

pact on the model simulations. The results for the sensitivity

study are presented in Table S1.2.

The SEKF has no means of capturing the uncertainty in

the precipitation forcing from Eq. (17) directly. Therefore it

was necessary to calibrate the B matrix to capture the back-

ground errors that resulted from the precipitation errors. The

background-error variances (σ b) were calibrated with values

a tenth of the values used for the real experiments (Eq. 14),

since the open loop errors in the synthetic experiments were

about 10 % of the errors in the real experiments.

In the synthetic experiments, the EnSRF ensemble mem-

bers used the single precipitation time series from Eq. (17) to

force the model. However, each ensemble member was then

perturbed using Eq. (17) with different random seeds for each

member. This enabled the EnSRF to capture the uncertainty

in the precipitation forcing directly.

2.7 Performance diagnostics

The root mean square error (RMSE), the ACC and the bias

for the WG2 variable were used to determine the perfor-

mance of the DA methods:

– RMSE:

√
N∑
i=0

(ye
i−H(x(ti )))

2

N
;

– ACC=

N∑
i=0

(H(x(ti ))
′
−C(H(x)′))((ye

i )
′
−C((ye)′))√∑

i

(H(x(ti ))′−C(H(x)′))2((y
e
i )
′−C((ye)′))2

;

– Bias:
N∑
i=0

ye
i−H(x(ti ))

N
.

The time ti is the daily time, with t0 equal to 1 January 2008

and tN equal to 31 December 2010. The climatological (time)

mean of x is defined asC(x). The observations used for eval-

uation are defined as (ye). For the real experiments these are

in situ observations of WG2 after rescaling. In the synthetic

experiments these are the true values of WG2. The anomaly

x(ti)
′ is taken as the difference between the variable and a

3-month moving average.

The RMSE is a measure of both the random and system-

atic components of the error. The ACC represents the sea-

sonal correlations, which are unaffected by systematic errors,

while the bias measures the systematic errors. The computa-

tional cost of the DA methods was not assessed because the

ensemble DA methods were not optimized to take advantage

of parallel computing. Furthermore, Muñoz Sabater et al.

(2007) already estimated the computational cost of similar

algorithms on a previous version of ISBA-A-gs. They found

that the main wall-clock time constraints of the EKF and

EnKF algorithms were the model simulations, rather than the

DA. Indeed, in our study the SEKF (which requires three

simulations for the model Jacobian calculations) did have

about the same wall-clock time as the EnSRF with three en-

semble members.

In the experiments where DA is not applied, the perturbed

model simulation is measured against the unperturbed model

simulation.

3 Results

3.1 Investigating the perturbation bias (no DA)

An ensemble of model trajectories was perturbed by adding

Gaussian perturbations to WG2 with standard deviation
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Figure 3. Monthly averaged and station-averaged net water for (a) WG1, (b) WG2 and (c) WG3 and for the open loop, the ensemble mean

(Ens) and the bias-corrected ensemble mean (Ensbc). Station-averaged and monthly (d) evapotranspiration, (e) drainage and (f) total soil

water depletion differences between the ensemble mean and the open loop. Results are all averaged over the period 2008–2010.

0.025 m3 m−3 and zero mean. This is a similar order of mag-

nitude to the values used to calibrate the ensemble spread

in the real experiments (see Sect. 2.5.3). The result for the

perturbed 20-member ensemble is defined as experiment Ens

in Table 3. The unperturbed simulation is hereafter referred

to as the open loop. The ensemble mean is compared with

the open loop using the performance diagnostics defined in

Sect. 2.7. A bias of −4.9× 10−3 m3 m−3 has been intro-

duced. The origin of this bias is investigated by linking the

physical processes that underpin the bias to changes in the

ensemble spread (Sect. 3.1.1). The influences of precipita-

tion and soil clay content on the bias are then explored in

Sect. 3.1.2.

3.1.1 Influence of model physics

The site-averaged (averaged over the 12 stations) and

time-averaged water content of the total reservoir

(WG1+WG2+WG3) is 243 mm for the open loop

and 239 mm for Ens. This water loss of 4 mm (of Ens

compared with the open loop) represents a small fraction

of the total reservoir. The impact of the perturbed ensemble

on each individual layer is demonstrated by Fig. 3, which

shows the monthly, annually and site-averaged net a WG1, b

WG2 and c WG3 for Ens and the open loop. The net water

amount represents the concentration in m3 m−3 for the layer

scaled by the depth of the layer (in mm). The dry bias (Ens

relative to the open loop) is evident in WG2 during the entire

period and it peaks between July and September. There also

appears to be a dry bias in the winter in WG3, but there is no

significant bias in WG1.

The seasonal water fluxes are investigated in order to ex-

plain the seasonal variabilities in the bias. Water is depleted

from the reservoir via either drainage, evaporation, transpi-

ration or surface runoff. Surface runoff is neglected in this

investigation because it is relatively small compared with

the other processes. The site-averaged monthly evapotranspi-

ration (evaporation+ transpiration) and drainage are shown

in Fig. 3d and e respectively. The bare-soil evaporation is

most active during summer, which corresponds to the max-

imum insolation. The transpiration is largest in spring and

early summer, when the vegetation is most developed, and

before the onset of water-stressed conditions in late summer.

Transpiration dominates over bare-soil evaporation, since the

grassland vegetation type covers 90 % of the land surface.

These two processes add up to an evapotranspiration curve

which peaks in May and June (Fig. 3d). In contrast to evap-

otranspiration, the drainage is most active during the winter

and is absent during the late summer/early autumn period

(Fig. 3e), since drainage only occurs when the soil moisture

is near the field capacity.

The main effect of the ensemble perturbations (Ens) on

evapotranspiration relative to the open loop is an enhance-

ment in July and August and then a reduction in September

and October (Fig. 3d). This effect is also clearly evident in

Fig. 3f, which shows the total difference in soil water deple-

tion between Ens and the open loop. The effect of perturbing
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Figure 4. WG2 ensemble members, open loop and the ensemble mean for sites (top panels) Sabres and (bottom panels) Narbonne over 2009.

(a) and (b) show the results for experiment Ens (no DA), while (c) and (d) show the analysis ensemble members for the EnSRFR2 experiment

(with observations). The field capacity and the wilting point are also shown for each site. The legends for the upper plots apply to the lower

plots.

the ensemble on drainage is a slight increase relative to the

open loop between February and June (Fig. 3e). The annu-

ally averaged discrepancy between the Ens and open loop

total soil water depletion is about 4 mm, which accounts for

the dry bias in the Ens total reservoir.

It is possible to link the seasonal changes in soil water

depletion to changes in the ensemble spread. The ensemble

members, ensemble mean and the open loop for 2009 are

shown for the Sabres site and the Narbonne site in Fig. 4a

and b, respectively. Also shown are the wilting point and

the field capacity for the two sites. The larger water capac-

ity of clay relative to sand explains the greater field capacity

and wilting point of Narbonne compared with Sabres. During

prolonged wet periods, which tend to occur in winter, the en-

semble members converge because the soil reservoir reaches

the field capacity. This corresponds to a reduction in the en-

semble spread. Between the spring and autumn the largest

fluctuations in soil moisture occur due to changes in rainfall

and insolation. During this period the soil moisture simula-

tion becomes sensitive to perturbations in the initial condi-

tions, which is reflected by the large WG2 ensemble spread.

The Narbonne soil has a much larger ensemble spread than

the Sabres soil, particularly in autumn. Separate experiments

have confirmed that this is related to the larger precipitation

of Sabres compared with Narbonne, which acts to suppress

the ensemble spread (see Sect. 3.1.2).

Now the seasonal changes in the bias can be related to

changes in the ensemble spread. The Ens WG2 ensemble

mean is clearly negatively biased (compared with the open

loop) for Narbonne during much of the period (Fig. 4b), most

especially when the open loop is near the wilting point dur-

ing summer and autumn. Near the wilting point the WG2

ensemble spread becomes negatively skewed, which occurs

because the negative perturbations remain almost unchanged,

but the extra water from the positive perturbations is removed

rapidly by transpiration. This is evidenced in Fig. 5a for Nar-

bonne, which for clarity shows only 4 of the 20 ensemble

members between June and September 2009. The evapotran-
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Figure 5. Four of the Ens ensemble members, open loop and the Ens ensemble mean for (a) WG2 and (b) evapotranspiration for Narbonne

between June and September 2009. (c) and (d) are equivalent to (b) and (c), but instead show WG2 and drainage respectively, for February

and March 2009.

spiration for the same members is shown in Fig. 5b. The

evapotranspiration is very small for the open loop and for the

ensemble members below the wilting point. The members

above the wilting point experience strong evapotranspiration.

This effect is partly linked to the phenology; under water-

stressed conditions the vegetation roots readily absorb excess

water that becomes available, which increases the transpira-

tion and the LAI (not shown). The Ens negative bias is larger

for Narbonne than Sabres because of the greater ensemble

spread for Narbonne (compare Fig. 4a with Fig. 4b).

The impact of the ensemble perturbations on drainage is

most significant near the field capacity. Figure 5c and d show

the soil moisture and drainage respectively for Narbonne, be-

tween February and March 2009. For clarity, only five of the

ensemble members are shown. When the ensemble members

are greater than the field capacity, then the drainage rapidly

increases, which suppresses the ensemble spread. The en-

semble members below the field capacity have a drainage

near zero. This implies that when the open loop is below the

field capacity, and some ensemble members are above the

field capacity, the ensemble mean loses water relative to the

open loop. This often occurs during the spring and autumn

months, which agrees with Fig. 3e.

3.1.2 Influences of precipitation and clay content

We performed extra experiments to determine whether the

differences in the ensemble perturbation bias between the

sites can be partly attributed to soil clay content or to precipi-

tation. The clay content is an important aspect of soil texture,

while precipitation was the most important climate variable

in our sensitivity study (Table S1.2). Firstly, we compared

the average perturbation bias (normalized by the RMSE) of

the experiment Ens with the average precipitation for each

site. A scatter plot of the average daily precipitation against

the normalized bias is shown in Fig. 6a. The linear regression

line shows a strong negative correlation between the precip-

itation amount and the magnitude of the perturbation bias.

The wettest site, Sabres, is labelled as “S”, and the driest

site, Narbonne, is labelled as “N”. These are the two sites

that were compared in detail in Sect. 3.1.1.
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forcing of the Narbonne site has been applied to all the sites. The Sabres and Narbonne sites are labelled as “S” and “N” respectively. The

line of best fit (linear regression) is shown for each plot.

We then performed an experiment to determine the impact

of clay content on the bias. In this experiment we used the

same atmospheric forcing of the wettest site (Sabres) for all

the sites. This eliminates the impact of different climate on

the results and leaves only differences in soil class. The clay

percentage is plotted against the perturbation bias in Fig. 6b.

We then repeated the experiment in Fig. 6b but instead using

the same atmospheric forcing of the driest site (Narbonne)

for all the sites. The results are shown in Fig. 6c. Neither

Fig. 6b nor Fig. 6c shows a strong correlation between the

clay percentage and the bias. On the other hand, the pertur-

bation bias for the drier climate in Fig. 6c is much greater for

all the sites than for the wetter climate (Fig. 6b). These results

demonstrate that precipitation acts to suppress the perturba-

tion bias, while clay content has little influence on the bias

for these 12 sites.

3.1.3 Bias correction

The simple bias correction scheme (Eq. 16) was tested on the

ensemble and the results are also shown in Table 3 (labelled

as Ensbc). The bias has been reduced to less than a tenth of

the size and the RMSE reduced by half compared with the

original Ens. Figure 3a–c show the net soil moisture content

of each layer for the bias-corrected ensemble (Ensbc). The

bias correction has effectively removed the bias from all three

layers.

The soil water depletion is shown in Fig. 3d–f for Ensbc.

It appears that the application of the bias correction scheme

has inadvertently increased the soil water depletion of Ensbc

relative to the open loop. A side-effect of the increase in wa-

ter depletion processes is a reduction in the ensemble spread.

The monthly average spread is shown in Fig. 7 for (a) Sabres

and (b) Narbonne. The bias is much greater for Narbonne

than Sabres (comparing Fig. 4a with Fig. 4b). Therefore the

ensemble spread is halved by the bias correction for Nar-

bonne, but only slightly reduced for Sabres. The reduced en-

semble spread has important repercussions for DA, where the
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Figure 7. WG2 monthly averaged Ens and Ensbc ensemble spread

for (a) Sabres and (b) Narbonne. The results are averaged over

2008–2010.

ensemble spread determines the weight to give to the back-

ground. This is investigated in Sect. 3.3.

3.2 SEKF vs. EnSRF: synthetic observations

The EnSRF and the SEKF were first tested with only errors

in the precipitation forcing. Recall that the observations were

taken from a single model simulation with a small random

observation error (Sect. 2.6). For this experiment the EnSRF

used a perfect stochastic representation of the precipitation

uncertainty. The SEKF cannot capture the precipitation un-

certainty directly, but instead the climatological background-

error variances were calibrated to produce the best perfor-

mance.

The time-averaged and site-averaged WG2 RMSE of the

20-member EnSRF is labelled as “EnSRFS” in Table 3.

The EnSRFS RMSE is about half the size of the open loop

RMSE (OLS). The performance of EnSRFS for various en-

semble sizes is demonstrated in Table 4. A gradual improve-

ment in the EnSRFS is apparent in Table 4 as the ensemble

size is increased from 3 to 20. The sampling error in the per-

turbed forcing is the cause of the larger RMSE for the smaller
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Figure 8. Site-averaged and monthly averaged (a) WG2 RMSE, (b) WG2 ACC and (c) WG2 bias for the open loop; SEKFS and EnSRFS

for the synthetic experiments. (d)–(f) are equivalent to (a)–(c), but instead show the results for the open loop, SEKFR and EnSRFR1 for the

real experiments. The results are averaged over 2008–2010.

Table 4. Site-averaged and time-averaged WG2 performances for

EnSRFS and EnSRFR1 for various ensemble sizes. The calibrated

EnSRF is shown in bold font.

Ens. EnSRFS EnSRFR1 EnSRFS EnSRFR1

size WG2 RMSE WG2 RMSE WG2 WG2

(m3 m−3)× 103 (m3 m−3)× 103 ACC ACC

3 1.6 24.2 1.00 0.647

6 1.4 22.5 1.00 0.687

20 1.1 20.8 1.00 0.720

50 1.1 20.9 1.00 0.719

200 1.1 20.9 1.00 0.719

ensemble sizes. The EnSRFS has an ACC close to 1.0. No

significant bias was introduced because the ensemble spread

was small (not shown).

The SEKFS climatological background-error covariance

needed to be calibrated in order to minimize the RMSE. The

SEKFS with the optimal calibration is labelled as SEKFS in

Table 3. The SEKFS performs slightly better than the open

loop, but not as well as the ensemble DA methods. This is ex-

pected because the SEKFS does not capture the uncertainty

in the precipitation directly; rather, it uses larger variances in

B to compensate for forcing errors. Table 5 shows the perfor-

mance of the SEKFS with various background-error covari-

ance specifications, with the bold font showing the optimal

calibration.

The monthly average performances of the open loop and

the DA methods are shown in Fig. 8a–c. The open loop

RMSE is greatest in the spring and autumn seasons (Fig. 8a).

The soil moisture is going through a transition from a wet

to dry state in spring and from a dry to wet state in autumn,

which increases its sensitivity to perturbations in the precip-

itation. During the winter the WG2 reservoir is close to the

field capacity. During the summer the soil moisture is close

to the wilting point and there is relatively little precipitation

to perturb. Unlike the EnSRFS, the SEKFS climatological

background-error covariance does not account for the sea-

sonal variability in precipitation amounts. This is evidenced

by examining the Kalman gains.

The monthly average WG2 Kalman gain for EnSRFS is

displayed in Fig. 9. The EnSRFS Kalman gain is closely cor-

related with the open loop RMSE, with peaks in late spring

and autumn. The SEKFS Kalman gain is plotted in Fig. 9

both before and after the 1.0 limit is imposed on the model

Jacobian. In Sect. 2.3.1 it was explained that this limit is ex-

ceeded only when the model behaviour is very nonlinear,

during which time the SEKF tangent linear approximation

is inadequate. In contrast to the EnSRFS Kalman gain, the

SEKFS Kalman gain peaks in July. By imposing the limit

on the over-sensitive Jacobian, the Kalman gain is notably

reduced between May and October, which shows that the

SEKFS tangent linear approximation is poor during this pe-

riod. This explains why the SEKFS WG2 RMSE and ACC

are worse than the open loop between June and September

(Fig. 8a and b).

3.3 SEKF vs. EnSRF: real observations

Firstly, the performance of the calibrated EnSRF is analysed

for the baseline experiment, where only additive perturba-
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Figure 9. Station and monthly averaged WG2 Kalman gains for

(a) EnSRFS and the SEKFS before (BL) and after (AL) the Jacobian

limit of 1.0 is imposed. (b) is equivalent to (a), but instead shows

the results for EnSRFR1 and SEKFR. The results are averaged over

2008–2010.

tions were applied to WG1 and WG2. This is labelled as

EnSRFR1 in Table 3. The EnSRFR1 method does perform

significantly better than the open loop (labelled as OLR in

Table 3). But a dry bias has been introduced, which repre-

sents a large fraction of the RMSE (25 %), and is consistent

with the size of the dry bias introduced by experiment Ens in

Table 3. The EnSRFR1 method was tested with various en-

semble sizes and the results are shown in Table 4. There is

no improvement beyond an ensemble size of 20 members.

Figure 4c and d are equivalent to Fig. 4a and b but instead

show the EnSRFR1 ensemble, the open loop and the obser-

vations for 2009. During December and January, the ensem-

ble for Narbonne (Fig. 4d) has a similar negatively skewed

spread to Fig. 4b, which indicates that the perturbation bias is

present. The observations are wetter than the open loop dur-

ing the summer and are therefore offsetting the perturbation

bias. The opposite is true in December and January, when the

observations are drier than the open loop, which causes many

of the ensemble members to dip well below the wilting point.

The SEKFR performance is presented in Table 3. In terms

of RMSE, SEKFR performs marginally better than EnSRFR1,

while EnSRFR1 has a slightly higher ACC than SEKFR. The

SEKFR method is also affected by a negative bias, which is

Table 5. SEKFS performance for various calibrations of the

background-error scaling coefficients (λb
1

and λb
2
). The optimal

value is in bold font.

λb
1

λb
2

WG2 RMSE

(m3 m−3)× 103

0.03 0.01 2.2

0.04 0.02 1.8

0.08 0.04 2.3

0.16 0.015 2.1

about half the size of the EnSRFR1 bias. The SEKFR analysis

increments themselves introduce a negative bias through the

same mechanisms as the ensemble perturbation bias. But the

EnSRFR1 method is affected by the biases introduced by both

the ensemble perturbations and the analysis increments, and

therefore the EnSRFR1 bias is greater than the SEKFR bias.

Figure 10 a and b show contour plots of the EnSRFR1

RMSE and ACC respectively, for the range of additive per-

turbations used to calibrate the method. Figure 10 c and d

show equivalent contour plots for the SEKFR. Both perfor-

mance metrics are much more sensitive to the WG2 pertur-

bations than the WG1 perturbations, which is logical given

that the WG2 layer is much thicker than the WG1 layer.

The SEKFR results are less noisy than the EnSRFR1 results

(Fig. 10a and b) because the SEKF is not affected by the

noise associated with the finite ensemble size of the EnSRF.

The EnSRF and the SEKF were also tested with the smaller

observation error of 0.35(wfc−wwilt), but this did not signif-

icantly change the performance of the methods (not shown).

The monthly averaged and station-averaged RMSE, the

ACC and the bias are shown for the open loop, SEKFR

and EnSRFR1 in Fig. 8d–f, respectively. The RMSE in all

cases is highest in June and October (Fig. 8d), as this cor-

responds to the greatest fluctuations in soil moisture. This

is also when the most improvement over the open loop oc-

curs. The EnSRFR1 RMSE is slightly degraded relative to

the SEKFR in July and August as a result of the perturba-

tion bias during this period (evident in Fig. 8f). The superior

EnSRFR1 ACC from July to September is explained below.

The WG2 Kalman gains for EnSRFR1 and the SEKFR are

shown in Fig. 9b. The SEKFR performs better with a larger

WG2 Kalman gain than EnSRFR1. The EnSRFR1 Kalman

gain shows some seasonal variability, with the largest values

occurring at the same times as the open loop in June and Oc-

tober (Fig. 8d). The SEKFR Kalman gain is shown in Fig. 9b

before and after the limit of 1.0 imposed on the Jacobian.

The Kalman gain peaks in summer as a consequence of the

over-sensitive model Jacobian during water-stressed condi-

tions. This problem with the model Jacobian appears to ex-

plain why the EnSRFR1 ACC is higher than the SEKFR ACC

during July, August and September (Fig. 8b).
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Figure 10. Contour plot showing the EnSRFR1 (a) WG2 RMSE and (b) WG2 ACC for the range of additive inflation values used to calibrate

the EnSRFR1. (c) and (d) show the equivalent contour plots to (a) and (b) for SEKFR, with the range of background-error variances used to

calibrate SEKFR. The results are averaged over 2008–2010 and over the 12 sites.

The impact of precipitation forcing perturbations on

the EnSRF is investigated. This experiment is labelled as

EnSRFR2 in Table 3. The perturbed precipitation does not

modify the analysis performance significantly compared

with the unperturbed case (EnSRFR1). A slightly smaller ad-

ditive inflation is optimal with the perturbed forcing. This

indicates that the perturbed forcing is having a similar effect

to additive covariance inflation, but without the advantages

demonstrated for the idealized experiments (Sect. 3.2).

Finally, the bias correction scheme is tested on the En-

SRF. This experiment is labelled “EnSRFR3” in Table 3. The

large bias in Table 3 for the EnSRF without bias correc-

tion (EnSRFR1) has been approximately halved by applying

bias correction. The bias correction technique cannot cor-

rect biases introduced by the analysis increments. Therefore

EnSRFR3 is affected by a small negative bias. The ACC of

EnSRFR3 is degraded relative to EnSRFR1, which is prob-

ably related to unrealistic temporal changes in the ensemble

spread that occur as a result of the bias correction (see Fig. 7).

4 Discussion

The discussion focusses on the knowledge gained from the

experiments, referring to the four criteria set out in the intro-

duction. These are the stochastic error representation of rain-

fall errors (Sect. 4.1), the Gaussian assumptions (Sect. 4.2),

the influence of climate and texture (Sect. 4.3), and flow de-

pendence of the DA methods (Sect. 4.4). Section 4.5 dis-

cusses the influence of the choice of model on the results.

4.1 Stochastic precipitation error representation

The experiments in Sect. 3.2 were designed to assess the ad-

vantage gained by a perfect stochastic representation of pre-

cipitation uncertainty in the EnSRF over additive background

errors in the SEKF. Clearly the EnSRF benefitted from the

direct representation of the uncertainty. However, in the real

experiments the same perturbations gave no advantage to the

www.hydrol-earth-syst-sci.net/19/4811/2015/ Hydrol. Earth Syst. Sci., 19, 4811–4830, 2015



4826 D. Fairbairn et al.: Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation

EnSRF compared with additive covariance inflation alone

(compare EnSRFR2 with EnSRFR1 in Table 3).

Maggioni et al. (2011) demonstrated that soil moisture

simulations are less sensitive to rainfall uncertainty informa-

tion than the precipitation fields themselves. They attributed

this loss of information to two factors: (i) the nonlinear and

integrating nature of soil moisture models; and (ii) the dis-

sipative behaviour of soil moisture dynamics, which damp-

ens perturbations in the initial conditions. These conclusions

agree with our findings. Furthermore, the transfer of precipi-

tation uncertainty information to soil moisture depends on an

accurate land surface model. Significant model errors were

likely in this study (see Sect. 4.5).

It is likely that the precipitation errors in this study were

also underestimated. Hossain and Anagnostou (2005) esti-

mated that rainfall errors represent between 20 and 60 % of

the uncertainty in soil moisture prediction. In this study the

estimated rainfall errors only made up 10 % of the total open

loop errors. The percentage scaling in this study could not

take into account the nonstationary and intermittent nature

of precipitation errors, including the probability of missed

precipitation or false alarms. More comprehensive precipita-

tion error models have been developed which can take these

factors into account (see e.g. Clark and Slater, 2006; Hos-

sain and Anagnostou, 2006; Maggioni et al., 2011, 2012,

2014; Carrera et al., 2015). It is planned that one of these

approaches will be adopted for the Land Data Assimilation

System (LDAS) at Météo-France. The calibration of the var-

ious parameters for these rainfall error models requires con-

siderable testing.

4.2 Gaussian assumptions

In the synthetic experiments, the EnSRF was applied with

a perfect stochastic representation of the precipitation un-

certainty, while the SEKF used climatological background

errors. It is possible to determine how well the DA meth-

ods agreed with Kalman filter theory by comparing the

pdfs of the innovations (y− yo) with the sum of the back-

ground and observation-error covariances (HPb HT
+R)

(Desroziers et al., 2005). Figure 11 shows the histograms

of the innovations normalized by
√

HPb HT + R for the

EnSRFS a and the SEKFS b for the synthetic experiments.

The pdf for EnSRFS agrees very well with Kalman theory,

since it has a mean of zero and it closely fits the normal dis-

tribution (the green line). On the other hand, the pdf for the

SEKFS is flatter than the normal distribution and therefore

agrees less well with Kalman theory. This demonstrates that

without the correct specification of forcing errors, the opti-

mum calibration of the background-error covariance will not

necessarily agree with Kalman filter theory.

In the real experiment neither method had a perfect rep-

resentation of the background errors. Both methods used

an average value of HPb HT
+R about 4 times larger than
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Figure 11. Histogram of normalized innovations for the 20-member

EnSRFS (a) and the SEKFS (b) for the synthetic experiments. The

green line shows the normal distribution and the red dashed line

shows the mean.

(y− yo)2 (not shown), which indicates that the Kalman filter

assumptions were incorrect.

The nonlinearity problems manifested themselves in dif-

ferent ways for the SEKF and the EnSRF. For the SEKF, the

Jacobian between the surface and the root zone became too

large. This over-sensitivity is partly related to an unrealis-

tic feature of the modelled surface energy balance, since one

single surface temperature is used for bare soil and the veg-

etation layer (Draper et al., 2009; Mahfouf, 2014). The En-

SRF instead suffered from the perturbation bias. The expla-

nation for the perturbation bias was linked to the nonlinear

behaviour of evapotranspiration and drainage. Similar prob-

lems were encountered by Ryu et al. (2009) on the NOAH

land surface model used by the National Center for Environ-

mental Prediction (NCEP), where detailed explanations are

given. It should be noted that the nonlinear effects of wa-

ter transfers on the ensemble perturbations are highly sensi-

tive to the model and the model regime (including the layer

depths and vegetation content). Indeed, Ryu et al. (2009) dis-

covered a positive perturbation bias for their system, when

our study discovered a negative bias.

Finally, a key assumption underpinning the EnSRF is that

the ensemble size is sufficiently large to represent the errors

in the background state. An ensemble size that is too small
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results in inbreeding, where the errors in the background

state are underestimated (Houtekamer and Mitchell, 1998).

We investigated the impact of ensemble size on the EnSRF

WG2 RMSE (see Table 4). It was found that sampling errors

were only significant with ensemble sizes less than 20 mem-

bers, which is consistent with studies by Carrera et al. (2015)

and Maggioni et al. (2012). However, in all these studies

the EnKF analysis is calculated independently for each grid

point. It is likely that sampling errors would be much more

important for a 3D-EnKF approach, where background-error

covariances between grid points are taken into account, due

to the much larger number of degrees of freedom.

4.3 Influences of climate and soil texture

It was discovered in Sect. 3.1.2 that there was a strong cor-

relation between average precipitation and the magnitude of

the perturbation bias. There are two reasons for this: firstly,

the soil saturates rather quickly during precipitation events,

which reduces the ensemble spread. This in turn reduces

the perturbation bias. Secondly, more frequent precipitation

events reduce the occurrence of ensemble members dipping

below the wilting point in summer. This was confirmed by

comparing the seasonal biases and the ensemble spread over

the 12 sites (not shown). It is important to emphasize that

these results are limited to the 12 sites, and other climate

variables have not been considered.

4.4 Flow dependence

The flow dependence of the DA methods was examined by

comparing the WG2 Kalman gains. When the background

errors are larger, the Kalman gain should increase in order to

give more weight to the observations. Given the assumption

that there is no temporal evolution in the observation errors,

the Kalman gain and the open loop errors should peak at the

same time. In the synthetic experiments, the EnSRF Kalman

gains showed a similar seasonal variability to the open loop

RMSE, unlike the SEKF Kalman gains. This showed that

the EnSRF was able to capture seasonal variability in the

background errors. The EnSRF Kalman gains showed less

seasonal variability in the real experiments, possibly because

the model and forcing errors were not accurately represented.

This could explain why the EnSRF performed better than the

SEKF in the synthetic experiments but not in the real experi-

ments.

4.5 Land surface model

In this study, the nonlinearity issues were most prevalent

when the model descended below the wilting point or as-

cended above the field capacity. For this reason it may seem

intuitive to introduce lower and upper bounds at these thresh-

olds. However, water can be slowly lost through the leaves

by cuticular conductance below the wilting point or though

incomplete closure of the stomata. Soil moisture may also

temporarily increase above the field capacity before it drains

out (Mahfouf and Noilhan, 1996). These features are part of

the NIT version of the ISBA-A-gs model. Therefore, impos-

ing bounds would not be realistic. Boundary problems can

also affect the analysis. For example, Ryu et al. (2009) used

a bounded land surface model and found the model bounds

were partly responsible for the positive perturbation bias in

their study.

The SEKF and the force-restore-based ISBA-A-gs model

are currently embedded in the SURFEX platform of

Météo-France. However, the diffusion-based multi-layer

model (ISBA-DF) will soon be implemented (Decharme

et al., 2011). The soil moisture evolution of ISBA-DF is de-

termined by the mixed form of the Richards equation, rather

than the force-restore method. This is more realistic than the

force-restore method as it solves the heat and water diffusion

equations explicitly over at least five layers. Parrens et al.

(2014) compared the SEKF for a 2-layer version of the force-

store model with an 11-layer implementation of ISBA-DF.

They found that the SEKF performance was enhanced by in-

troducing multiple layers. In particular, the multi-layer model

captured the vertical profile of the root-zone soil moisture

better than the two-layer model. It will be interesting to test

the EnSRF with ISBA-DF and multiple layers. The EnSRF

flow-dependent background-error covariance may be able to

exploit the improved vertical correlations between the layers.

5 Conclusions

Twelve sites in south-western France were selected for soil

moisture DA experiments. The different sites were chosen,

in particular, for their variability in climate and soil texture,

which influence soil water transfers. The SEKF and the En-

SRF DA methods were compared in terms of their ability to

provide an accurate soil moisture analysis. The three-layer

ISBA-A-gs land surface model (Noilhan and Mahfouf, 1996;

Calvet et al., 1998) was implemented in the experiments.

This model is based on the force-restore method of Deardorff

(1977).

In the real experiments, 5 cm deep in situ observations

were assimilated and 30 cm deep observations were used to

evaluate the root-zone soil moisture analysis. The two meth-

ods performed similarly and improved on the open loop. This

accords with Muñoz Sabater et al. (2007), who compared

similar methods. However, the synthetic “identical twin” ex-

periments were designed to assess the advantage the EnSRF

could gain over the SEKF by using a perfect stochastic rep-

resentation of precipitation uncertainty. The results clearly

demonstrated an advantage in the EnSRF performance for

the idealized regime (with a perfect model and small obser-

vation errors). It might therefore be possible for the EnSRF

to perform better than the SEKF with real observations, if the

rainfall errors were accurately captured stochastically. How-

ever, this is challenging because the actual rainfall errors are
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unknown. Moreover, the transfer of precipitation uncertainty

information to soil moisture relies on the accuracy of the land

surface model. These challenges could explain why the sim-

ple rainfall error model did not improve the EnSRF soil mois-

ture analysis in the real experiments. It is recommended that

a more realistic rainfall error model is tested on the EnSRF.

This should use a lognormal distribution and take into ac-

count the intermittent and non-stationary nature of precipi-

tation errors. The EnSRF representation of model errors in

this study could also be improved. We employed the com-

mon approach of adding perturbations to the prognostic vari-

ables. Maggioni et al. (2012) demonstrated that model errors

are better represented by perturbing the model parameters in-

stead of the prognostic variables.

Both methods suffered from incorrect linear assumptions

related to the nonlinear evapotranspiration and drainage

functions: for the SEKF, the model Jacobian between the sur-

face and the root zone was over-sensitive to soil moisture

perturbations during dry conditions, and this led to excessive

analysis increments. For the EnSRF, a significant dry bias

was found, largely as a result of the ensemble perturbations

causing excessive evapotranspiration near the wilting point.

The perturbation bias was less detrimental to the sites with

wetter climates because precipitation forces the soil moisture

above the wilting point and reduces the ensemble spread.

A bias correction scheme was tested on the EnSRF. Al-

though this removed the perturbation bias, it led to spurious

increases in drainage and evapotranspiration water fluxes, in-

duced by the wetter soil moisture states. Consequently it re-

duced the ensemble spread and degraded the analysis. For

many applications, such as hydrology, the water fluxes can

be as important as the soil moisture states. Therefore it would

be inappropriate to use this bias correction scheme when cou-

pling LDAS with a hydrological model, which requires accu-

rate drainage inputs.

A disadvantage with the EnSRF is the computational bur-

den and sampling error associated with the ensemble. How-

ever, there is evidence to suggest that a large ensemble size is

not necessary for land surface models. In this study, there was

no significant advantage gained by using more than 20 mem-

bers, which is consistent with studies by Carrera et al. (2015)

and Maggioni et al. (2012).

Although this study was implemented on sites with various

soil textures, only the grassland vegetation type was present,

and the root-zone depth was relatively shallow. It will be im-

portant to test the EnSRF over the French domain, which is

much more variable in terms of vegetation, soil texture and

climate. The EnSRF will also be tested on a more realistic

multi-layer diffusion-based model (Decharme et al., 2011).

In our experiments the EnSRF flow-dependent background-

error covariance was able to capture the seasonal variabil-

ity in the background errors, which was not evident with the

SEKF. The EnSRF covariance also has greater potential to

exploit improvements in the model physics.

Finally, the SEKF and the EnSRF methods in this study

were calibrated using the same observation source as the as-

similated observations (albeit at different depths). Therefore

we acknowledge that the results in this study will not neces-

sarily apply to sites where these observations are not avail-

able for calibration. In the case of independent data sources,

the triple colocation approach might be preferable to rescal-

ing the observations to match the model mean and standard

deviation, as this rescales data sets using three independent

estimates of the same variable (see e.g. Tugrul Yilmaz and

Crow , 2013).

The Supplement related to this article is available online

at doi:10.5194/hess-19-4811-2015-supplement.
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