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Abstract. The scientific initiative Prediction in Ungauged

Basins (PUB) (2003–2012 by the IAHS) put considerable ef-

fort into improving the reliability of hydrological models to

predict flow response in ungauged rivers. PUB’s collective

experience advanced hydrologic science and defined guide-

lines to make predictions in catchments without observed

runoff data. At present, there is a raised interest in applying

catchment models to large domains and large data samples

in a multi-basin manner, to explore emerging spatial patterns

or learn from comparative hydrology. However, such mod-

elling involves additional sources of uncertainties caused by

the inconsistency between input data sets, i.e. particularly

regional and global databases. This may lead to inaccurate

model parameterisation and erroneous process understand-

ing. In order to bridge the gap between the best practices

for flow predictions in single catchments and multi-basins

at the large scale, we present a further developed and slightly

modified version of the recommended best practices for PUB

by Takeuchi et al. (2013). By using examples from a recent

HYPE (Hydrological Predictions for the Environment) hy-

drological model set-up across 6000 subbasins for the Indian

subcontinent, named India-HYPE v1.0, we explore the PUB

recommendations, identify challenges and recommend ways

to overcome them. We describe the work process related to

(a) errors and inconsistencies in global databases, unknown

human impacts, and poor data quality; (b) robust approaches

to identify model parameters using a stepwise calibration ap-

proach, remote sensing data, expert knowledge, and catch-

ment similarities; and (c) evaluation based on flow signatures

and performance metrics, using both multiple criteria and

multiple variables, and independent gauges for “blind tests”.

The results show that despite the strong physiographical gra-

dient over the subcontinent, a single model can describe the

spatial variability in dominant hydrological processes at the

catchment scale. In addition, spatial model deficiencies are

used to identify potential improvements of the model con-

cept. Eventually, through simultaneous calibration using nu-

merous gauges, the median Kling–Gupta efficiency for river

flow increased from 0.14 to 0.64. We finally demonstrate the

potential of multi-basin modelling for comparative hydrol-

ogy using PUB, by grouping the 6000 subbasins based on

similarities in flow signatures to gain insights into the spatial

patterns of flow generating processes at the large scale.

1 Introduction

Numerical hydrological models have been used worldwide

for operational needs and scientific research since the early

1970s (e.g. Hrachowitz et al., 2013; Pechlivanidis et al.,

2011; Refsgaard et al., 2010; Singh, 1995). The Prediction

in Ungauged Basins (PUB) initiative of the International As-

sociation of Hydrological Sciences (IAHS) was launched

in 2003 to improve the reliability of models at ungauged

regions, overcome the fragmentation in catchment hydrol-

ogy, and advance the collective understanding (Sivapalan et

al., 2003). PUB highlighted the need to (1) characterise the

data and model information content, (2) examine the ex-

tent to which a model can be reconciled with observations,

and (3) point towards model structural improvements (Gupta

et al., 2008). In this regard, several approaches (e.g. multi-

objectives, signature measures, information-based metrics,

subperiod evaluation) have been applied to reveal significant

information about the hydrological systems and indicate per-

ceived model structural errors (Hrachowitz et al., 2013). The

use of parameter constraints has also been a significant ad-
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vancement since such an approach can increase model con-

sistency and reliability (Bulygina et al., 2009; Hrachowitz et

al., 2014). Constraints are generated by independent infor-

mation via either additional data, i.e. remote sensing, trac-

ers, quality, multiple-variables, etc. (Arheimer et al., 2011;

Finger et al., 2011; McDonnell et al., 2010; McMillan et al.,

2012; Samaniego et al., 2011), and/or expert knowledge (Bu-

lygina et al., 2012; Fenicia et al., 2008; Gao et al., 2014).

It is apparent that the PUB community made significant

progress towards these scientific objectives; however, the in-

vestigations were normally conducted at only one or a lim-

ited number of catchments (Hrachowitz et al., 2013). Such

an approach is indeed focused on detailed process investi-

gation but is limited when it comes to generalisation of the

underlying hydrological hypotheses; to advance science in

hydrology, much can be gained by comparative hydrology

to search for robustness in hypotheses (Blöschl et al., 2013;

Falkenmark and Chapman, 1989). The need to improve pro-

cess understanding via large sample hydrology has also been

highlighted in the new 2013–2022 IAHS scientific initia-

tive named Panta Rhei – Everything Flows (Montanari et al.,

2013).

Multi-basin modelling at the large scale complements the

“deep” knowledge from single catchment modelling, whilst

the current release of open and global data sets has given new

opportunities for catchment hydrologists to contribute (An-

dreassian et al., 2006; Arheimer and Brandt, 1998; Gupta et

al., 2014; Johnston and Smakhtin, 2014). Hydrological mod-

elling at the large scale has the potential to encompass many

river basins, cross-regional and international boundaries and

represent a number of different physiographic and climatic

zones (Alcamo et al., 2003; Raje et al., 2013; Widén-Nilsson

et al., 2007). Application of multi-basin modelling at the

large scale can be used to predict the hydrological response

at interior ungauged basins (Arheimer and Lindström, 2013;

Donnelly et al., 2015; Samaniego et al., 2011; Strömqvist et

al., 2012). The use of a large sample of gauges can also allow

for exploration of emerging patterns (e.g. climate change im-

pacts) and facilitate comparative hydrology allowing to test

hypotheses for many catchments with a wide range of envi-

ronmental conditions (Blöschl et al., 2013; Donnelly et al.,

2015; Falkenmark and Chapman, 1989).

Modelling at the large scale, however, includes additional

model uncertainties. Physical properties (e.g. topography,

vegetation, and soil type) in large systems generally show

higher spatial variability and thus larger heterogeneity in

system behaviour (Coron et al., 2012; Sawicz et al., 2011),

which in turn affects model parameters (Kumar et al., 2013).

In addition, large river basins are often strongly influenced by

human activities, such as irrigation, hydropower production,

and groundwater use, for which information is rarely avail-

able at high resolution in global databases. This introduces

additional uncertainty regarding process understanding and

description at the large scale. Moreover, the topographic and

forcing data of global data sets (i.e. water divides, weather

and climatic data) are more likely to be inconsistent, erro-

neous, and/or only available at a coarse resolution (Donnelly

et al., 2013; Kauffeldt et al., 2013).

Applying catchment models at the continental scale in a

multi-basin manner is a way to introduce catchment mod-

elling approaches to the existing global hydrological models,

i.e. land-surface schemes and global water-allocation con-

cepts. In this paper, we pose the following scientific ques-

tions: (1) to what extent are the PUB recommendations for

catchment scale also relevant for hydrological modelling at

the large scale? (2) How have the scientific advancements

during the PUB decade improved the potential for process-

based hydrological modelling at the large scale? To address

these questions, we (a) identify specific challenges at the

large scale (uncertain/erroneous basin delineation and rout-

ing, errors in global data sets, human impact; i.e. reser-

voirs/dams) and exemplify how to overcome them, (b) fur-

ther develop and modify the PUB best practices to be ap-

plicable at the large scale, (c) illustrate the improvement on

parameter identification by using remote sensing data and

expert knowledge, (d) cluster catchments based on physio-

graphic similarity and their hydrological functioning, (e) en-

sure model reliability using flow signatures and temporal

variability of multiple modelled variables, (f) detect links

between model performance and physiographical character-

istics to understand model inadequacies along the gradient,

and finally (g) discuss how process understanding can ben-

efit from multi-basin modelling and what hydrological in-

sights can be gained by analysing spatial patterns from large-

scale predictions in ungauged basins. We use examples from

the recent HYPE (Hydrological Predictions for the Environ-

ment) model set-up of the Indian subcontinent, which expe-

riences unique and strong hydroclimatic and physiographic

characteristics and poses extraordinary scientific challenges

to understand, quantify, and predict hydrological responses.

2 Best practices from PUB when modelling

multi-basins at the large scale

Takeuchi et al. (2013) recommend a six-step procedure for

predicting runoff at locations where no observed runoff data

are available (Fig. 1a). This best practice recommendation

is intended for single catchments and requires modification

when applied to multi-basins at the large scale (Fig. 1b). Big

data sets are subject to uncertainty and identification of er-

rors is usually time-consuming. Analysing each data set or

catchment may be impractical and incurs the risk focusing

on details instead of the most crucial overall hydrological

functioning across the model domain. We therefore recom-

mend starting with a top-down approach in which the model

is set up directly before proceeding with the PUB recommen-

dations (circle of steps in Fig. 1). The hydrological model

needs to include the description of most water fluxes, storage,

and anthropogenic influences that can be relevant and satisfy
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the modelling objectives. In addition, we recommend using a

model that is familiar to the modeller and open for changes,

allowing coherent hydrological interpretations and code ad-

justments to cope with the region’s spatial heterogeneity and

hydrological features. Setting up the model system includes

(i) acquiring readily available data sets that cover the entire

geographical domain or merge data sets to get a full cov-

erage; (ii) defining calculation points and river network, by

taking into account the location of gauges, major landscape

features, user requests, catchment borders and routing; and

(iii) making a first set of model input-data files and making

the first model run for the model domain with a multi-basin

resolution. The analysis of results from the first model run

will indicate major obstacles, such as systematic errors in in-

put data or model structural limitations. Moreover, by having

the technical system in place immediately facilitates an incre-

mental and agile approach to model set-up, with direct feed-

back on model performance at many gauges. We then recom-

mend starting to improve the performance according to the

six steps of best practices for predictions in ungauged basins,

using a bottom-up approach to refine input data, model struc-

ture, and parameter values.

2.1 Read the landscape

Go out to your catchment, look around. . . !

(Blöschl et al., 2013, p. 385)

It is practically impossible to visit all of the basins in a

large-scale domain, so instead we recommend to (i) navi-

gate on hard-copy maps, digitised maps, and on the Web (e.g.

Google Earth) to check landscape characteristics; (ii) review

the literature for dominant processes and well-known fea-

tures or hydrological challenges in the region; (iii) proceed

with quality checks and cross-validations with other data

sources (i.e. sources that are limited in space but contain local

information); (iv) validate the basin delineation and routing

using archived metadata from other available data sets; (v)

check the quality of observed discharge data to assure coher-

ence of time series; and, finally, (vi) check the spatiotemporal

information of meteorological data sets after transformation

from the grid to the subbasin scale. It is important to get an

understanding of the entire domain and ensure that the data

sets correspond to this understanding, hence tackling system-

atic errors in the data.

2.2 Runoff signatures and processes

Analyse all runoff signatures in nearby catchments

to get an understanding. . . ! (Blöschl et al. 2013,

p. 385)

Detailed inspection of flow signatures for each gauging

station, from large data sets (often in the range a thousand

stations; see http://hypeweb.smhi.se/), is best done by using

clustering techniques to discover spatial similarities (Sawicz

et al., 2011). It is then important to use many flow signatures

for each site to fully capture the characteristics of the hydro-

graphs. We also recommend searching for statistical relation-

ships between the observed flow signatures and basin charac-

teristics (both physiography and human alteration) across the

model domain. This will increase our understanding of the

dominant processes and fitness of the model structure (Don-

nelly et al., 2015).

2.3 Process similarity and grouping

. . . find similar gauged catchments to assist in pre-

dicting runoff in the ungauged basin! (Blöschl et

al. 2013, p. 385)

In most process-based models, the modeller has some free-

dom to define the characteristics of the smallest calculation

units, which are normally linked to physiography to account

for spatial distribution of for instance soil properties or land

use. When producing these calculation units both technical

(e.g. computational efficiency) and conceptual (e.g. restric-

tions with the number of classes) concerns must be taken

into account. However, lakes, wetlands, glacier, and urban

areas should be respected since even small proportions can

significantly alter the flow regime. When calculation units

are defined, we recommend clustering the basins/gauges with

similar upstream characteristics and/or system behaviour to

isolate key processes for regionalisation of parameter values

during calibration. We finally suggest checking the spatial

distribution by plotting the catchment characteristics of sub-

basins on maps and comparing them to the original or other

data sources.

2.3.1 Quality checks

This is an additional step in the procedure accounting for rep-

etition of steps 1–3 in an iterative way to ensure quality in

the required input data and files of the model prior to pa-

rameter tuning (Fig. 1); it is easy to make mistakes and in-

troduce errors when handling large data sets with automatic

scripts (the generalisation of scripts is not always straightfor-

ward and some manual adjustment is usually required) and/or

by human error (particularly when many modellers collabo-

rate), which can lead to erroneous assumptions on hydrolog-

ical processes during calibration. We recommend analysing

flow time series as follows: (i) compare modelled to observed

time series and signatures, (ii) check water-volume errors and

their distribution in space, (iii) inspect the spatial distribution

of model dynamics to correct spatial patterns from systematic

errors, and (iv) search for errors in the model set-up (routing,

meteorological input, etc.).

2.4 Model – right for the right reasons

Build. . . model for the signature of inter-

est. . . regionalise the parameters from similar
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Figure 1. Best practices for predictions in ungauged basins: (a) according to Fig. 13.1 by Takeuchi et al. (2013) in Blöschl et al. (2013);

(b) modified version for multi-basin applications at the large scale.

catchments. . . more information than the hydro-

graph. . . ! (Blöschl et al., 2013, p. 385)

Here, it is crucial that the model structure represents the

modeller’s perception of how the hydrological system is or-

ganised and how the various processes are interconnected.

For the model set-up to be “right for the right reasons”, we

recommend to: (i) constrain relevant parameters to alterna-

tive data rather than just to time series of river discharge

(e.g. snowmelt parameters to snow depths, evapotranspira-

tion parameters to data from flux towers and satellites) or

select a subset of gauges representing different flow gener-

ating processes; (ii) apply expert knowledge when analysing

internal variables to ensure that the model structure reflects

the understanding of flow paths and their interconnections;

(iii) change the model algorithms or structure if tuning of

parameters is not enough to reflect the perception of the hy-

drological system; (iv) include specific rating curves of lakes

and reservoirs wherever available, and tune parameters for ir-

rigation and dam regulation to fit the flow dynamics at down-

stream gauges; and (v) if possible assimilate observed data,

e.g. snow, upstream discharge, and regulation rules in reser-

voirs.

2.5 Hydrological interpretation

Interpret the parameters. . . and justify their values

against what was learnt during field trips and other

data. . . ! (Blöschl et al., 2013, p. 385)

Although, hydrological interpretation has been present in

every step of the model set-up procedure described here, this

step includes the overall synthesis and analysis of results both

at the large scale and for single catchments in the multi-basin

approach. For spatial interpretation, we recommend plotting

maps with multi-basin outputs for several variables, perfor-

mance criteria, and signatures across the model domain. This

allows checking the model’s coherency at various landscape

features, e.g. spatial patterns of vegetation, geology, climate,

population density, and human alterations. The objective is

to understand the drivers that influence flow, find rational

reasons behind the hydrological heterogeneity, and identify

knowledge gaps or model limitations. For temporal interpre-

tation, we recommend plotting time series for some basins

in each group of similar landscape units and catchment re-

sponse. This is to make sure that the model reflects our per-

ception and assists to better understand the dominant drivers

of the flow generation processes and water dynamics in the

region.

2.6 Uncertainty – local and regional

. . . by combining error propagation methods, re-

gional cross-validation and hydrological interpre-

tation. . . ! (Blöschl et al., 2013, p. 385)

Multi-basin models are more computationally demanding

than single-basin models and it is therefore not always fea-

sible to explicitly address all uncertainties from all sources.

To explore the model performance in ungauged basins, we

recommend dividing the set of gauging stations into those

used in calibration and independent “blind-tests”, respec-

tively. Cross-validation, e.g. using the jackknife procedure

(Good, 2006), is practically difficult in process-based mod-

elling of multi-basins. To examine uncertainties we recom-

mend to (i) use several performance (diagnostic) criteria and

many flow signatures, (ii) relate the spatial distribution of

model performance to physiographical variables, and (iii)

check model performance for independent gauging sites and

new data sets.

The major spatiotemporal deviations found between mod-

elled and observed data should be the focus for the next round

in the cycle of steps for better predictions. We recommend

reading the landscape and searching for local knowledge,

again, to elaborate new hypotheses of hydrological function-

ing and data sources. We also recommend documenting and

version-managing each model set-up before looping into step

1, to ensure knowledge accumulation for a broader audience
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and to make the set-up process transparent. This sets a base-

line for the next round of improvements.

3 Data and methods

3.1 Study area and data description

India is considered the seventh largest country by area and

the second-most populous country with over 1.2 billion peo-

ple. The country covers an area of about 3.3 million km2

and some of its river basins expand over several countries

in the area (i.e. China, Nepal, Pakistan, and Bangladesh;

see Fig. 2). The spatiotemporal variation in climate is per-

haps greater than in any other area of similar size in the

world. The climate is generally strongly influenced by the Hi-

malayas and the Thar Desert in the northwest, both of which

contribute to drive the summer and winter monsoons (Attri

and Tyagi, 2010). Four seasons can be distinguished: winter

(January–February), pre-monsoon (March–May), monsoon

(June–September), and post-monsoon (October–December).

The temperature varies between seasons ranging from mean

temperatures of about 10 ◦C in winter to about 32 ◦C in the

pre-monsoon season. In terms of spatial variability, the rain-

fall pattern roughly reflects the different climate regimes

of the country, which vary from humid in the northeast

(rainfall occurs about 180 days year−1), to arid in Rajasthan

(20 days year−1). Accordingly, river flow shows large spatial

and seasonal variability across the subcontinent (Fig. 2b),

e.g. the Ganges River has an intra-annual amplitude in

monthly river discharge of 50 000 m3 s−1.

For the hydrological model set-up, we use global data sets

to extract the input data (see Table 1). APHRODITE (Asian

Precipitation - Highly Resolved Observational Data Integra-

tion Towards Evaluation of the Water Resources; Yatagai et

al., 2009, 2012) and AphroTEMP (Yasutomi et al., 2011) are

the only long-term continental-scale data sets that contain a

dense network of daily data (here only daily precipitation and

mean temperature are required) for Asia including the Hi-

malayas. Data of land use and soil type were aggregated into

fewer classes than in the original databases. Discharge data

are available from the Global Runoff Data Centre (GRDC) at

42 sites, limited to monthly values in the period 1971–1979.

More discharge data are held in the Indian government agen-

cies but are not accessible to the public. Consequently, in this

application, flow information (Table 2) is available only for

a small fraction of the subcontinent, which makes the region

a great example for PUB. Monthly potential evapotranspira-

tion (pot. E) data were obtained for the period 2000–2008

from the Moderate Resolution Imaging Spectroradiometer

(MODIS) global data set (Mu et al., 2007, 2011). The data

set covers the domain in a spatial resolution of 1 km and is

derived based on the Penman–Monteith (Penman, 1948) ap-

proach.

Water divides and catchment characteristics were ap-

pointed for each subbasin by using the World Hydrological

model Input Set-up Tool (WHIST; http://hype.sourceforge.

net/WHIST/). This is a spatial information tool from SMHI

(Swedish Meteorological and Hydrological Institute) to

transform data and create input files for hydrological mod-

els, from different types of databases. From the information

of topographic databases, for example, WHIST can delin-

eate the subbasins and the linking (routing) between them.

This is also the tool for allocating information of soil, veg-

etation, surface water, regulation and irrigation to each cal-

culation unit. For the Indian subcontinent, we chose to work

with some 6000 points for calculations of runoff in the river

network (i.e. 6000 subbasins).

3.2 A multi-basin hydrological model for large-scale

applications – the HYPE model

The HYPE model is a dynamic rainfall–runoff model which

describes the hydrological processes at the catchment scale

(Lindström et al., 2010). The model represents processes

for snow/ice, evapotranspiration, soil moisture and flow

paths, groundwater fluctuations, aquifers, human alterations

(reservoirs, regulation, irrigation, abstractions), and routing

through rivers and lakes. The HYPE source code is con-

tinuously developed and released in new versions for open

access at http://hype.sourceforge.net/, where also model de-

scriptions, manuals, and file descriptions can be downloaded.

HYPE is most often run at a daily time step and simu-

lates the water flow paths in soil for hydrological response

units (HRUs), which are defined by gridded soil and land-

use classes and can be divided in up to three layers with a

fluctuating groundwater table. The HRUs are further aggre-

gated into subbasins based on topography. Elevation is also

used to get temperature variations within a subbasin to influ-

ence the snowmelt and storage as well as evapotranspiration.

Glaciers have a variable surface and volume, while lakes are

defined as classes with specified areas and variable volume.

Lakes receive runoff from the local catchment and, if located

in the subbasin outlet, also the river flow from upstream sub-

basins. On glaciers and lakes, precipitation falls directly on

the surface and water evaporates at the potential rate. Each

lake has a defined depth below an outflow threshold. The

outflow from lakes is determined by a general rating curve

unless a specific one is given or if the lake is regulated. Reg-

ulated lakes and man-made reservoirs are treated equally but

a simple regulation rule can be used, in which the outflow is

constant or follows a seasonal function (as it is often the case

with hydropower) for water levels above the threshold. A rat-

ing curve for the spillways can be used when the reservoir is

full.

Irrigation is simulated based on crop water demands calcu-

lated either with the FAO-56 crop coefficient method (Allen

et al., 1998) or relative to a reference flooding level for sub-

merged crops (e.g. rice). The demands are withdrawn from
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Figure 2. (Left) Map of the Indian subcontinent (model domain). Results will be shown from investigation areas with a star in the order of

their numbering. (Right) Annual cycles (1971–1979) at four river systems (a–d) of various climate (P – observed precipitation, Act. E –

modelled actual evapotranspiration, Q – observed discharge).

Table 1. Data sources and characteristics of the India-HYPE v.1.0 model set-up.

Characteristic/data type Information/name Provider

Total area (km2) 4.9 million –

Number of subbasins 6010 (mean size 810 km2) –

Topography (routing and delineation) HydroSHEDS (15 arcsec) Lehner et al. (2008)

Soil characteristics Harmonised World Soil Database (HWSD) Nachtergaele et al. (2012)

Land-use characteristics Global Land Cover 2000 (GLC2000) Bartholomé et al. (2002)

Reservoir and dam Global Reservoir and Dam database (GRanD) Lehner et al. (2011)

Lake and wetland Global Lake and Wetland Database (GLWD) Lehner and Döll (2004)

Agriculture

Irrigation

MIRCA2000

Global Map of Irrigation Areas (GMIA)

Portmann et al. (2010)

Siebert et al. (2005)

Siebert et al. (2010)

Discharge Global Runoff Data Centre (GRDC; 42 stations) http://www.bafg.de/GRDC

Precipitation APHRODITE (0.25◦× 0.25◦ ) Yatagai et al. (2012)

Temperature AphroTEMP (0.5◦× 0.5◦) Yasutomi et al. (2011)

Potential E MODIS pot. E (1 km) Mu et al. (2011)

rivers, lakes, reservoirs, and/or groundwater within and/or

external to the subbasin where the demands originated and

are constrained by the water available at these sources. Af-

ter subtraction of conveyance losses, the withdrawn water is

applied as additional infiltration to the irrigated soils. The

agriculture and irrigation data sets (see Table 1) are used to

define irrigated area, crop types, growing seasons, crop co-

efficients, irrigation methods and efficiencies, and irrigation

sources. The irrigation parameters regulating water demand

and abstraction are usually manually calibrated using dis-

charge stations in irrigation-dominated areas.

River discharge is routed between the subbasins along the

river network and may also pass subbasins, flow laterally in

the soil between subbasins or interact with a deeper ground-

water aquifer in the model. For the study in this paper, the

HYPE model version 4.5.0 was set up for the entire Indian

subcontinent (4.9 million km2)with a resolution of 6010 sub-

basins, i.e. on average 810 km2, and is referred to as India-

HYPE version 1.0.

3.3 Model calibration and regionalisation

The calibration objective was to derive a reliable model ad-

equately representing the temporal dynamics of flow (high

flows, timing, variability, and volume) across the Indian river

systems. With such a model set-up, we can identify spatial

patterns of hydrologic similarity across the subcontinent and

also analyse impacts of environmental change on water re-

sources. The HYPE model has many rate coefficients, con-

stants, and parameters which in theory can be adjusted, but in

practice about 20 of them are tuned during calibration. Many

of the parameters are linked to physiographic characteristics

in the landscape, such as soil type and depth (soil depen-

Hydrol. Earth Syst. Sci., 19, 4559–4579, 2015 www.hydrol-earth-syst-sci.net/19/4559/2015/

http://www.bafg.de/GRDC


I. G. Pechlivanidis and B. Arheimer: Large-scale hydrological modelling 4565

Table 2. Statistics for the 42 gauging stations of river discharge used in the model evaluation.

Percentiles

5 % 25 % Median 75 % 95 % Mean

Basin surface (km2) 2062 12 691 32 770 68 522 294 524 75 493

Mean annual runoff (Qm, mm) 40 168 377 648 2090 582

Inter-annual∗ variability of runoff (%) 20 28 40 61 102 48

∗ Values of inter-annual variability correspond to coefficients of variation calculated on 9-year periods.

dent parameters) or vegetation (land-use-dependent parame-

ters), while others are assumed to be general to the entire do-

main (general parameters) or specific to a defined region or

river (regional parameters). Parameters for each HRU are cal-

ibrated for representative gauged basins and then transferred

to similar HRUs, which are gridded at a higher resolution

than the subbasins across the whole domain to account for

spatial variability in soil and land use. Using the distributed

HRU approach in the multi-basin concept is thus one part of

the regionalisation method for parameter values. Some other

parameters, however, are either estimated from literature val-

ues and from previous modelling experiences (a priori val-

ues) or identified in the (automatic or manual) calibration

procedure. Slightly different methods for regionalisation of

parameter values have been used when setting up the differ-

ent HYPE model applications, depending on access to gaug-

ing stations, additional data sources, and expert knowledge.

The following procedure was used for India-HYPE v.1.0.

3.3.1 Stepwise, iterative calibration of parameter

groups

To tackle, to a certain extent, the equifinality problem in

this processed-based model, the parameters (general, soil-

and land-use-dependent, specific or regional) are calibrated

in a progressive way, i.e. stepwise calibration (Arheimer and

Lindström, 2013) using different subsets of the gauging sta-

tion in each step. In this way, errors induced by inappropriate

parameter values in some model processes are not compen-

sated for by introducing errors in other parts of the model.

Hence, groups of parameters responsible for certain flow

paths or processes (e.g. soil water holding capacity) are cali-

brated first and then kept constant when the second group of

parameters (e.g. river routing) is calibrated. However, step-

ping downstream along the model code includes some recon-

sideration about chosen parameter values in an iterative pro-

cedure. For each step and group of parameters, a subset of

representative gauging stations is used in simultaneous cal-

ibration, which means that no gauging station is calibrated

individually. This is to get parameters that are robust also for

ungauged basins. Model performance in specific sites is thus

traded against average performance across the full model do-

main or regions.

For the Indian subcontinent, the following groups of

HYPE parameters were calibrated stepwise: (i) general pa-

rameters (e.g. precipitation and temperature correction fac-

tors with elevation), which significantly affect the water bal-

ance in the system, snowpack and distribution, and regional

discharge; (ii) soil- and land-use-dependent parameters (e.g.

field capacity and rate of potential evapotranspiration), which

can influence the dynamics of the flow signal, groundwater

levels, and transit time; (iii) regional parameters, which are

applied as multipliers to some of the general soil and land-

use parameters and may be seen as downscaling parameters

as they compensate for the scaling effects and/or other types

of uncertainty. The multipliers are either specific for a region

or a river basin.

3.3.2 Expert knowledge for parameter constraints

During this progressive stepwise calibration approach, con-

straints based on expert knowledge and basin similarity are

introduced. As an example, we apply a constraint imposed on

the mactrsm soil dependent parameter (mactrsm is the thresh-

old soil water for macropore flow and surface runoff). In the

first run, during the calibration procedure the parameter is al-

lowed to vary freely within the parameter range and all distri-

butions for the soil types are acceptable (unconstrained sets).

We then apply expert knowledge on the parameter distribu-

tion and agree that a model will only be retained as feasible

if it can satisfy the following constraint:

mactrsmCoarse>mactrsmMedium>mactrsmFine.

The mactrsm values for the remaining two soil types in the

India-HYPE model domain, i.e. organic and shallow, are ex-

pected to be close to the corresponding values for the coarse

soil, although the value for shallow soil is constrained to be

less than mactrsm for organic soils.

3.3.3 Spatial clustering based on catchment similarities

We assume hydrologic similarity across the region on the ba-

sis of similarity in physiographic characteristics. We applied

a k-means clustering approach within the 17-dimensional

space, consisting of five soil types, seven land-use types,

mean annual precipitation, mean temperature, mean slope,

mean elevation, and basin area. This separated the subbasins
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into homogeneous classes. A silhouette analysis was used to

overcome the subjectivity on the determination of the num-

ber of clusters. The catchment similarity approach signifi-

cantly reduces the number of parameters, while it allows for

regionalisation of parameters, which are assumed to be ro-

bust enough also for ungauged basins.

3.3.4 Spatiotemporal calibration and evaluation

India-HYPE was calibrated and evaluated in a multi-basin

approach by considering the median performance in all se-

lected stations. Thirty stations were selected for model cal-

ibration and 12 “blind” stations for spatial validation. The

years 1969–1970 are used as a model warm-up period, the

next 5 years for model calibration (1971–1975) and the final

4 years for temporal performance evaluation (1976–1979).

The differential-evolution Markov-chain (DE-MC; Ter

Braak, 2006) optimisation algorithm is used to explore the

feasible parameter space and to investigate parameter sensi-

tivity. DE-MC was applied at each step of the iterative cal-

ibration procedure (to optimise the general, soil- and land-

use-dependent, and regional parameters) with 200 genera-

tions of 100 parallel chains each being explored. The Kling–

Gupta efficiency, KGE (Gupta et al., 2009), was used to de-

fine the performance of the model towards the observed dis-

charge. KGE allows for a multi-objective perspective by fo-

cusing on separately minimising the correlation (timing) er-

ror, variability error, and bias (volume) error. We also inves-

tigated the relative influence of timing, variability and vol-

ume error on the KGE value. To do this, we transformed the

three components to result into a consistent range of possible

values (the metrics are named cc, alpha and beta correspond-

ing to timing, variability and volume errors, respectively; see

Appendix A).

3.4 Evaluation beyond standard performance metrics

3.4.1 Evaluation based on flow signatures

The model was further evaluated on its ability to capture spa-

tial and temporal variability in discharge by comparing mod-

elled flow signatures and monthly simulations with observed

data. Here, three flow signatures are calculated for each gaug-

ing station to illustrate the different aspects of the flow vari-

ability and the hydrograph characteristics (Appendix A): the

mean annual specific runoff (Qm, mm yr−1), the normalised

high flow statistic (q05, –), and the slope of the flow duration

curve (mFDC, –).

3.4.2 Multi-variable evaluation

To judge model credibility, observed variables other than

river discharge are used, for instance from satellite prod-

ucts. For India-HYPE, these included evaluations against the

estimated areal extent of snow and the snow water equiva-

lent from the GlobSnow system and potential evapotranspi-

ration (pot. E) from the MODIS system. The assumption is

that MODIS pot. E can be used as reference to calibrate

the HYPE parameters that control pot. E; this refers only

to the cevp land-use-dependent parameter, which is a coef-

ficient of potential evapotranspiration (mm d−1 ◦C−1) (Lind-

ström et al., 2010). The cevp parameter was optimised for

each land-use type so that the HYPE modelled annual pot.

E matches the MODIS annual pot. E at the entire model do-

main. A Monte Carlo uniform random search was used to

explore the feasible cevp parameter space (constant for each

land-use type; 0.15–0.30) and to investigate parameter iden-

tifiability and interdependence (10 000 samples). The root

mean square error (RMSE) and absolute bias (Bias) were

used as objective functions in this analysis; 0 values indicate

a perfect model with no errors for both criteria. Note that

the analysis was conducted in the 2000–2008 period during

which MODIS data were available. We therefore assume that

the cevp parameter is static in time and representative also for

the 1971–1979 period.

3.4.3 Linking performance to physiographical

characteristics

To better understand the model performance and identify po-

tential for model improvements, we apply classification and

regression trees (CART; Breiman et al., 1984). CART is a

recursive-partitioning algorithm that classifies the space de-

fined by the input variables (i.e. physiographic–climatic char-

acteristics) based on the output variable (i.e. KGE model

performance). The tree consists of a series of nodes, where

each node is a logical expression based on a similarity met-

ric in the input space (physiographic–climatic characteris-

tics). In this case, we divided the KGE performance into

three groups, bad (KGE < 0.4), medium (0.4 < KGE < 0.7),

and good (KGE > 0.7), which were termed C0, C1, and C2,

respectively. A terminal leaf exists at the end of each branch

of the tree, where the probability of belonging to any of the

three output groups can be inspected. Here we summarised

the physiographic–climatic characteristics of the basin into

five soil types (coarse, medium, fine, organic, and shallow),

seven land-use types (crops, forest, open land with vegeta-

tion, urban, bare/desert, glacier, and water), mean annual pre-

cipitation, and mean temperature.

3.5 Catchment functioning across gradients

We finally explored the spatial runoff patterns across the

entire subcontinent by analysing the flow characteristics in

all 6000 catchments modelled. Here, we used the modelled

discharge and calculated 12 flow signatures for each sub-

basin (see Appendix A): mean annual specific discharge

(mm yr−1), range of Pardé coefficient (–), slope of FDC (–

), normalised low flow (–), normalised high flow (–), coeffi-

cient of variation (–), flashiness defined as 1−autocorrelation

(–), normalised peak distribution (–), rising limb den-
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sity (–), declining limb density (–), long-term mean dis-

charge (m3 s−1), and normalised relatively low flow (–). We

then applied a k-means clustering approach within the 12-

dimensional space (consisting of the 12 calculated flow sig-

natures) to categorise the subbasins based on their combined

similarity in flow signatures. Through the mapping of the

spatial pattern we gained insight into the similarities of catch-

ment functioning and could identify the dominant flow gen-

erating processes for specific regions. To further highlight the

hydrological insights gained during model identification, we

conducted the clustering analysis on two different steps of the

model calibration and explored the sensitivity of calibration

on the spatial patterns of flow signatures.

4 Results and discussion

The very first model set-up to establish a technical model

infrastructure of the Indian subcontinent showed very poor

model performance, with an average and median KGE for

all stations of −0.02 and 0.0, respectively. This performance

was expected while it set the baseline for further improve-

ments following the six steps of the modified PUB best prac-

tices.

4.1 Read the landscape

Background knowledge was firstly acquired via visual and/or

numerical analysis of available maps that describe the spa-

tial patterns of land use, soil, and climate, as well as via

the study of the scientific literature on regional hydrologi-

cal investigations, which enabled identification of dominant

physical processes and flow paths. Such soft information was

useful for turning processes on/off and selecting relevant al-

gorithms, e.g. for management and snow melting. Commu-

nication with local scientists (i.e. governmental hydrological

institutes), managers (i.e. regional water authorities) and end-

users (i.e. agricultural sector) enabled knowledge exchange

and justified the model approach. Three extensive field trips

provided important soft information about system behaviour

in the semi-arid northwest and humid subtropical northeast-

ern parts of the country (i.e. identification of irrigation water

sources for agricultural needs and estimation of water losses

due to faults in the irrigation systems).

Analyses of the topographic data were of major impor-

tance since they affected the subbasin delineation and rout-

ing. Although HydroSHEDS (Hydrological data and maps

based on SHuttle Elevation Derivatives at multiple Scales) is

based on high-resolution elevation layers, which are hydro-

logically conditioned and corrected, there are still many er-

rors. Merging HydroSHEDS with GRDC (hence forcing the

delineation at subbasins where GRDC stations are available)

involved some mismatches in terms of the size of upstream

areas between the subbasin delineations and the GRDC meta-

data. As an example, the location of the Dandeli station in

the Kali Nadi River basin (asterisk 1 in Fig. 2) was adjusted

to match the underlying topography and drainage accumula-

tion data based on published and computed upstream areas,

respectively (see Fig. 3a). The consequent change in the rout-

ing resulted in a considerable improvement in the model per-

formance (KGE improved from −0.51 to 0.30; see Fig. 3b).

Many similar corrections had to be made.

To make corrections also for ungauged basins and major

rivers, the delineated basins were additionally evaluated us-

ing a shapefile of basin areas reported by Gosain et al. (2011).

Some minor corrections had to be done in the routing to

achieve similarly delineated basins, particularly in the north-

western region, where mean elevation at the subbasin scale

does not show much variability.

4.2 Runoff signatures and processes

As recommended, several flow signatures were extracted

from the gauging stations across India to be compared to

physiographical patterns. Flow signatures were also used for

model evaluation to find potential for improvements. The

analysis was done at different stages in the model set-up and,

finally, there was a relatively good agreement of the observed

and modelled flow signatures (Fig. 4). In general, poor agree-

ment was found in mountains and in semi-arid regions, which

are characterised by local, convective rainfall events during

the monsoon season. No clear pattern is found between sig-

nature agreement and basin scale for calibrated river gauges.

We also explored how flow signatures can be affected by

human impacts by analysing modelled responses consider-

ing and omitting the human influence. Figure 5 highlights the

significant effect reservoirs have to dampen hydrographs and

control discharge variability, hence various flow signatures.

The model can represent fairly well the reservoir routing and

KGE improved from 0.37 to 0.48 after introducing a regula-

tion scheme. The model improved on capturing the seasonal-

ity of regulation; however, at this modelling state it was not

able to represent the monthly peaks. Note that model results

are subject to the general rating curve generalised to all reser-

voirs; there were no downstream data available to calibrate

the parameters specifically for a given reservoir/dam.

4.3 Process similarity and grouping

After having identified relevant HRUs, reclassified them into

suitable calculation units, and inserted major features as

lakes and dams, we identified basin similarities to drive the

identification of the model’s regional parameters. The clus-

ter analysis was applied to all 6 010 subbasins of the domain

within the 17-dimensional space (see Sect. 3.3). We identi-

fied 13 different classes of varying size (Fig. 6) out of 42

values, which is the number of gauged river basins in the do-

main, yet with relatively high class strength (i.e. the variabil-

ity of characteristics within each cluster is relatively low). It

is important to note that the physiographic (soil and land use)
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Figure 3. Example of the impact of basin delineation and routing on model behaviour: (a) correction in the location (red x and green circle

is prior and after the correction, respectively) of the Dandeli discharge station (Kali Nadi River basin) and (b) the corresponding modelled

discharge before and after the correction. In (a) the subbasins and flow accumulation are also depicted.

Figure 4. Signature analysis in the spatiotemporal model evalua-

tion: (a) the mean annual specific runoff, (b) the normalised high

flow statistic, and (c) the slope of the flow duration curve. Blue and

red circles are used for the calibration and evaluation stations, re-

spectively.

characteristics had more influence on the clustering as op-

posed to the climatic properties; the clustering was repeated

without climatic information but the spatial pattern of the

clusters remained. In the last stage of the stepwise calibration

procedure, the regional model parameters were estimated for

each cluster region. Using the clustering for regional cali-

bration (Sect. 5.4), however, could not significantly improve

the overall model performance but, nevertheless, the model

consistency at all stations was improved. Overall, we found

a high number of potential catchment similarity concepts to

drive parameter identification in the ungauged basins.

4.3.1 Quality checks

Steps 1–3 of our best practices were performed in an itera-

tive procedure including checking against independent data

sources that resulted in the reconsideration of assumptions

and corrections of input data. For instance, the proportion of

each land-use type driven by GLC2000 was calculated and

compared to soft information from official governmental re-

ports. According to GLC2000 11 % of the country is forest,

which contradicts the estimated 22 % based on reports from

the Ministry of Water Resources (India-WRIS, 2012; River

Basin Atlas of India, RRSC-West, NRSC, ISRO, Jodpur, In-

dia). To address this, forest information from the Global Ir-

rigated Area Mapping (GIAM; Thenkabail et al., 2009) was

merged with GLC2000. Although the proportion of forest ar-

eas was corrected, this merging consequently changed the

proportion of open land with vegetation and crops from 14

and 68 % to 12 and 59 %, respectively.

In addition, several modelled and observed flow signatures

were compared repetitively at every stage of model refine-

ment. We found it valuable to adjust as much as possible

before starting to work on parameter values and model algo-

rithms. For instance, the analysis of flow time series and sig-

natures during the first model runs showed consistent under-

estimation of runoff in the Himalayan-fed basins. A compar-

ison of the mean annual precipitation between APHRODITE

and national precipitation gridded data provided by the In-
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Figure 5. Impact of model parameterisation of reservoir regulation on discharge for (a) monthly streamflow, and (b) annual hydrograph,

showing naturalised (without) and regulated (with) conditions at the basin outlet (located at asterisk 2 in Fig. 2).

Figure 6. Subbasin clusters using a k-means clustering approach

based on physiographical characteristics.

dian Meteorological Department showed an underestimation

of the APHRODITE precipitation in the mountainous re-

gions: the APHRODITE precipitation network is sparse over

the Himalayas (Yatagai et al., 2012). To overcome this un-

derestimation, a correction factor was applied to precipita-

tion (in HYPE, this was a multiplier of 4 % per 100 m) at

regions with elevation greater than 400 m. By allowing such

modification in the data, we expected that the calibration of

model parameters could further compensate for precipitation

uncertainty.

4.4 Model – right for the right reasons

When setting up India-HYPE we considered realism in the

process calculations by using parameter constraints. We did

not have to adjust the model structure and we did not assim-

ilate data or rating curves as we did not have access to such

observations.

Crops Forest Open land veg. Urban Desert Glacier Lake
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Figure 7. Coefficient of potential evapotranspiration (cevp) param-

eter as identified (the range is derived from the 100 parameter

sets that perform best, and the optimum set) for different objective

functions (RMSE and Bias) and land-use type. Lines with markers

present the optimum parameter values for different objective func-

tions.

4.4.1 Additional data sources

The calibration of the pot. E model routine against the

MODIS pot. E data resulted in a well-identified cevp value

for most land-use types. Analysis of the Monte Carlo re-

sults presents an initial screening of parameter sensitivities

(Fig. 7). Results show that the different objective functions

extract different information from the pot. E spatial pattern.

As expected, cevp values for crops, forest, and open land

with vegetation types are the most sensitive to both objec-

tive functions, since these land-use types dominate the region

(60, 23, and 11 % of India, respectively) and hence signifi-

cantly affect pot. E. Overall, India-HYPE was lower in pot.

E at the arid regions and over the Himalayas (on average by

15 %), whereas it was higher in pot. E along the western and

eastern coastlines (on average by 12 %). Although the two

estimates do not fully match, the use of additional informa-

tion to constrain parameters (hence constraining the model’s

results for specific processes) is promising. However, the un-

certainty of MODIS results was not examined and more data

sources should be included.

4.4.2 Expert knowledge

Expert knowledge was applied to filter out unrealistic rela-

tionships of the mactrsm parameter for different soil types

(see Sect. 3.3). Both the constrained and unconstrained mod-
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Figure 8. Constraints (grey dashed lines) and optimum (solid lines)

values of the mactrsm soil-dependent model parameter based on

process understanding.

els resulted in a comparable calibration performance: me-

dian KGE was 0.48 and 0.49 for the constrained and uncon-

strained models, respectively. The optimum set for the un-

constrained model gave an unrealistic distribution of the pa-

rameter values for the coarse and medium soil types (Fig. 8).

However, the optimum values are within the parameter range

defined in the constrained calibration approach. The slight

increase is due to the free calibration parameters whose val-

ues and/or distributions are allowed to compensate for er-

rors/uncertainties at other processes. In such cases it is im-

portant to select the model which performs well and respects

the theoretical understanding of the system. This illustrates

the value of the recommendations to constrain parameters

based on expert knowledge – the right model for the right

reason.

4.4.3 Stepwise calibration procedure

The predictability of the model with prior parameter values

was very poor (Fig. 9), highlighting the limitations when pa-

rameters are regionalised from a donor system of strongly

different hydroclimatic characteristics (e.g. Sweden). A sig-

nificant improvement in the performance is achieved in both

the calibration and the evaluation period after the calibra-

tion of the general parameters due to a better representation

of the water volume in the rivers (beta in KGE improved

from 0.51 to 0.78). Calibration of the soil and land-use pa-

rameters further improved the overall performance; however,

KGE slightly decreased at the basins in which the model per-

formed poorly during the previous calibration step. Using the

clusters based on catchment similarities for regional calibra-

tion did not significantly improve the overall model perfor-

mance; however, the model consistency at all stations was

improved in both calibration and evaluation periods.

4.5 Hydrological interpretation

The temporal interpretation was done by analysing interact-

ing dynamics of internal model variables, i.e. precipitation

(P , mm), snow depth (SD, mm), temperature (T , ◦C), evap-

otranspiration (E, mm), soil moisture deficit (SMDF, mm),

and discharge (Q, m3 s−1). These are checked visually in a

set of validation basins, to avoid unrealistic model behaviour

Figure 9. Improvements in model performance (average KGE for

30 stations) during the stepwise calibration approach (steps 1–3 cor-

respond to general, soil-land use, and regional calibration as de-

scribed in Sect. 3.3). “1st run” corresponds to model performance

of the very first model set-up to establish a technical model infras-

tructure. “Prior” corresponds to model performance before param-

eter calibration and after overcoming routing errors. The evaluation

is conducted at the calibration (blue) and the validation (red shaded)

period.

due to parameter setting. Results from this point onwards

correspond to the calibrated India-HYPE model (after step

3 in Fig. 9). Results in the Chenab River at the Akhnoor sta-

tion (branch river of the Indus system; asterisk 3 in Fig. 2)

show that the snowmelt characterises the monthly hydro-

graph (Fig. 10). Snow accumulation/melting processes occur

at the headwaters of the basin which experience T below 0 ◦C

during the winter and pre-monsoon period and above 0 ◦C

during the rest of the months (“Up” black-dashed T series

in Fig. 10). P also varies in space while it exhibits strong

seasonal variability according to the location (“Up” black-

line and “Down” blue envelope in the P series). Spatiotem-

poral analysis of P allows for a better understanding of the

snow depth temporal distribution; in the model, snow depth

increases when precipitation occurs and temperature is below

0 ◦C. Given the model’s evapotranspiration module, potential

E varies depending on mean temperature. However the dis-

tribution of actual E is dependent on the water availability in

the soil, which further justifies the strong (negative) correla-

tion between actual E and SMDF.

For spatial interpretation of flow predictions, we inves-

tigated potential relationships between model performance

and physiographic-climatic characteristics; hence identify

the controls of poor model performance. Fig. 11 shows the

classification tree obtained when relating the KGE perfor-

mance with physical and climatic characteristics across the

domain. Results show that the dominant variables resulting in

poor/good model performance are soil (medium and shallow)

and climate (mean precipitation and temperature). Despite

the relatively small sample is this analysis, results are in-
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Figure 10. Analysis of model variables at the Akhnoor station (Chenab River; asterisk 3 in Fig. 2): P , SD, T ,E, SMDF andQ.E corresponds

to potential (Pot.) and actual (Act.) evapotranspiration, and Q corresponds to modelled (Mod.) and observed (Obs.) discharge). Note that P

and T series are plotted at the outlet of the basin (Down) and the most upstream subbasin (Up).

Figure 11. Classification trees relating regions of different KGE

performance with physical and climatic characteristics. The bars

represent the probability of a performance resulting in any of the

three performance classes (C0, C1 or C2).

sightful and show that poor performance (KGE < 0.4) is gen-

erally achieved at basins with shallow soil type greater than

13 %. The probability of obtaining poor performance is also

highest for basins with medium soil type greater than 34 %

and precipitation less than 1038 mm. Consequently, empha-

sis should be given to parameters for medium and shallow

soils in a future effort to improve the model performance.

4.6 Uncertainty – local and regional

The India-HYPE model was calibrated and validated in space

and time, and the overall model performance (at the end of

the stepwise approach) in terms of KGE (Gupta et al., 2009)

and its decomposed terms is presented in Table 3. India-

HYPE achieved an acceptable performance and is therefore

considered adequate to describe the dominant hydrological

processes in the subcontinent. However, the performance de-

creased (from KGE= 0.64 to KGE= 0.44) when the model

was evaluated for gauges, which are independent both in

space and time. This shows that the model still needs im-

provements to be equally reliable for predictions in ungauged

basins at independent time periods. The decomposed KGE

terms show that the model, during the validation period and

for the validation stations, cannot fully capture the variabil-

ity of the observed data (described by the alpha term). Alpha

decreases during the validation period at the validation sta-

tions from 0.78 to 0.58, which consequently affects the KGE

values. However, other flow characteristics, i.e. timing and

volume, are well represented also during the validation pe-

riod.

To search for major uncertainties and potential for im-

provements, we finally analyse the model performance in

both the calibration and validation stations across the do-

main. The ability of the model to reproduce the monthly vari-

ability of discharge varies regionally as shown by the KGE

(Fig. 12). Performance is generally poor in the mountainous

and semi-arid regions (western and eastern Himalayas and

northwest India, respectively). The Indian River basins are

also regulated, limiting the model’s predictive power; regu-

lation strategies are irregular and difficult to reproduce. The
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Table 3. Median model performance for calibration and validation stations and periods.

Space Time KGE cc (timing) alpha (variability) beta (volume)

Cal. (30 stations) Cal. (1971–1975) 0.64 0.93 0.78 0.75

Val. (1976–1979) 0.62 0.92 0.81 0.80

Val. (12 stations) Cal. (1971–1975) 0.64 0.91 0.78 0.79

Val. (1976–1979) 0.44 0.84 0.58 0.75

KGE’s decomposed terms (cc, alpha and beta) can reveal the

causes for the model errors. For example, the poor perfor-

mance at the Indus river system (northern India) is due to the

poor representation of the observed variability of discharge,

which is probably related to parameterisation in the model’s

snow accumulation/melting component. In addition, a mass

volume error seems to be the main cause of the poor KGE

performance in the southwestern rivers. This seems to be due

to the underestimation of precipitation and/or overestimation

of actual evapotranspiration: a comparison of APHRODITE

data against precipitation data from the Indian Meteorolog-

ical Department showed underestimation of precipitation in

this region. Conclusions are similar for the stations used in

the calibration and validation analysis, hence justifying the

model’s spatial consistency in the region.

4.7 Spatial flow pattern across the subcontinent and

dominant processes

Although the India-HYPE model has limitations, we identi-

fied potential for further improvements during the set-up pro-

cedure. The present version has demonstrated the usefulness

of multi-basin modelling for comparative hydrology and how

to gain insights in spatial patterns of flow generating pro-

cesses at the large scale. The final clustering analysis of the

12 flow signatures from India-HYPE version 1 resulted in six

different classes of varying size (Fig. 13) with different dis-

tributions in the signatures (Fig. 14). Similarity in catchment

behaviour for each class was interpreted and dominant flow

generating processes could be distinguished as follows.

Catchments in cluster 3 are located in the Himalayan re-

gion and in the western Indian coast (Western Ghats) and are

characterised by high ranges of annual specific runoff (Qm)

due to high precipitation occurring in these regions, and vari-

able flow regime (high mFDC). Variability is dependent on

snow/ice processes which are important in controlling the

flow regime, at least in the Himalayan region (cf. annual cy-

cle in the Indus River in Fig. 2). Flow is also characterised

by high rising and declining limb densities (RLD and DLD).

The climate in catchments of cluster 3 is humid subtropical

and tropical with high evapotranspiration. Catchments in the

northwestern part of India (cluster 4; arid regions including

the Thar Desert) are characterised by high intra-annual vari-

ability (DPar) and low values of flow (q95). Ephemeral rivers

exist in this region due to high evaporation rates (e.g. the Luni

River), and generate runoff mainly during the monsoon pe-

riod. The high variability in the flow regime is also shown

by the high values of CV (coefficient of variation), flash and

RLD signatures. Similar flow characteristics are observed for

the catchments located in the semi-arid regions (cluster 1),

yet not at the same range of signature values as for cluster

4. The catchments in cluster 1 are also fast, responsive and

their flow shows strong dynamics, in terms of RLD and DLD.

Catchments in cluster 2 are located in the tropical climate

and their runoff response is mainly driven by rainfall. Al-

though these catchments receive less precipitation compared

to other regions, their normalised high flow statistic (q05)

is the highest of any cluster group. Moreover, catchments in

cluster 5 are located at the downstream areas of the Indus

River, distinguished for their high values of low flows. Fi-

nally, catchments in cluster 6 are characterised for their high

mean annual discharge values and are located at the down-

stream areas of the large river systems (Indus, Ganges and

Brahmaputra). Note also that only few catchments belong to

these cluster groups: 112 and 57 catchments in clusters 5 and

6, respectively.

Repeating the clustering analysis at two different steps of

the calibration procedure helps us to assess spatial changes

in the hydrological response in the region and hence improve

our process understanding. Figure 13 shows that parameter-

isation can affect the spatial pattern of clusters in terms of

catchment functioning. In particular, clusters after calibration

(regional step) seem to have a consistent spatial structure;

this also justifies the validity of parameter regionalisation

approaches based a spatial proximity between catchments.

Results from clustering based on physiography show spatial

consistency in the arid region (Thar Desert) and the west-

ern coast (Western Ghats), respectively. This affected iden-

tification of the regional parameters (multipliers of precipi-

tation and evapotranspiration) applied at the subbasin scale,

which consequently led to a more consistent spatial structure

in the mapping (cf. Fig. 13a and b). Finally, calibration of the

soil and land-use parameters led to a better representation of

snow processes and hence affected the flow signatures in the

Himalayan region (cluster 3).
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Figure 12. Spatial variability of KGE (and its decomposed terms) model performance for the calibration (circle) and validation (triangle)

stations.

Figure 13. Subbasin clusters based on flow signatures at different stages of the model set-up: (a) prior, and (b) regional.

4.8 Performance in India-HYPE v1.0 and future model

refinements

Many other catchment-scale and multi-basin hydrological

models have been applied in (parts of) the Indian subcon-

tinent. However, it is generally common that only results

from success stories are reported, which limits the poten-

tial for comparative analyses and hence improving process

understanding. Here, we presented results from all 42 In-

dian GRDC stations including both failures and successes.

We completed the setup of the first model version and doc-

umented the India-HYPE version 1.0 providing also guide-
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Figure 14. Distribution of signature values for each cluster (at the regional step). The flow signatures are described in Appendix A.

lines on how to start working on the next version, loop-

ing back to step 1. Overall, India-HYPE performed well for

most river systems, with the performance being comparable

to other studies in which a model was applied at the large

scale. Application of the VIC (Variable Infiltration Capacity)

hydrological model resulted in a similar performance for the

large systems of the Ganges, Krishna, and Narmada (Raje

et al., 2013) with the Nash–Sutcliffe efficiency, NSE (Nash

and Sutcliffe, 1970), varying between 0.44 and 0.94 (at the

same stations India-HYPE achieved an NSE between 0.45

and 0.94). In contrast to previous studies, our contribution

lies in the fact that anthropogenic influences (i.e. reservoirs

and irrigation) are simulated, as those have been shown to be

very important in controlling the amplitude, phase, and shape

of the hydrograph. Other models, e.g. SWAT, have also been

applied in India to assess the impacts of climate change; how-

ever, the parameters have been estimated empirically from

the literature, whilst the performance was not reported (Go-

sain et al., 2006, 2011).

Catchment-scale hydrological models from India have

generally been achieving a high performance (Arora, 2010;

Patil et al., 2008), mainly due to the local gauged data

used: usually the data are governmental and confidential with

high spatiotemporal resolution and less uncertainty/error. In

addition, model parameters in single catchments are nor-

mally transferred along a smoother hydroclimatic gradient

and are calibrated for individual gauging stations. Never-

theless, catchment-scale studies set a benchmark of perfor-

mance and provide deeper knowledge of process description,

which leads to further refinements in multi-basin modelling.

Of particular interest are the investigations about the western

Himalayas, in which India-HYPE performed poorly. Stud-

ies by Singh and Bengtsson (2004); Singh and Jain (2003)

and Singh et al. (2006) highlight the importance of accu-

mulation/melting processes in the snow-/glacier-fed parts of

the region, each accounting for 17 % of the total discharge;

however for other regions of the Indus system higher con-

tributions from snow and ice are reported (Immerzeel et al.,

2009). The poor model performance in terms of alpha (vari-

ability) and beta (volume) highlights the need to refine the

current snow/glacier algorithms and/or improve the param-

eters by using this soft information in model evaluation.

Similar model needs can be concluded when assessing the

India-HYPE performances at the Ganges and Brahmaputra

basins based on previous literature (Arora, 2010; Nepal et

al., 2014). Finally results for the arid northwest and moun-

tainous regions highlighted the need to refine the pot. E al-

gorithm. Most regional hydrological studies considered rela-

tionships including extraterrestrial radiation and relative hu-

midity, e.g. Hargreaves–Samani or Penman–Monteith, which

are expected to improve the magnitude and variability of

evapotranspiration losses (Samaniego et al., 2011). There-

fore, the pot.E model component will be further investigated

and refined in the next version of India-HYPE.
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5 Conclusions

By investigating the modified recommendations for predic-

tions in ungauged basins across the Indian subcontinent, we

found the following.

– Each step in the best-practice procedure was relevant

and we could find methods that also work at the large

scale using the knowledge derived for catchments dur-

ing the PUB decade. We argue for adapting an incre-

mental and agile approach to model set-up, which re-

quires frequent testing to get feedback on introduced

changes. The large-scale modelling is more prone to

technical problems and data inconsistencies that be-

come apparent when running the model and therefore

should be resolved early in the model set-up process.

– Multi-basin modelling of ungauged rivers at the large

scale reveals insights into spatial patterns and domi-

nating flow processes. Indian catchments can be cate-

gorised into six clusters based on their flow similarity.

River flow varies spatially in terms of flow means, vari-

ability, extremes, and seasonality. Catchments in the Hi-

malayan region and the Western Ghats seem to respond

similarly and are characterised by high mean annual

specific runoff values and variable flow regime. The re-

sponse of the catchments in the tropical zone is char-

acterised by high peaks, while catchments in the dry

regions show very strong flow variability and respond

quickly to rainfall.

– Overall, the model showed high potential for represent-

ing the hydrological response across the region despite

the strong hydroclimatic gradient. However, the India-

HYPE v.1.0 still needs to be improved to be equally re-

liable for predictions in ungauged basins as for gauged

rivers. The model set-up procedure, according to the

PUB recommendations, leads to insights into where the

single-model structure did not perform well. Based on

this, future model improvements will mainly focus on

the western Himalayas and arid regions by refining the

hypothesis of snow/glacier processes and the evapotran-

spiration algorithm.
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Appendix A: Definition of performance metrics and

flow signatures

The Kling–Gupta efficiency (KGE) is defined as

KGE= 1−

√
(r − 1)2 + (α− 1)2 + (β − 1)2,

where r is the linear cross-correlation coefficient between ob-

served and modelled records, α is a measure of variability in

the data values (equal to the standard deviation of modelled

over the standard deviation of observed), and β is equal to

the mean of modelled over the mean of observed records.

For a perfect model with no data errors, the value of KGE

is 1; hence r , α, and β are also 1. In addition, we transform

the three KGE components to results in a consistent range of

possible values. Consequently, we consider

cc= 1−
√
(r − 1)

2
,

alpha= 1−
√
(α− 1)

2
,

beta= 1−
√
(β − 1)

2
,

where the range of values for each term varies between −∞

and 1 with 1 being the optimum.

In this paper we quantify the signatures by single values.

Given the time series of observed (or modelled) specific daily

runoffQd(t) (mm d−1), the calculated signatures are given in

Table A1.

Table A1. Flow signatures used for model evaluation and catchment

functioning.

Signature Abbreviation Reference

Mean annual specific runoff Qm Viglione et al. (2013)

Normalised high flow q05 Viglione et al. (2013)

Normalised low flow q95 Viglione et al. (2013)

Normalised relatively low flow q70 Viglione et al. (2013)

Slope of flow duration curve mFDC Viglione et al. (2013)

Range of Pardé coefficient DPar Viglione et al. (2013)

Coefficient of variation CV Donnelly et al., 2015)

Flashiness Flash Donnelly et al., 2015)

Normalised peak distribution PD Euser et al. (2013)

Rising limb density RLD Euser et al. (2013)

Declining limb density DLD Euser et al. (2013)

Long-term mean discharge Qdm Donnelly et al. (2015)
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