
Hydrol. Earth Syst. Sci., 19, 4441–4461, 2015

www.hydrol-earth-syst-sci.net/19/4441/2015/

doi:10.5194/hess-19-4441-2015

© Author(s) 2015. CC Attribution 3.0 License.

SACRA – a method for the estimation of global high-resolution crop

calendars from a satellite-sensed NDVI

S. Kotsuki1 and K. Tanaka2

1RIKEN Advanced Institute for Computational Science, Kobe, Japan
2Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Correspondence to: S. Kotsuki (shunji.kotsuki@riken.jp)

Received: 22 December 2014 – Published in Hydrol. Earth Syst. Sci. Discuss.: 29 January 2015

Revised: 5 October 2015 – Accepted: 15 October 2015 – Published: 5 November 2015

Abstract. To date, many studies have performed numerical

estimations of biomass production and agricultural water de-

mand to understand the present and future supply–demand

relationship. A crop calendar (CC), which defines the date or

month when farmers sow and harvest crops, is an essential in-

put for the numerical estimations. This study aims to present

a new global data set, the SAtellite-derived CRop calendar

for Agricultural simulations (SACRA), and to discuss advan-

tages and disadvantages compared to existing census-based

and model-derived products. We estimate global CC at a spa-

tial resolution of 5 arcmin using satellite-sensed normalized

difference vegetation index (NDVI) data, which corresponds

to vegetation vitality and senescence on the land surface. Us-

ing the time series of the NDVI averaged from three con-

secutive years (2004–2006), sowing/harvesting dates are es-

timated for six crops (temperate-wheat, snow-wheat, maize,

rice, soybean and cotton). We assume time series of the

NDVI represent the phenology of one dominant crop and

estimate CCs of the dominant crop in each grid. The dom-

inant crops are determined using harvested areas based on

census-based data. The cultivation period of SACRA is iden-

tified from the time series of the NDVI; therefore, SACRA

considers current effects of human decisions and natural dis-

asters. The difference between the estimated sowing dates

and other existing products is less than 2 months (< 62 days)

in most of the areas. A major disadvantage of our method is

that the mixture of several crops in a grid is not considered

in SACRA. The assumption of one dominant crop in each

grid is a major source of discrepancy in crop calendars be-

tween SACRA and other products. The disadvantages of our

approach may be reduced with future improvements based

on finer satellite sensors and crop-type classification studies

to consider several dominant crops in each grid. The compar-

ison of the CC also demonstrates that identification of wheat

type (sowing in spring or fall) is a major source of error in

global CC estimations.

1 Introduction

Recent population growth has increased biomass demand

significantly, and humans have expanded cropland globally.

Agriculture occupies more than 70 % of world water us-

age and has a large impact on the water cycle (Rost et

al., 2008). Consequently, simulations of biomass production

and agricultural water demand are necessary to understand

the present and future supply–demand relationship. To date,

many studies have estimated biomass accumulation (Fischer

et al., 2000; Tan and Shibasaki, 2003; Stehfest et al., 2007)

and agriculture water demand (Döll et al., 2002; Hanasaki

et al., 2008; Rockström et al., 2009; Siebert and Döll, 2010;

Pokrel et al., 2012). Those studies estimated biomass pro-

duction and agricultural water demand with numerical mod-

els using meteorological forcing data and land surface pa-

rameters. A crop calendar (CC) is an essential input to esti-

mate biomass production and agricultural water demand ac-

curately with those numerical models. CCs define the date or

month when farmers sow and harvest crops. There are three

major approaches to developing CC data sets: census-based;

model-based; and Earth observation-based.

The first approach, the census-based method, estimates

CCs by collecting and integrating agricultural census data

provided by international and national organizations such as

the Food and Agriculture Organization (FAO) and the United
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Table 1. Characteristics and sources of the four global input data sets.

Data Source Detailed description

NDVI (1 km ∼ 30 s) VEGETATION/SPOT Maisongrande et al. (2004)

Land cover (30 s) GLCC version 2.0 Loveland et al. (2000)

Ecoclimap version 2.0 Faroux et al. (2013)

Census-based crop classification (5 arcmin) MIRCA2000 Portmann et al. (2010)

and crop calendar (5 arcmin)

Temperature (30 min) H08 Hirabayashi et al. (2008)

Table 2. List of crops. Checkmarks denote crops used for (a) estimation of crop calendar and (b) comparison of cropping intensity.

ID Crop name (a) Calendar (b) Intensity ID Crop name (a) Calendar (b) Intensity

1 Temperate-wheat X X 10 Millet X
2 Snow-wheat X X 11 Oil palm X
3 Maize X X 12 Potato X
4 Rice X X 13 Rapeseed X
5 Soybean X X 14 Rye X
6 Cotton X 15 Sorghum X
7 Barley X 16 Sugarcane X
8 Cassava X 17 Sunflower X
9 Groundnuts X

Figure 1. Data processing scheme for the production of the global

satellite-derived crop calendar (SACRA). The bold numbers inside

the boxes indicate the subsections in this paper where the different

processing steps are described. The numbers outside the boxes in-

dicate the spatial resolution of the respective data sets. The top four

boxes indicate input data (Table 1), and the other boxes indicate the

results from our data processes.

States Department of Agriculture (USDA). The census-based

CC products are represented by MIRCA2000 (Portmann et

al., 2010; Monthly Irrigated and Rain-fed Crop Areas around

the year 2000) and Sacks et al. (2010). The census-based

products have the advantage of high reliability in regions

that have sufficient census data. However, they also have the

disadvantage of low reliability in regions that have no cen-

sus data. Additionally, the spatial resolution of census-based

products is limited because of the sampling scheme (Port-

mann et al., 2010). Because only one CC is defined per ad-

ministrative unit for each crop, differences in CCs for the

same administrative unit are not considered.

Model-based approaches generate CCs using crop growth

models. These models simulate crop growth based on mete-

orological forcing data such as temperature, solar radiation,

and soil moisture. In particular, accumulated temperature is

widely used to indicate phenological progress. Hanasaki et

al. (2008) estimated global CCs for several crops using the

Soil and Water Integrated Model (SWIM; Krysanova et al.,

2000). Waha et al. (2012) simulated the sowing dates of

major annual crops based on climatic conditions and crop-

specific temperature requirements. The crop growth models

have the advantage of accurate crop growth simulation in

cases of well-calibrated parameters. However, proper cali-

bration is difficult in areas where observation data are insuf-

ficient. Additionally, the crop growth model, being based on

environmental processes, is of limited accuracy with respect

to the identification of sowing dates, because the sowing date

is heavily affected by human decisions.

Finally, Earth observation-based studies estimate the CC

using time series from satellite observations. Time series

of vegetation indices (VIs) correspond well to vegetation

vitality and senescence on the land surface. In this con-

text, satellite-derived VIs have been widely used to classify

crop type and to monitor crop growth at the regional scale

(Mingwei et al., 2008; Sakamoto et al., 2005, 2010; Ward-

low and Egbert, 2008; Wardlow et al., 2007). An advantage
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Figure 2. Global distribution of (a) dominant crops in SACRA, and (b) minimum monthly averaged temperature (◦C) during the cultivation

period of the dominant crops. Both panels represent the dominant crop in the major cultivation season.

of satellite-derived data is its spatial resolution (less than

1 km). However, a few studies have estimated global CCs

with satellite-derived data. Yorozu et al. (2005) estimated a

global CC using the normalized difference vegetation index

(NDVI), but they did not compare their results to other global

CC data sets.

In this paper, we present a new global data set, the

SAtellite-derived CRop calendar for Agricultural simulations

(SACRA). Using satellite-sensed NDVI data, we estimate the

global CC at a spatial resolution of 5 arcmin (∼ 9.2 km at

the Equator). This study aims to develop a high-resolution

and highly accurate CC product by combining the satellite-

derived NDVI with a census-based product. We also aim to

discuss the advantages and disadvantages of our satellite-

derived CC, compared to existing census-based and model-

derived products. The products are available for download at

http://data-assimilation.jp/opendata/sacra/sacra_des.html.

2 Materials and methods

This section describes the methods applied to produce

SACRA according to a defined data processing scheme

(Fig. 1). SACRA is produced from four different data sets:

time series of the NDVI; land cover data; reanalysis temper-

ature data; and census-based agricultural data (Table 1). This

study estimates the CC for six crops (temperate-wheat, snow-

wheat, rice, maize, soybean, and cotton) that are widely culti-

vated around the world (Table 2a). We treat temperate-wheat

and snow-wheat separately because our method is unsuitable

for estimating the sowing date in grid areas where the surface

is covered by snow during the cultivating period (e.g., Russia

and North China; see Sect. 2.3 for details).

The following subsections describe identification of the

dominant crop and census-based CC (Sect. 2.1), vegetation

indices (Sect. 2.2), estimation of global crop calendar (first

estimation; Sect. 2.3) and the SACRA data sets (Sect. 2.4).

2.1 Dominant crop and census-based

sowing/harvesting data

Firstly, we identify the dominant crop at a spatial resolution

of 5 arcmin using MIRCA2000. The grid of SACRA is set

to that of MIRCA2000. Portmann et al. (2010) compiled ir-

rigated and rain-fed areas of 26 crop types at a spatial reso-

lution of 5 arcmin (cf. Table 4 in Portmann et al., 2010). In

other words, we can obtain 52 classes of crop areas at each

grid (i.e., both irrigated and rain-fed areas of 26 crop types).

Their crop calendars in major and second cultivation seasons

are also defined in MIRCA2000. Since our method cannot

consider the mixture of several crops in a grid (see Sect. 2.2.2

for details), we consider only one dominant crop in each grid.

We define the dominant crop in the major cultivation season

as that which has the maximal harvested area in the grid, out

of 52 possible crops (considering rain-fed and irrigated areas

separately; cf. Appendix I in Portmann, 2011). If more than

two crops have identical harvested areas, the early order of

the crops is chosen to be the dominant crop (e.g., for irrigated

wheat in India (Uttar Pradesh) with two identical areas with

different cropping periods; cf. Table I-211 of Appendix I in

Portmann, 2011). The dominant crop in the second cultiva-

tion season is determined from those crops whose cultivation

periods do not overlap more than 3 months with that of the

dominant crop in the major cultivation season.

Secondly, we obtain the sowing and harvesting months of

the dominant crop in both major and second cultivation sea-

sons, using MIRCA2000. At each grid, we use the sowing

and harvesting months. The census-based sowing and har-

vesting months are used to calibrate crop calendar parame-

ters in Sect. 2.3.

Finally, we classify temperate-wheat and snow-wheat

(originally classified as “wheat” in MIRCA2000) using re-

analysis temperature data (Table 2). Again, our method is

unsuitable for the estimation of sowing dates for grids where

the surface is covered by snow during cultivation. If the

minimum monthly averaged temperature during the culti-

vating period is below 5.0 ◦C, the wheat is categorized as

snow-wheat. In this categorization, we use MIRCA2000-
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derived cultivating periods (from sowing month to harvest-

ing month) and reanalysis temperature (Hirabayashi et al.,

2008). Hirabayashi et al. (2008) compiled 3-hourly surface

temperature data by statistical methods, the parameters of

which had been obtained from available surface observa-

tions. Here, we simply use the reanalyzed temperature of the

nearest 30 arcmin grid from MIRCA2000’s 5 arcmin grids.

The resulting global distribution of dominant crops in

SACRA in the major cultivation season is shown in Fig. 2a.

The minimum monthly averaged temperature during the cul-

tivation period of the dominant crop is shown in Fig. 2b.

Regions showing the minimum monthly averaged tempera-

tures below 5.0 ◦C in Fig. 2b are categorized as snow-wheat

(purple) or other crops (grey) in Fig. 2a. The categories of

temperate-wheat and snow-wheat classify whether or not

the surface is covered by snow during cultivation. Note that

the classification of temperate-wheat and snow-wheat is in-

dependent of the classification of spring-wheat and winter-

wheat. The classification of spring-wheat and winter-wheat

depends on the sowing season (spring or fall).

2.2 Vegetation index

2.2.1 VEGETATION/SPOT NDVI data

Vegetation indices are simple, graphic indicators to assess

whether the targeting area contains live, green vegetation or

not. In this study, we use the NDVI defined by the following:

NDVI=
NIR − VIS

NIR + VIS
, (1)

where VIS and NIR indicate the spectral reflectance in the

visible and near-infrared bands. The formula is based on the

fact that chlorophyll absorbs VIS, whereas the mesophyll

leaf structure scatters NIR (Pettorelli et al., 2005). The NDVI

correlates with the accumulation and decomposition of leaf

cell tissue. Therefore, we are able to detect crop growth with

the time series of the NDVI over the cropland. The time se-

ries of a satellite-sensed NDVI at a double-cropping pixel

in China is shown in Fig. 3a. As shown in Fig. 3a, peak

dates can be clearly identified from the time series of the

NDVI. In this study, we use a 10-day composite NDVI pro-

vided by VEGETATION/SPOT (Maisongrande et al., 2004).

To reduce the effect of clouds, the best index slope extraction

(BISE) method (Viovy et al., 1992) is applied to the time

series of the NDVI (Fig. 3a). To estimate the CC with the

smooth time series of the NDVI, we use an averaged NDVI

over 3 years (2004–2006). Hereafter, this averaged NDVI is

indicated by SPOT-NDVI in this paper. The time series of the

NDVI has inter-annual variability as shown in Fig. 3b.

2.2.2 Aggregation of the NDVI

Two NDVI data sets (NDVI-Pure and NDVI-Crop; 5 arcmin

resolution) are aggregated from the original SPOT-NDVI

(1 km resolution) using two land cover data sets: Global Land

Figure 3. Time series of the NDVI at a double-cropping pixel in

China (116.76◦ E, 32.60◦ N). (a) represents the original NDVI and

the NDVI with the BISE correction. (b) represents the NDVI with

the BISE correction from 2004 to 2006. (c) represents the NDVI

average over 2004–2006 and the normalized NDVI (nNDVI).

Cover Characterization, version 2.0 (GLCC; Loveland et al.,

2000) and Ecoclimap, version 2.0 (Faroux et al., 2013). The

GLCC and Ecoclimap data are provided by the US Geolog-

ical Survey and Meteo France, respectively. Schematic im-

agery of the aggregated NDVI-Pure and NDVI-Crop data

is shown in Fig. 4. The NDVI-Pure and NDVI-Crop data

are aggregated by averaging 1 km NDVI pixels where both

GLCC and Ecoclimap agree on the cropland (i.e., at a higher

level confidence; Fig. 4a). However, it is possible for there

to be no pixel where both GLCC and Ecoclimap agree on

the cropland. In this case, only the NDVI-Crop is aggre-

gated by averaging the pixels where the GLCC and Eco-

climap disagree, but where one of them agrees on cropland

(i.e., a lower level confidence; Fig. 4b). The NDVI-Pure is

undefined in the latter case. The NDVI-Pure, containing only

Hydrol. Earth Syst. Sci., 19, 4441–4461, 2015 www.hydrol-earth-syst-sci.net/19/4441/2015/
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Figure 4. Schematic image of the aggregation of NDVI-Pure and NDVI-Crop from the 1 km resolution original NDVI. Small-sized squares

with thin lines represent pixels of the original SPOT-NDVI (1 km resolution). Large-sized squares with bold lines represent grids of SACRA

and MIRCA2000 (5 arcmin resolution). Pixels with diagonal lines (from upper left to bottom right and from bottom left to upper right) show

where GLCC and Ecoclimap agree on the cropland.

Figure 5. Global distribution of (a) detected cropping intensity in this study and (b) climate-based estimation of cropping intensity suitability

(i.e., maximal cropping intensity; Zabel et al., 2014). The cropping intensity of the dominant crop is illustrated in Fig. 5(b).

higher confidence grids, is used to identify the two CC pa-

rameters (Sect. 2.3). The NDVI-Crop is used to produce the

global CC in Sect. 2.4. The two aggregations (spatial and

temporal) aim to obtain a smoother time series of the NDVI

by removing the phenology of non-dominant and voluntary

crops.

2.2.3 Normalization of the NDVI

Absolute peak values of the NDVI differ depending on cli-

mate conditions and density of crops. Therefore, we normal-

ize NDVI data to consider variety over a wide range of en-

vironmental conditions at the global scale. First, we identify

cropping intensity using the time series of the NDVI. We de-

fine the peak of the NDVI (NDVIpk) and the date of the peak

(tpk) if the time series of the NDVI satisfy Eqs. (2) and (3):

NDVI(i)≤ NDVI(tpk)(i = tpk− 1, tpk− 2, . . ., tpk− 6), (2)

NDVI(i)≤ NDVI(tpk)(i = tpk+ 1, tpk+ 2, . . ., tpk+ 4), (3)

where the boundary is cyclic (i.e., NDVI0=NDVI36 and

NDVI1=NDVI37) since we have 36 NDVI data per year

from 10-day composite data of the SPOT-NDVI. We assume

an increase/decrease in the NDVI before/after the peak of the

NDVI, as shown in Eqs. (2) and (3). The cropping intensity

is equal to the number of peaks of the NDVI, up to three

times per year. Second, we detect the lowest NDVI between

peaks (NDVIbtm). Finally, NDVI data are normalized using

the following equations:

nNDVI(t)=
NDVI(t)−NDVIbas

NDVIpk−NDVIbas

, (4)

NDVIbas =max(NDVIbtm,NDVIsnow), (5)

where nNDVI represents the normalized NDVI. Subscripts

btm, bas, and snow denote bottom, base and snow, respec-

tively. The NDVIsnow is a parameter to avoid a remnant ir-

regular NDVI mainly caused by snow cover reflection. The

NDVIsnow is set at 0.20, which corresponds to 40 % of the

snow cover over the land surface (Dye and Tucker, 2003).

Figure 3c shows a schematic image of the normalization of

the NDVI at the double-cropping pixel in China. As shown

in Fig. 3c, the NDVIbas can be different for each peak. We do

not need to avoid the negative nNDVI in this normalization

process. The normalization is applied for both the NDVI-

Pure and the NDVI-Crop.

The detected cropping intensity with the NDVI-Crop is

compared with a climate-based estimation (Zabel et al.,

2014). Zabel et al. (2014) estimated potential cropping inten-

www.hydrol-earth-syst-sci.net/19/4441/2015/ Hydrol. Earth Syst. Sci., 19, 4441–4461, 2015
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Table 3. Comparison of estimated cropping intensity in this study, Zabel et al. (2014), and MIRCA2000 simplified cropping intensity for

irrigated (IRC) and rain-fed (RFC) crop classes in six administrative units (six boxes A–F in Fig. 5a and b). Averaged cropping intensities

over the administrative units are shown as “Cropping intensity”. “Code” and “Crop” represent the assigned code of the administrative unit

in SACRA and the dominant crop in the major cultivation season in this study. The simplified cropping intensities are annual harvested area

divided by maximum monthly cropped area, which are defined for both irrigated and rain-fed classes of 26 crop types.

Cropping intensity (yr−1)

Code Box in Fig. 5 Name of administrative unit Crop This study Zabel et al. (2014) MIRCA IRC MIRCA RFC

073 A Brazil Rio Grande do Sul MAZ 1.2 3.0 1.0 1.0

109 B China Henan SWH 2.2 1.0 1.0 1.0

157 C France SWH 1.3 1.0 1.0 1.0

211 D India Uttar Pradesh TWH 2.0 1.0 2.0 1.1

227 E Kenya MAZ 1.8 1.3 1.0 1.0

364 F US Mississippi SOY 0.8 2.1 1.0 1.0

TWH: temperate-wheat; SWH: snow-wheat; MAZ: maize; and SOY: soybean.

Figure 6. Time series of the NDVI for six administrative units in Table 3; Brazil Rio Grande do Sul (code 73), China Henan (code 109),

France (code 157), India Uttar Pradesh (code 211), Kenya (code 227), and US Mississippi (code 364). Black lines show time series of

NDVI-Crop averaged over 2004–2006 in the administrative units (i.e., the NDVI of all grids in the administrative units). Green lines show

the average of black lines (i.e., averaged over the administrative units). Red, blue, and magenta represent NDVI-Crop in 2004, 2005, and

2006, respectively, averaged over the administrative units.

sity (i.e., maximal cropping intensity) suitability for current

climate conditions (1981–2010) for 16 crop types (Table 2b).

Detected and estimated cropping intensities are shown in

Fig. 5a and b. Since Zabel et al. (2014) estimated cropping

intensities for 16 crops, we illustrate the cropping intensity of

the dominant crop in the major cultivation season in SACRA.

The locations of six administrative units are emphasized with

boxes (A–F) in Fig. 5a and b, where our estimations are dif-

ferent from those of Zabel et al. (2014).

Table 3 shows a comparison of estimated cropping inten-

sity in this study and that of Zabel et al. (2014) for the six

administrative units (six boxes A−F in Fig. 5a and b). For

the comparison, a simplified cropping intensity for irrigated

(IRC) and rain-fed (RFC) crop classes from MIRCA2000

is also described. Here, simplified cropping intensities are

defined as “annual harvested area” divided by “maximum

monthly cropped area”, which are defined for both irrigated

and rain-fed classes of 26 crop types in MIRCA2000. The

averaged cropping intensities over the administrative units

are shown in the table. We illustrate the time series of the

NDVI-Crop in the six administrative units in Fig. 6 to inves-

tigate the difference in cropping intensity. The time series of

the NDVI-Crop, averaged over the administrative units, are

shown in Fig. 6 for 2004, 2005, and 2006, and averaged from

2004 to 2006 (red, blue, magenta, and green lines in Fig. 6).

In Brazil Rio Grande do Sul (box A) and US Missis-

sippi (box F), the average cropping intensity in this study

is smaller than in Zabel et al. (2014). On the other hand, our

estimations are close to the simplified cropping intensity by

MIRCA2000. Zabel et al. (2014) estimated potential crop-

ping intensity, which provides a reason for the overestima-

tion of cropping intensity compared to our study. A mixture

of bimodal and nearly constant NDVI-Crop (black lines) is

shown in Brazil Rio Grande do Sul (Fig. 6a). The nearly con-

stant NDVI is characteristic of a tropical forest. The NDVI-

Crop data may not represent the phenology of the cropland

Hydrol. Earth Syst. Sci., 19, 4441–4461, 2015 www.hydrol-earth-syst-sci.net/19/4441/2015/
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Table 4. Number of calibration grids, two calibrated crop calendar parameters (nNDVIsw and nNDVIhv), and averaged errors (nNDVI) in

sowing/harvesting dates between determined crop calendar and MIRCA2000 among calibration grids of the six crop types.

Unit Temp.-wheat Snow-wheat Maize Rice Soybean Cotton

No. of grids N 70 50 60 50 39 16

nNDVIsw − 0.23 − 0.15 0.39 0.16 0.33

nNDVIhv − 0.31 0.65 0.75 0.72 0.36 0.35

Error (sow) day 15.5 − 9.7 12.5 13.0 19.4

Error (harvest) day 19.9 23.4 8.2 3.2 12.8 11.5

in some grids because of uncertainty in the land cover data

and insufficient spatial resolution (see Sect. 3.3 for further

discussion).

In China Henan (box B), India Uttar Pradesh (box D),

and Kenya (box E), the average cropping intensity in this

study is larger than in Zabel et al. (2014) and MIRCA2000,

with the only exception being irrigated crop in MIRCA2000

in India Uttar Pradesh. In India Uttar Pradesh, the har-

vested area of irrigated crops is larger than that of rain-

fed crops (cf. Table I-211 in Portmann, 2011), suggesting

our estimation of cropping intensity corresponds to the ir-

rigated crop. We see clear trimodal and bimodal NDVI-Crop

(green lines) in China Henan and Kenya (Fig. 6b and e).

Again, Fig. 5b shows the average cropping intensity for the

dominant crop in the major cultivation season, according to

Zabel et al. (2014). Generally, farmers do not conduct mul-

tiple cropping with wheat only. Zabel et al. (2014) reported

multiple-cropping intensities for other crops in two admin-

istrative units. The other possibility is that overestimations

of cropping intensity derive from a mixture of phenology

from different crops or vegetation in France (box C). On the

other hand, Zabel et al. (2014) and MIRCA2000 may under-

estimate cropping intensity in Kenya, where a clear bimodal

NDVI-Crop (green line) is detected in Fig. 6e. It is also possi-

ble that the bimodal NDVI-Crop can be derived from mixture

of phenology from different crops.

2.3 First estimation of global crop calendar

This study estimates sowing and harvesting dates (tsw and

thv) using two CC parameters (nNDVIsw and nNDVIhv) and

a time series of nNDVI data. The sowing and harvesting dates

are determined by the following:

t =

(
tsw
thv

)
when

(
t ≤ tpk and nNDVI(t)≥ nNDVIsw
t ≥ tpk and nNDVI(t)≥ nNDVIhv

)
, (6)

where subscripts sw and hv denote sowing and harvest, re-

spectively. Figure 7a and b show schematics of identifica-

tion of sowing and harvesting dates for temperate crops

(temperate-wheat, rice, maize, soybean, and cotton) and

snow-wheat. In the multiple cropping grids, sowing and har-

vesting dates are also determined for each cropping season

(except for the sowing date of snow-wheat). Our method is

unsuitable for the estimation of sowing dates of snow-wheat

Figure 7. Scheme of identification of sowing and harvesting dates

in this study. Sowing and harvesting dates (tsw and thv) are identi-

fied together with a vegetation index time series (black lines) and

two crop calendar (CC) parameters: nNDVIsw and nNDVIhv. (a)

and (b) indicate temperate crops (temperate-wheat, maize, rice, soy-

bean, and cotton) and snow-wheat, respectively. The two CC param-

eters are defined for the six crop types (Table 2a).

because we assume an increase in the NDVI from sowing

date to peak in Eq. (6). However, the NDVI decreases if the

surface is covered by snow (Fig. 7b). Therefore, in this pro-

cess, we determine both sowing and harvesting dates for tem-

perate crops, and only the harvesting date for snow-wheat.

The two CC parameters used for the determination of sow-

ing and harvest dates are defined for each crop type with the

exception of the nNDVIsw of snow-wheat. We calibrated the

two CC parameters (nNDVIsw and nNDVIhv) for each crop

type as described in the following paragraph.

To remove the noise of the time series of NDVI data as

much as possible, we use limited grids (hereafter, calibration

grids) to estimate the two CC parameters. The calibration

grids satisfy the following conditions: (1) single cropping

defined by cropping intensity; (2) dominant crop occupying

more than 25 % of the total cropland area (using land cover

fraction data from 26 crop types in MIRCA2000); (3) up to

five grids from the same administrative unit of MIRCA2000;

(4) NDVIpk is larger than NDVIsnow and (5) contains NDVI-

Pure (i.e., using only higher-level confident grids). Once the

parameters nNDVIpl and nNDVIhv are determined, sowing

and harvesting dates can be determined using Eq. (6). The

values of the two CC parameters nNDVIpl and nNDVIhv are

calibrated for each crop to minimize the errors over calibra-

www.hydrol-earth-syst-sci.net/19/4441/2015/ Hydrol. Earth Syst. Sci., 19, 4441–4461, 2015



4448 S. Kotsuki and K. Tanaka: Estimation of global high-resolution crop calendar from satellite-sensed NDVI

Figure 8. Scheme used to adjust the cultivation period of SACRA

to that of MIRCA2000. tsw (thv) and tsw−adj (thv−adj) denote sow-

ing (harvesting dates) for the first estimation and subsequent to

the adjustment, respectively. For temperate crops, sowing and har-

vesting dates are moved (advanced or postponed) to adjust the

cultivation period to MIRCA2000. In this treatment, the ratio of

tpk− tsw to thv− tpk is preserved as the ratio of tpk− tsw−adj to

thv−adj− tpk. For snow-wheat, the harvesting date has not changed

(i.e., thv = thv−adj). Sowing date is determined by the cultivation

period of MIRCA2000 and the harvesting date of the first estima-

tion.

tion grids between determined sowing/harvesting dates and

MIRCA2000 (see Appendix A for details). Table 4 shows

the number of calibration grids, the calibrated two CC pa-

rameters and averaged errors in sowing/harvesting dates for

six crop types.

2.4 SACRA data sets

The global sowing and harvesting dates are determined by

Eq. (6) using time series of the nNDVI-Crop and two CC pa-

rameters (first estimation in Fig. 1, except for the sowing date

of snow-wheat). Our method detects the cultivation season

using time series of the satellite-sensed NDVI. However, our

algorithm carries the possibility of overestimating or under-

estimating cultivation periods. The cultivation period (from

sowing date to harvesting date) in our scheme is largely af-

fected by the shape of the NDVI (i.e., kurtosis of the NDVI

curve). Therefore, our method can result in unrealistic cul-

tivation periods in some grids (e.g., less than 60 days) if

NDVI-Crop does not represent the phenology of the dom-

inant crops due to mixture of phenology from other crops

and vegetation. Therefore, we adjust the length of the culti-

vation period to be equal to MIRCA2000 to avoid the unreal-

istic cultivation periods. For the temperate crops, sowing and

harvesting dates are moved (advanced or postponed) to ad-

just the cultivation period to MIRCA2000. In this treatment,

the ratio of tpk− tsw to thv− tpk is preserved as the ratio of

tpk− tsw−adj to thv−adj− tpk, (Fig. 8a), where tsw (or thv) and

tsw−adj (or thv−adj) denote sowing (or harvesting) dates for

the first estimation and after the adjustment, respectively. For

snow-wheat, the harvesting date is fixed (i.e., thv = thv−adj).

The sowing date is determined by the cultivation period of

MIRCA2000 and the harvesting date of the first estimation

(Fig. 8b). Here, we use the cultivation period in MIRCA2000

from the 15th of the sowing month to the 15th of the harvest-

ing month. For multiple-cropping grids, the corresponding

cultivation season in MIRCA2000 (i.e., major or second cul-

tivation seasons) from each cropping is determined by the

following:(
major season

second season

)
when(

Monsw(major),1st ≤ tpk <Monsw(second),1st

Monsw(second),1st ≤ tpk <Monsw(major),1st

)
, (7)

where Monsw,1st denotes the 1st of the sowing month in

MIRCA2000. Subscripts major and second denote major and

second cultivation seasons, respectively. Here, we consider

the cyclic boundary of the calendar. We apply the cultiva-

tion period of the major cultivation season in grids where no

dominant crop in the second cultivation season is defined.

The adjusted sowing and harvesting dates are referred to as

SACRA and are discussed in the next section.

3 Results and discussion

This section provides validation and discussion regarding the

produced SACRA data set. However, true validation is hard

to achieve in global studies. Therefore, we compare the esti-

mated CC with other CC data produced using other estima-

tions, either census-based or model-based.

3.1 Comparison with census-based and model-based

approaches

We compare SACRA with two CC data sets: MIRCA2000

and Waha et al. (2012; hereafter W12). We selected

MIRCA2000 and W12 arbitrarily as representing census-

based and model-based CC data, respectively. Waha et

al. (2012) simulated the sowing dates of major annual crops

from 1900 to 2003 at a spatial resolution of 0.5 ◦. We use

the averaged sowing dates (2000–2003) of four crops (wheat,

rice, maize and soybean) from W12 for comparison. Waha

et al. (2012) assigned 1 January as the sowing date, as it is

as good as any other day for sowing in a favorable all-year

climate. Therefore, averaged sowing dates are computed, ex-

cluding grids assigning 1 January as the sowing date. Note

that the sowing date of cotton was not estimated in W12. The

averaged sowing date over years is computed by the follow-

ing:

ηyear,sw = F(DOYyear,sw)=
DOYyear,sw

Days of the year
· 2π (8)

DOYave,sw = F
−1

{
arg

(
average

(
cos

(
ηyear,sw

))
+i · average

(
sin

(
ηyear,sw

)))}
, (9)

where DOY, η, arg, and i denote day of year, angle of the

DOY (rad), argument, and imaginary unit, respectively, and
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Figure 9. Sowing dates (unit: day of year) of dominant crops in

the major cultivation season for (a) SACRA, (b) MIRCA2000, and

(c) Waha et al. (2012). Left panels (a-1, b-1, and c-1) and right

panels (a-2, b-2, and c-2) show global and South Asian maps, re-

spectively. Sowing dates are illustrated in grids where the dominant

crop is temperate-wheat, snow-wheat, maize, rice, soybean or cot-

ton. The major seasons at multiple cropping grids are determined

by Eq. (7) for SACRA. Panels of SACRA contain sowing dates of

the major cultivation season for both single and multiple cropping

grids. Boxes in right panels represent the area where SACRA did

not detect the crop calendar in some grids while MIRCA2000- and

Waha et al. (2012)-defined.

subscript ave denotes average. F and F−1 define functions to

compute η from DOY and DOY from η, respectively. Equa-

tions (8) and (9) are used to compute the averaged sowing

date considering the cyclic boundary of the calendar.

The spatial distributions of the sowing dates for the dom-

inant crops in the major cultivation season for SACRA,

MIRCA2000 and W12 are shown in Fig. 9. The sowing dates

are illustrated in grids where the dominant crop of SACRA

in the major cultivation season is temperate-wheat, snow-

wheat, maize, rice, soybean or cotton. If multiple sowing

exists in the SACRA dates for the major cultivation sea-

son, we illustrate the sowing dates derived from the largest

NDVIpk among the sowing dates. For MIRCA2000, we il-

lustrate the 15th of the sowing month. Although three differ-

ent sets of data are produced from the different approaches

(Earth observation-based, census-based, and model-based),

they have similar spatial patterns (Fig. 9a-1, b-1, and c-1).

Their sowing dates generally represent spring in their grids.

Figure 9a-2, b-2, and c-2 show the sowing dates in South

Asia, selected arbitrarily to highlight the higher spatial vari-

ability in SACRA. Since SACRA uses high-resolution satel-

lite data, it reflects a variety of sowing dates in the same ad-

ministrative unit, as shown in Fig. 9a-2 (e.g., Thailand, Viet-

nam, and Laos). W12 also resulted in a variety of sowing

dates for Vietnam (Fig. 9c-2) due to the estimation being

based on climatic data. The detection of variability in the

CC within an administrative unit is an advantage of Earth-

observation-based and model-based approaches compared to

census-based methods. On the other hand, SACRA carries

the disadvantage of undetection of a crop calendar in grids

where the NDVI-Crop is not defined (boxes in Fig. 9a-2, b-2,

and c-2).

While SACRA can detect the variability of the CC within

administrative units, it is difficult to demonstrate whether the

variability is correct around the globe without knowledge of

the local CC information. Therefore, the following subsec-

tion discusses the differences in the CCs among the three

products, with sowing dates. We compare the sowing dates

of the three products averaged over administrative units de-

fined in MIRCA2000.

3.2 Comparison of averaged CC over MIRCA2000

administrative units

To investigate the characteristics of the three approaches, we

compare the averaged sowing dates over administrative units.

The averaged sowing dates of the dominant crop in the major

cultivation season are computed by three products (SACRA,

MIRCA2000, and W12) using Eqs. (8) and (9), averaging not

over years but over administrative units. We assign the 15th

of the sowing month for MIRCA2000. The sowing dates of

temperate- and snow-wheat in SACRA are compared with

the sowing dates of “wheat” in MIRCA2000 and W12. Here,

only single cropping grids are used to compute the averaged

sowing date for SACRA. We suppose that NDVIbas repre-

sents the condition with little vegetation in the winter (or

dry) season. In the multiple cropping grids, the NDVIbas in

the summer (or wet) season can be higher than other seasons

due to mixture of phenology from other crops and vegeta-

tion (e.g., NDVIbas in June is higher than that in December

in Fig. 3c). Therefore, accuracy of CCs in multiple cropping

grids may be lower than that in single cropping grids.

The differences in the sowing dates of the dominant crop

are shown in Fig. 10. The administrative units are illustrated

if their dominant crop in the major cultivation season is

temperate-wheat, snow-wheat, maize, rice, soybean or cot-

ton. The difference for each specific crop type is shown in

Fig. A3. The difference between the two data sets is less than

2 months (< 62 days; yellow- or green-colored units) in most

of the administrative units in Fig. 10a and b. Figure A3 shows

that wheat contains the largest number of units, with a large

difference in sowing dates (> 93 days; red- or blue-colored

units). We observe a later signalling trend in sowing dates

in SACRA than in W12 (Fig. 10b; green- or blue-colored

units). The direction of the later signalling trend is dominant

in wheat, maize, rice and soybean (Fig. A3-a2, A3-b2, A3-

c2, and A3-d2).

Table 5 compares the sowing dates of the three prod-

ucts in 16 administrative units that fall into the category of
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Figure 10. Differences in sowing dates of the dominant crop in the major cultivation season (a: SACRA–MIRCA2000; b: SACRA–Waha

et al., 2012). The administrative units are illustrated if their dominant crop in the major cultivation season is temperate-wheat, snow-wheat,

maize, rice, soybean or cotton. The differences for each specific crop type are shown in Fig. A3. Only single cropping grids are used to

compute the averaged sowing date for SACRA.

Table 5. Administrative units with large absolute differences in sowing date (> 150 days) between SACRA and MIRCA2000 or SACRA and

Waha et al. (2012). SCR, MRC, and W12 in the table represent SACRA, MIRCA2000, and Waha et al. (2012), respectively. “Code” and

“Crop” represent the assigned code of the administrative unit in SACRA and the dominant crop in the major cultivation season in this study.

Bold numbers denote large absolute differences in sowing date between SACRA and the other data sets. The table compares sowing dates

averaged over the administrative units. Only single cropping grids are used to compute the averaged sowing date for SACRA.

Sowing date (DOY) Difference (days)

Code Name of administrative unit Crop SCR MRC W12 SCR-MRC SCR-W12

8 Azerbaijan TWH 104.1 105 305.7 −0.9 163.4

36 AUS Queensland TWH 1.7 166 341.6 −164.3 25

49 Bhutan RIC 213.1 166 60.8 47.1 152.3

99 China Beijing SWH 89.1 288 289.7 166.1 164.3

102 China Gansu SWH 86.9 288 103 163.9 −16.1

107 China Hebei SWH 84.5 288 316.4 161.5 133

109 China Henan SWH 94.2 288 305.1 171.2 154

117 China Ningxia SWH 76.3 288 48.6 153.3 27.7

119 China Shaanxi SWH 103.6 288 292.8 180.6 175.7

120 China Shandong SWH 83.7 288 300.8 160.7 148

122 China Shanxi SWH 87.8 288 336.9 164.8 115.9

126 China Yunnan MAZ 162 319 105.8 −157 56.2

192 IND Himachal Pradesh SWH 157.3 319 135.2 −161.7 22

207 IND Sikkim MAZ 195.5 166 31 29.5 164.5

225 Kazakhstan SWH 286.6 258 105.1 28.6 181.5

394 Uruguay RIC 175.2 349 294.8 −173.8 −119.6

TWH: temperate-wheat; SWH: snow-wheat; MAZ: maize; RIC: rice; COT: cotton; AUS: Australia; IND: India.

disagreement (more than 150 days) between SACRA and

MIRCA2000 or SACRA and W12. We present the cultiva-

tion seasons (from sowing to harvesting dates) in 16 admin-

istrative units in Fig. A4 to understand the discrepancies in

the CCs of the three products. To interpret the disagreements

in Table 5 and Fig. A4, we use Fig. 11, which shows the

time series of the NDVI-Crop, average NDVI-Crop, average

NDVI-Forest, and average temperature data. Here, average

means the average over administrative units. NDVI-Forest is

produced by following NDVI-Crop production, but with for-

est pixels using GLCC and Ecoclimap land cover data. That

is, NDVI-Forest is aggregated by averaging the pixels where

the GLCC or Ecoclimap agree on forest.

We observe disagreements in 12 administrative units

where the dominant crops in the major cultivation season

are temperate- or snow-wheat, shown in Table 5. Cultivated

wheat in the world can be classified into two types depend-

ing on the sowing season. The FAO (2002) notes the fol-

lowing: (1) the first type of wheat is planted in the fall to

germinate and develop into young plants that remain in the

vegetative phase during the winter and resume growth in the

early spring; (2) the second type of wheat is usually planted
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Figure 11. Time series of NDVI-Crop (black lines), average NDVI-Crop (green lines), average NDVI-Forest (blue lines), and average

temperature (orange lines; ◦C) in the 16 administrative units in Table 5; Azerbaijan (code 8), Australia Queensland (code 36), Bhutan (code

49), China Beijing (code 99), China Gansu (code 102), China Hebei (code 107), China Henan (code 109), China Ningxia (code 117), China

Shaanxi (code 119), China Shandong (code 120), China Shanxi (code 122), China Yunnan (code 126), India Himachal Pradesh (code 192),

India Sikkim (code 207), Kazakhstan (code 225), and Uruguay (code 394). The average denotes the average over the administrative units.

in the spring and matures in late summer, but can be sown

in the fall in countries that experience mild winters, such as

in South Asia, North Africa, the Middle East, and at lower

latitudes.

In Azerbaijan (code 8) and Kazakhstan (code 225), large

differences (> 150 days) are observed between SACRA

and W12, while the differences between SACRA and

MIRCA2000 are < 50 days. In Australia Queensland (code

36), China Gansu (code 102), China Ningxia (code 117),

and India Himachal Pradesh (code 192), a large difference

is observed between SACRA and MIRCA2000. In the above

six administrative units, the assumed wheat type may be in-

correctly identified in MIRCA2000 and W12. On the other

hand, SACRA’s sowing dates differ from both MIRCA2000

and W12 for Beijing (code 99), Hebei (code 107), Henan

(code 109), Shaanxi (code 119), Shandong (code 120), and

Shanxi (code 122) in China. In these six administrative units,

SACRA has possibly detected incorrect signals of the NDVI

(e.g., signals of forest or other crops). As shown in Fig. A3,

wheat is related to the largest number of units with disagree-

ments in sowing dates. Disagreements in sowing dates are

also observed between MIRCA2000 and W12. The identifi-

cation of wheat type (sowing in spring or fall) may be a major

source of error in global CC estimations.

In Bhutan (code 49), India Sikkim (code 207), and

Uruguay (code 394), clear unimodal NDVI-Crops are not ob-

served in Fig. 11. The accuracy of SACRA is affected by the

accuracy of the land cover data sets. It is known that the 1 km

land cover data sets contain uncertainties (Herold et al., 2008;

Nakaegawa, 2012). For example, forests may be classified as

croplands in the 1 km land cover data sets. Also, NDVI and

land cover data sets at 1 km resolution may be insufficient to

detect the phenology of the dominant crop in the administra-

tive units.

In China Yunnan (code 126), we observe disagreements

between SACRA and MIRCA. In China Yunnan, we ob-

serve that some of the grids have bimodal NDVI-Crop (black

lines) in Fig. 11. It is possible that NDVI-Crop represents
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a mixed phenology of non-dominant and voluntary crops.

Our approach is unable to consider a mixture of phenology.

This may explain the disagreement between SACRA’s sow-

ing dates and those of other products.

A major discrepancy in crop calendars between SACRA

and other products can be due to the selection of one dom-

inant crop in each administrative unit. It is possible that

SACRA detects the CC of similar maximal harvested area

or another sub-crop in MIRCA2000 (e.g., for irrigated wheat

in India Uttar Pradesh with two identical areas with different

cropping periods; cf. Table I-211 of Appendix I in Portmann,

2011). The disadvantages of our approach may be reduced

with future improvements based on finer satellite sensors to

avoid mixture of phenology from other crops and vegetation,

and crop-type classification studies to consider several dom-

inant crops in each grid.

Taking into account the extreme disagreement between

SACRA and MIRCA2000 or W12 in some regions (Table 5

and Fig. 10), it becomes important to determine which CC is

more reliable. However, it is difficult to decide which data set

is more accurate in global studies. For example, the identifi-

cation of the wheat type (sowing in spring or fall) is difficult,

as shown in disagreements among the three products in 12

administrative units (Table 5). Also, it is possible that both

are correct, e.g., if they referred to different time periods.

MIRCA2000 possibly used the conditions of nearby admin-

istrative units because of a lack of more detailed reference

information. Therefore, it is difficult to determine the abso-

lute accuracy of the products through comparison. However,

combined application of several products is useful for tak-

ing the uncertainty of the CC into account. Since SACRA,

MIRCA and W12 detect the CC from different approaches,

a comparison of their results is useful for cross-validation.

3.3 Advantages and disadvantages of SACRA

This subsection discusses the advantages and disadvantages

of SACRA compared to two other approaches: census-based

and model-based methods. Additionally, this subsection also

discusses possible improvements of SACRA. Table 6 sum-

marizes the advantages and disadvantages of the census-

based methods, model-based methods, and SACRA.

An advantage of SACRA is its fine spatial resolution com-

pared to the other two data sets. Therefore, different CCs

in the same administrative unit are considered in SACRA

(Fig. 9a-2). The model-based method can also result in a va-

riety of CCs. However, it is difficult to demonstrate that the

variability is correct around the globe without knowledge of

local CC information.

The spatial resolution of SACRA is equal to the maximum

resolution of the satellite-sensed NDVI and the crop clas-

sification map. At present, the NDVI from the MODerate-

resolution Imaging Spectroradiometer (MODIS) is available

at a spatial resolution of 250 m (e.g., Zhang et al., 2006).

However, present studies provide global crop classification

maps at a spatial resolution of 5 arcmin (e.g., Monfreda et al.,

2008; Portmann et al., 2010). Present land cover data sets,

such as GLCC and Ecoclimap, only contain a small num-

ber of coarse agricultural classes. At the regional scale, many

studies have been performed to classify crops using satellite-

sensed data (e.g., Mingwei et al., 2008; Wardlow and Eg-

bert, 2008; Wardlow et al., 2007). In this study, we use the

crop classification map from MIRCA2000 at a spatial reso-

lution of 5 arcmin. SACRA can be recalculated with higher-

resolution remote sensing data (e.g., from future Sentinel-

2 data; Drusch et al., 2012) if higher-resolution land cover

maps become available. The higher-resolution CC products

can contribute to hydrological/agricultural studies that aim

to conduct simulations at a spatial resolution of 1 km (e.g.,

Wood et al., 2011; Kotsuki et al., 2015).

A second advantage of SACRA is its easy detection of cul-

tivation using time series of the NDVI. Because agriculture is

controlled by human decisions, it is difficult to estimate from

the census-based and model-based methods whether or not

farmers actually perform cultivation. Additionally, agricul-

ture is affected by disasters, such as droughts, inundations,

heat waves, and cool summer damages. The satellite-sensed

NDVI can be used to detect whether the managed land is cur-

rently being cultivated or is temporarily in disuse. It is also

possible to identify cropping intensity with time series of the

NDVI (Fig. 5).

However, SACRA has the disadvantage that it is inappli-

cable to future simulations such as impact assessments of cli-

mate change because SACRA is produced using past obser-

vational data. Future changes in agricultural water demand

and biomass production are major issues in assessment stud-

ies of climate change (Hanjra and Qureshi, 2010). An advan-

tage of SACRA compared to MIRCA2000 is that SACRA

provides not only sowing/harvesting dates but also the peak

date from the time series of the NDVI. The peak date can

be used to calibrate the parameters of crop growth models

that simulate the growing stage during cultivation (e.g., Horie

1987). SACRA can contribute to future assessment studies

indirectly by being utilized to calibrate their model parame-

ters.

It should be noted that our method is unsuitable for detect-

ing the sowing dates of snow-wheat. Furthermore, our algo-

rithm carries the possibility of overestimating or underesti-

mating cultivation periods in the first estimation. Therefore,

we adjusted the length of the cultivation period of SACRA to

MIRCA2000. For the temperate crops, sowing and harvest-

ing dates are moved (advanced/postponed) to adjust to the

cultivation period. For snow-wheat, the sowing date is de-

fined with respect to the cultivation period of MIRCA2000

and the harvesting date of the first estimation. The adjust-

ment indicates that the cultivation period of SACRA com-

pletely relies on that of MIRCA2000. However, the cultiva-

tion period can be different in the same administrative unit

because of different climates. We plan to utilize both census-

based and model-based cultivation periods for the adjust-
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Table 6. Advantages and disadvantages of three types of global crop calendars: census-based, model-based, and Earth observation-based.

Census-based Model-based Earth observation-based

Main inputs Census data Forcing data Satellite-sensed NDVI

Resolution Country/state scale Equal to forcing data 5 arcmin

Different CC in same admin. unit Impossible Possible Possible

Detection of cultivation Hard Hard Easy

Mixture of several crops in a grid Possible Possible Impossible

Application to future simulations Impossible Possible Impossible

ment. Also, utilization of snow cover products from satellite

(e.g., the MODIS snow cover product; Hall et al., 2002) or

land surface data assimilation (e.g., the global land data as-

similation system; Rodell et al., 2004) would help to adjust

the sowing date of snow-wheat appropriately.

Our method has the disadvantage that the mixture of sev-

eral crops in a grid is not considered. Therefore, we assume

that the NDVI-Crop represents the phenology of the domi-

nant crop at each grid. Because of this assumption, our ap-

proach contains the following disadvantages: (1) the census-

based and model-based approaches can contain CCs for more

than one crop for every unit (e.g., MIRCA2000 and W12),

while SACRA only contains the CC for the dominant crop

in a given unit; (2) census-based data can deliver a CC for

either irrigated or rain-fed crops, while SACRA cannot sepa-

rate them. In fact, CCs for irrigated and rain-fed cropland can

be different; and (3) our approach cannot consider the mix-

ture of phenology from several crops and voluntary crops. It

should also be noted that the length of the cultivation period

in SACRA is adjusted to MIRCA2000 to avoid the unrealis-

tic cultivation periods. A major discrepancy in crop calendars

between SACRA and other products can be due to the selec-

tion of one dominant crop in each administrative unit. The

disadvantages of our approach would be reduced with future

improvements based on finer satellite sensors and crop-type

classification studies to consider several dominant crops in

each administrative unit.

The idea behind CC estimation in SACRA is very simple,

and therefore easily applicable to the global cropland and ad-

ditional satellite observations. Due to data scarcity, we resort

to averaged data from three consecutive years (2004–2006).

The data product generated from this study therefore is of

limited use for the direct parameterization of global growth

models. However, taking into account the current develop-

ment in Earth observation (e.g., the development of the Euro-

pean Space Agency’s Sentinel series), data scarcity will soon

be less of an issue. The proposed method represents a simple

and thus easily applied approach that can potentially make

use of large amounts of temporally, highly resolved, global,

optical, Earth observation data, and may provide interesting

input parameters for global land surface models. For exam-

ple, the estimation of an annual crop calendar is a major part

of our scope.

Finally, the accuracy of SACRA depends on the accuracy

of the NDVI and land cover data sets. The wavelengths re-

quired for the calculation of the NDVI are relatively easy to

measure from satellite sensors. Therefore, the accuracy of the

NDVI largely depends on the temporal resolution of adequate

observations (e.g., the revisiting time of the applied systems

and weather at satellite observation, such as cloud cover). Us-

age of several satellite sensors (e.g., MODIS) would help to

reduce the uncertainty of the NDVI. With respect to the accu-

racy of land cover data, we combine two land cover data sets

to reduce the uncertainty of the land cover data. The land

cover data sets, however, contain uncertainties (Herold et

al., 2008; Nakaegawa, 2012). The land cover data sets could

be improved by developing new algorithms, increasing the

amount of supervised data, and utilizing multi-spectrum in-

formation. Further improvements of the land cover data sets

would contribute to improvement of SACRA.

4 Summary

This study aimed at producing a new crop calendar, SACRA,

using a satellite-sensed NDVI. This paper describes the

methods to produce SACRA from the following four data

sets: time series of the NDVI, land cover data sets, reanal-

ysis temperature, and census monthly agricultural data. The

resulting SACRA data set included three products at a spatial

resolution of 5 arcmin: (1) the spatial distribution of the dom-

inant crop in major and second cultivation seasons; (2) time

series of the NDVI of the cropland; and (3) sowing, peak,

and harvesting dates of the dominant crop. The advantages

and disadvantages of SACRA compared to other global crop

calendars are summarized as follows.

First, an advantage of SACRA is its finer spatial resolution

compared to other existing global crop calendars. However,

a disadvantage is that the mixture of several crops in a grid is

not considered in SACRA. Second, the cultivation period of

SACRA is identified from the time series of the NDVI, which

corresponds to vegetation vitality. Therefore, SACRA con-

siders current effects of human decisions and natural disas-

ters. Satellite-sensed NDVI data enable detection of whether

the managed land is currently cultivated or temporarily in

disuse. Finally, SACRA is inapplicable to future simula-

tions because it is based on Earth-observation data. However,
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SACRA can potentially be used to calibrate the parameters

of crop growth models. An advantage of SACRA compared

to census-based crop calendars is that SACRA provides not

only sowing/harvesting dates, but also a peak date from the

time series of NDVI data.

Many improvements to SACRA are possible. For exam-

ple, estimation of annual crop calendars is a major part of

our scope. We have made SACRA data sets available on our

web page free of charge. We encourage researchers to utilize

our data and provide feedback on errors or possible improve-

ments.
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Appendix A: Calibration of crop calendar parameters

This appendix describes the scheme used to calibrate two

crop calendar parameters (nNDVIsw and nNDVIhv) from

NDVI-Pure in Sect. 2.3. Once two parameters are given,

the sowing/harvesting dates are uniquely determined with

Eq. (6). We calibrated the two CC parameters so as to min-

imize the error between the determined and MIRCA2000

sowing (harvesting) dates among calibration grids. Here, the

error for the sowing (harvesting) date is calculated by

ERRsw(hv) = 0 if Monsw(hv),1st ≤ tsw(hv) ≤Monsw(hv),End

else ERRsw(hv) =min
(∣∣tsw,(hv)−Monsw(hv),1st

∣∣ ,∣∣tsw,(hv)−Monsw(hv),End

∣∣) , (A1)

where ERR, t , and Mon denote error at the grid (day), sowing

(or harvesting) dates (day of year) determined by nNDVIsw

(or nNDVIhv), and the sowing (or harvesting) month defined

in MIRCA2000. Mon1st(End) denotes the first (or end) dates

of the month (day of year). Subscripts sw and hv denote sow-

ing and harvesting dates, respectively. By changing nNDVIsw

and nNDVIhv from 0.01 to 1.0 with a 0.01 increment, we

minimized the averaged ERRsw and ERRhv among calibra-

tion grids for each crop (Fig. A1). Note that nNDVIsw of

snow-wheat is not calibrated in this study since our method

is unsuitable for estimation of sowing dates of snow-wheat

(Sect. 2.3). The global distribution of calibration grids for

six crops is shown in Fig. A2.
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Figure A1. Average error of sowing/harvesting dates (blue/orange lines; unit days) among calibration grids for six crops (a: temperate-wheat;

b: snow-wheat; c: maize; d: rice; e: soybean; and f: cotton). Dots in the figures represent minimized errors and nNDVIsw or nNDVIhv (i.e.,

the two calibrated parameters in Table 4).

Figure A2. Global distribution of calibration grids for the six crops. The calibration grids are illustrated larger than the real grid size

(5 arcmin) for emphasis.
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Figure A3. Same as Fig. 9 but for five specific crops (wheat, maize, rice, soybean, and cotton). The sowing date of cotton was not estimated

by Waha et al. (2012). Only single cropping grids are used to compute the averaged sowing date for SACRA.
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Figure A4. Cultivation seasons (from sowing to harvesting dates) in 16 administrative units in Table 5. Magenta, blue, and green denote

SACRA, Waha et al. (2012) and MIRCA2000, respectively. For Waha et al. (2012), we apply the cultivation period of MIRCA2000 for

purposes of illustration at each administrative unit. The beginning and end of the labels represent averaged sowing and harvesting dates,

respectively, over the administrative unit. Only single cropping grids are used to compute the averaged sowing date for SACRA.
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Appendix B: Comparison of sowing dates

This appendix aims to illustrate the differences in sowing

dates of the three data sets SACRA, MIRCA2000 (Portmann

et al., 2010), and Waha et al. (2012), to supplement discus-

sions in Sect. 3.2. Figure A3 is similar to Fig. 9, but shows

the differences in sowing dates for five specific crops (wheat,

maize, rice, soybean, and cotton). Figure A4 shows the culti-

vation seasons of the three products in 16 administrative units

in Table 5. Since Waha et al. (2012) estimated only the sow-

ing dates, we apply the cultivation period of MIRCA2000

at each administrative unit for purposes of illustration. The

cultivation period of SACRA was also adjusted by that of

MIRCA2000 (see Sect. 2.4 for details). Therefore, the three

products have the same cultivation period in each adminis-

trative unit in Fig. A4.
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