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Abstract. Accuracy of reservoir inflow forecasts is in-

strumental for maximizing the value of water resources

and benefits gained through hydropower generation. Im-

proving hourly reservoir inflow forecasts over a 24 h lead

time is considered within the day-ahead (Elspot) market of

the Nordic exchange market. A complementary modelling

framework presents an approach for improving real-time

forecasting without needing to modify the pre-existing fore-

casting model, but instead formulating an independent addi-

tive or complementary model that captures the structure the

existing operational model may be missing. We present here

the application of this principle for issuing improved hourly

inflow forecasts into hydropower reservoirs over extended

lead times, and the parameter estimation procedure refor-

mulated to deal with bias, persistence and heteroscedasticity.

The procedure presented comprises an error model added on

top of an unalterable constant parameter conceptual model.

This procedure is applied in the 207 km2 Krinsvatn catch-

ment in central Norway. The structure of the error model

is established based on attributes of the residual time series

from the conceptual model. Besides improving forecast skills

of operational models, the approach estimates the uncertainty

in the complementary model structure and produces proba-

bilistic inflow forecasts that entrain suitable information for

reducing uncertainty in the decision-making processes in hy-

dropower systems operation. Deterministic and probabilis-

tic evaluations revealed an overall significant improvement

in forecast accuracy for lead times up to 17 h. Evaluation of

the percentage of observations bracketed in the forecasted

95 % confidence interval indicated that the degree of success

in containing 95 % of the observations varies across seasons

and hydrologic years.

1 Introduction

Hydrologic models can deliver information useful for man-

agement of natural resources and natural hazards (Beven,

2009). They are important components of hydropower plan-

ning and operation schemes where it is essential to estimate

future reservoir inflows and quantify the water available for

power production on a daily basis. The identification and rep-

resentation of the significant responses of hydrologic systems

have been diverse among hydrologists. Different hydrolo-

gists have incorporated their perceptions of the functioning

of hydrologic systems into their models and come up with

several rival models; some of them process based and oth-

ers data based (for thorough reviews of the historic devel-

opment of hydrologic modelling refer to Todini, 2007 and

Beven, 2012). These models can be grouped into two main

classes, conceptual and data-driven models.

Lumped conceptual hydrologic models are the most com-

monly used models in operational forecasting. Models of this

class use sets of mathematical expressions to provide a sim-

plified generalization of the complex natural processes of the

hydrologic systems in the headwater areas of reservoirs. Ap-

plication of such models conventionally requires estimating

the model parameters by conditioning them to observed hy-
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drologic data. Unlike conceptual models, data-driven models

establish mathematical relationship between input and out-

put data without any explicit attempt to represent the physi-

cal processes of the hydrologic system. Reconciling the two

modelling approaches and combining the advantages of both

approaches (Todini, 2007) has produced some example ap-

plications in forecasting systems where the two modelling

approaches are harmoniously used for improving reliability

of hydrologic model outputs (e.g. Abebe and Price, 2003;

Solomatine and Shrestha, 2009).

Usefulness of a model for operational prediction is deter-

mined by the level of accuracy to which the model repro-

duces observed hydrologic behaviour of the study area. In

operational applications, evaluation of how well the models

capture rainfall–runoff processes, especially the snow accu-

mulation and melting process in cold regions, is important

because of the extent to which the models accurately repro-

duce the reservoir inflows can significantly influence the ef-

ficiency of the hydropower reservoir operation and subse-

quently the power price. Application of hydrologic models

for reproducing historic records can suffer from inadequacy

in model structure, incorrect model parameters, or erroneous

data. Consequently, despite failing to reproduce the observed

hydrographs exactly, they enable simulation of hydrologic

characteristics of a study catchment to a fair degree of ac-

curacy. It gets more challenging when using the models in

the operational set-up for forecasting the unknown future just

based on the known past, which the model might not cap-

ture accurately. In the context of the Norwegian hydropower

systems, being unable to predict future reservoir inflows ac-

curately has negative consequences on the power producers.

Norway’s energy producers have to pledge the amount of en-

ergy they produce for next 24 h in the day-ahead market and

if unable to provide the pledged amount of energy the chance

of incurring losses is very high. Estimation of future reser-

voir inflows (be it long- or short-term) involves estimating

the actual (initial) state of the basin, forecasting the basin

inputs during the lead time, and describing the water move-

ment during the lead time (Moll, 1983). Hence, the quality of

a hydrologic forecast depends on the accuracy achieved and

methodology selected in implementing each of these aspects.

In this study, we intend to use conceptual and data-driven

models complementarily. A conceptual model with cali-

brated model parameters is used as the fundamental model

that approximately captures dominant hydrologic processes

and forecasts the behaviour of the catchment deterministi-

cally. A data-driven model is then formulated on the residu-

als, the difference between observations and predictions from

the conceptual model. By studying the whole set of residu-

als and exploring the information they contain, important in-

formation that describes the inadequacies of the conceptual

model can be extracted. In general, this kind of information

can be used for improving either the conceptual model it-

self or the prediction skill of a forecasting system. Emulating

the practice in most Norwegian hydropower reservoir opera-

tors, we stick to the latter purpose with the aim of enhancing

the performance of a hydropower reservoir inflow forecast-

ing system. According to Kachroo (1992), data-driven mod-

els defined on the residuals from a conceptual model can ex-

pose whether the conceptual model is adequate to identify

essential relationships exhibited in the input–output data se-

ries. Data-driven models can establish the mathematical rela-

tionship that describes the persistence revealed in the resid-

ual time series, which is caused by failure of the conceptual

model to capture all the physical processes exactly. Thus, in

the operational sense, the data-driven models can play a com-

plementary role by adjusting output of the conceptual model

whenever the conceptual model needs corrective adaptation

(e.g. Serban and Askew, 1991; World Meteorological Orga-

nization, 1992).

Several example applications can be found in the scientific

literature on using conceptual and data-driven models com-

plementarily. For instance, Toth et al. (1999) compared per-

formance improvements six autoregressive integrated mov-

ing average (ARIMA)-based error models brought to stream-

flow forecasts from a conceptual model to identify the

best error model and data requirements. Shamseldin and

O’Connor (2001) coupled a multi-layer neural network

model on top of a conceptual rainfall–runoff model to im-

prove accuracy of streamflow forecasts without interfering

with the operation of the conceptual model. Similarly, Mad-

sen and Skotner (2005) developed a procedure for improving

operational flood forecasts by combining error models (lin-

ear and non-linear) and a general filtering technique. Xiong

and O’Connor (2002) investigated performance of four error-

forecast models, namely, the single autoregressive, the au-

toregressive threshold, the fuzzy autoregressive threshold

and the artificial neural network updating models, for im-

proving real-time flow forecasts and compared their results.

Likewise, Goswami et al. (2005) examined the forecasting

skill of eight error-modelling-based updating methods. A re-

cent review on the application of error models and other data

assimilation approaches for updating flow forecasts from

conceptual models can be found in Liu et al. (2012).

As reviewed above, the principle of complementing con-

ceptual models with data-driven models has enjoyed appli-

cations in real-time hydrologic forecasting since the 1990s.

The methodological contribution of the present work is refor-

mulation of the parameter estimation procedure for the data-

based model. We recognize that the bias, persistence and

heteroscedasticity seen in the residuals from the conceptual

model reflect structural inadequacy of the conceptual model

to capture the catchment processes and, hence, are important

in defining the manner the residual series is dealt with. Ac-

cordingly, we describe the reservoir inflows in a transformed

space and present an iterative algorithm for estimating pa-

rameters of the data-driven model and the transformation pa-

rameters jointly.

Two main features distinguish application aspects of the

present paper from previously published work built on the
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same concept of complementing conceptual models with

data-driven models. First, it attempts to provide hourly reser-

voir inflows of improved accuracy 24 h ahead. The earlier

papers mainly succeeded in improving forecasts for forecast

lead times up to six time steps or incorporated a scheme to

update the forecast system at an interval of six time steps.

Second, an attempt is made in what follows, to produce a

probabilistic forecast by estimating the uncertainty of the er-

ror model, rather than only the deterministic estimate. This,

thereby, enables forecast of an ensemble of reservoir in-

flows, thereby allowing for a risk-based paradigm for hy-

dropower generation to be put to use. Reasons as to why

hydrologic forecasts should be probabilistic and the poten-

tial benefits therein are presented and explained in Krzyszto-

fowicz (2001). Krzysztofowicz (1999) described a method-

ology for probabilistic forecasting via a deterministic hydro-

logic model. Li et al. (2013) presented a review of scien-

tific papers that provide various regression and probabilistic

approaches for assessing performance of hydrologic mod-

els during calibration and uncertainty assessment. Smith et

al. (2012) demonstrate a good example of producing proba-

bilistic forecasts based on deterministic forecast outputs. In

this paper, the improvement levels achieved are evaluated

deterministically using the same or similar metrics as past

studies, and probabilistically using (i) the containing ratio

(Xiong et al., 2009), which is also referred to as reliability

score (e.g. Renard et al., 2010) and (ii) the probability in-

tegral transform (PIT) plot. The technique is similar to the

predictive Q–Q plot (e.g. Thyer et al., 2009) but assesses,

in terms of the percentiles, how close a continuous random

variable transformed by its own cumulative distribution func-

tion (cdf) is to a uniform distribution. We emphasise here

that taking into account uncertainties emanating from vari-

ous recognized sources and describing the degree of reliabil-

ity of the inflow forecasts has important benefits. According

to Montanari and Brath (2004), the Bayesian forecasting sys-

tem (BFS) and the generalized likelihood uncertainty estima-

tion (GLUE) are the popular methods for inferring the uncer-

tainty in hydrologic modelling. Yet, the scope of producing

probabilistic inflow forecasts in this study is limited to at-

taching a certain probability to the deterministic forecasts,

which are common in the Norwegian hydropower industry,

based on analysis of the statistical properties of the error se-

ries from the conceptual model, and assessing its degree of

reliability.

In the next section, the complementary model set-up is

formulated and the performance evaluation criteria are pro-

vided. An example application is presented in the subsequent

section. This includes description of the study area and data

used, findings from the evaluation of the complimentary set-

up and its components during calibration and validation, and

results of forecasting skill assessment using deterministic

and reliability metrics. Finally, concluding remarks are pro-

vided.

2 Methodology

2.1 The conceptual model set-up

The widely applied conceptual hydrologic model, HBV

(Hydrologiska Byråns Vattenbalansavdelning) (Bergström,

1995), is used in this study. The version used allows for di-

viding the study catchment up into 10 elevation zones. A

deterministic HBV model with already calibrated model pa-

rameter values was assumed to take the role of the opera-

tional hydrologic models Norwegian hydropower companies

commonly use for forecasting reservoir inflows. In the op-

erational set-up, the air temperature and precipitation input

over the forecast lead time are obtained from the Norwegian

Meteorological Institute (http://www.met.no). As this study

aims to improve hydrologic forecasts into the hydropower

reservoirs by complementing the conceptual model by an er-

ror model, we assume that the predictions from the HBV

model are made using the best possible input data. Hence,

the observed air temperature and precipitation data are used

as input forecasts in hindcast.

2.2 The complementary error model

The error model aims at exploiting the bias, persistence and

heteroscedasticity in the residuals and estimating the errors

likely to occur in the forecast lead time. Forecasting the er-

ror in the lead time is regarded as a two-step process: offline

identification and estimation of the error model, and error

predictions based on most recent information.

2.2.1 Identification of the model structure

An error model that captures the structures the processes

model is missing should lead to a zero-mean homoscedas-

tic residual series from the modelling framework. In order

to identify the right structure and establish a parsimonious

model that adequately describes the data, we diagnose the

residuals and address the bias, persistence and heteroscedas-

ticity the series might exhibit as follows.

First and foremost, we transform the observed (Q) and the

predicted (q̂, from the conceptual model) inflows into z and

ẑ, respectively. This way we deal with the heteroscedasticity

seen in the residuals by making repeated use of Eq. (1) with

the appropriate inflow term.

ẑt =

{ ((
q̂t +β

)λ
−β

)
λ−1 λ > 0

log
(
q̂t +β

)
λ= 0,

(1)

where β and λ are the transformation parameters.

The discrepancy (ε) between the observed and predicted

inflow at time step (t) can be expressed as εt = zt − ẑt . Anal-

ysis of whether the residuals are random or show some bias

follows. Lest the mean of the residuals would be different

from zero, the mean error (µe) is subtracted from the error se-

ries (ε) to produce a zero-mean residual series (et = εt −µe).
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This is followed by assessment of the autocorrelation func-

tion (acf) and partial autocorrelation function (pacf), which

are keys for identifying the order of Markovian dependence

the residuals exhibit. We consider an autoregressive (AR)

model structure (Eq. 2) to represent the persistence struc-

ture in the residual series. Comparative assessment of er-

ror models of different complexity would be an interest-

ing study but is beyond the scope of this work. Xiong and

O’Connor (2002) affirm that the AR model’s longstanding

popularity is deservedly right and further emphasize the ef-

fectiveness of a very parsimonious model, such as the AR

model, for error forecasting.

êt =

p∑
i=1

aiet−i, (2)

where p designates the length of the lag time, and a1,

a2, . . . , ap are coefficients of the AR model.

In order to provide improved hourly reservoir inflow fore-

casts over a 24 h lead time, the error-forecasting model takes

the form of Eq. (3). In order to overcome lack of observed

residuals encountered for forecast lead time (f ) longer than

one-step ahead, it is necessary to utilize estimated errors as

inputs (see Eq. 3). The number of estimated error values to

be used as inputs depends on the identified order of the AR

model and can vary across the forecast lead times.

êt+f =



p∑
i=1

aiet+f−i for f = 1

f−1∑
i=1

ai êt+f−i +
p∑
i=f

aiet+f−i for f ≥ 2 and p ≥ f

p∑
i=1

ai êt+f−i for f ≥ 2 and p < f

(3)

In its complete form, the error-corrected reservoir inflow

forecast (z′) from the complementary modelling framework

can be given as

z′t+f = ẑt+f +
(
µe+ êt+f

)
. (4)

2.2.2 Parameter estimation

Parameters of the AR model can be set to the correspond-

ing Yule–Walker estimates of a1, a2, . . . , ap given the auto-

correlation function of the error series fulfils a form of the

linear difference equation. However, in practice, Eq. (2) can

be treated as a linear regression and parameters can be esti-

mated by least squares method as demonstrated by Xiong and

O’Connor (2002). An iterative algorithm suggested in Beven

et al. (2008) is adopted for estimating the model parameters,

while optimizing transformation of the inflow data. Adoption

of a methodology that amalgamates parameter estimation

and Box–Cox (Box and Cox, 1964) inspired transformation

of inflow is useful for taking into account the heteroscedastic

residuals and obtaining a normally distributed residual series

from the error model. The parameter and inflow transforma-

tion steps with a little modification from Beven et al. (2008)

over the calibration period (1, . . . , T ) are as follows:

1. Values of β, λ≥ 0 are selected and the reservoir in-

flows (q̂1:T ,Q1:T ) are transform to get (ẑ1:T , z1:T ) using

Eq. (1).

2. The residuals series from the transformed inflow data

are calculated (ε1:T = z1:T − ẑ1:T ).

3. Perform an optimization for the error-model parameters

(a1, a2, . . . , ap) to minimize
∑
(ε1:T − ε̂1:T )

2, where ε̂

represents the forecast from the error model which at a

given observation time step (t) equals (µe+ êt ). Thus,

the observed (ε) and forecasted (ε̂) errors at a given ob-

servation time step (t) can be related as εt = ε̂t + ηt ,

where ηt is a random noise that describes the total un-

certainty originating from various sources.

4. Adjust (β, λ) and repeat the optimization until the resid-

uals of the error model appear homoscedastic. The ηt
term (step 3) is assumed to be unimodal, symmetric and

unbounded random variable with a zero expected mean

and second moment given as σ 2.

2.3 Performance evaluation

In addition to visual evaluation of the hydrographs, perfor-

mance of the present procedure is robustly analysed using

deterministic and reliability metrics. The root mean square

error (RMSE), relative error (RE) and the Nash–Sutcliffe

efficiency (NSE) (Nash and Sutcliffe, 1970) are employed

to evaluate efficiency of the models during calibration and

validation deterministically. Evaluations are made with re-

spect to varying forecast lead times and season-wise as well.

Among the three statistical performance criteria, the RE

(Eq. 5) measures the relative error between the total observed

and predicted inflow volume. For a good simulation the value

of RE is expected to be close to zero. Quantifying the relative

error (RE) of the simulations/forecasts is important because

it indicates how the inaccuracies affect a hydropower com-

pany’s ability to deliver the amount of energy it has pledged

to provide to the energy market. Therefore, special attention

is given to the less aggregate version of RE, which we refer

to as percentage volume error (hereafter PVE) and describe

as follows.

RE=

∑(
zt − ẑt

)∑
zt

× 100% (5)

The PVE designates the relative error at each time step,

which in reference to Eq. (5) can be obtained by omitting

aggregation of the errors by summation. It indicates the mag-

nitude of the errors as percentage of the observed inflows at

each inflow time step. From a hydropower systems opera-

tions point of view, the PVE enables evaluation of the fore-

cast errors at each time step and assess implication on the

power production capacity directly. The PVE analysis de-

vised here divides the computed PVEs into six PVE classes

(i.e. ≤ 10, 10–20, 20–30, 30–40, 40–50 and > 50 %), and
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treats overestimates and underestimates separately. The num-

ber of times each of the six absolute PVE classes appeared

in the set or subset of interest (i.e. hydrologic year or sea-

sons) is constructed by keeping score of the PVE class into

which each and every residual fell in. Then the fraction of

time in which each PVE class occurred is divided into the

total number of points in the given set/subset and is reported

as a percentage. This is designated as a “PVE count”. Model

performance assessment using PVE (during simulation and

forecasting) mainly focuses on assessing the change in the

number of incidences in each PVE set, which in other words

means the change in PVE counts. The PVE count/change in

PVE count, along with the above-mentioned deterministic

statistical criteria, is used for evaluating the simulation and

forecasting skill of the complementarily set-up system (con-

ceptual model+ error model). As a metric for measuring the

relative improvement in forecasting skills, high PVE counts

for the low PVE classes (e.g. ≤ 10 %) are considered desir-

able quality. The justification is that the penalty a power pro-

ducer incurs when failing to deliver the pledged amount of

power would be lesser if its forecasting system makes errors

of lower PVE classes more frequently.

Another useful metric used for assessing forecasting skill

of the complementary set-up is through uncertainty analy-

sis. An interval forecast (Chatfield, 2000) can be constructed

by specifying an upper and lower limit between which the

future reservoir inflow is expected to lie with a certain prob-

ability (1−α). The prediction interval for the inflow forecast

is estimated using the Linear Regression Variance Estima-

tor (LRVE) described by Shrestha and Solomatine (2006).

Xiong et al. (2009) outlined several indices that can serve

for describing the properties of prediction bounds of particu-

lar probability and for comparative study of prediction inter-

vals resulting from different uncertainty assessment schemes.

The indices characterise the prediction bound either by the

percentage of observations it contains, its bandwidth, or its

symmetry relative to the observation. Of all indices, accord-

ing to Xiong et al. (2009), the containing ratio (CR), which

describes the percentage of observed inflows falling in the

desired interval percentage, is the widely used metric for

assessing reliability of probabilistic forecasts. We adopt the

CR metric for describing the reliability of the forecasts with

the desired interval percentage of 95 % (α= 0.05). In addi-

tion to the CR, we verify the probabilistic forecasts graph-

ically using the less formal PIT uniform probability plot.

The working procedure as well as detailed application ex-

amples can be found in Laio and Tamea (2007) and Thyer et

al. (2009). Among others, Pokhrel et al. (2013) and Wang et

al. (2009) demonstrated viability of the “PIT uniform prob-

ability plot” approach for checking uniformity (and inves-

tigating the causes, in cases of deviations from uniformity)

without binning the data subjectively.

3 Example application

3.1 Study area and data

The Krinsvatn catchment is located in Nord Trøndelag

County in mid-north Norway. It comprises an area of

207 km2 and about 57 % of the catchment is mountain

area above the treeline. The elevation ranges from 87 to

628 m a.m.s.l. (above mean sea level) and is drained by the

Stjørna/Nord River. The dominant land use is forest covering

20.2 % of the study site while marsh, lakes and farmlands

cover about 9, 6.7 and 0.4 % of the catchment area, respec-

tively. Figure 1 provides the location and main characteristics

of the study site, and the daily potential evapotranspiration

values used.

Observed hourly data of 11 water years (September 2000

to August 2011) were split into three sets used for warming-

up (2000), calibrating (2001–2005) and validating (2006–

2010) the conceptual and the error models alike. Observed

precipitation and temperature data of two meteorological sta-

tions (i.e. Svar-Sliper and Mørre-Breivoll) in neighbouring

catchments are used. Discharge data for the catchment are

derived from water level records at the Krinsvatn gauge sta-

tion. Romanowicz et al. (2006) outline the advantages to di-

rect use of water-level information in hydrologic forecasting.

Rating curve uncertainties and their influence on the accu-

racy of flood predictions have been very well documented

(e.g. Sikorska et al., 2013; Aronica et al., 2006; Pappenberger

et al., 2006; Petersen-Overleir et al., 2009). Krinsvatn is con-

sidered a stable discharge measurement site with few exter-

nal influences, and the rating curve was updated in 2004.

This study, however, considers the uncertainty of the rating

curve to be one of the factors contributing to the total error

expressed in Eq. (2) and does not address it separately.

3.2 HBV model for Krinsvatn catchment

The catchment is divided into 10 elevation zones in the HBV

model set-up. Input data used are hourly areal precipitation,

air temperature, and potential evapotranspiration. The model

is run on an hourly time step for the water years 2000 to 2005

with the last 5 water years being used for model calibration.

Calibration is carried out using the shuffled complex evolu-

tion algorithm (Duan et al., 1993), with the NSE between the

observed and predicted flows as an objective function. De-

scription of the model parameters along the corresponding

optimized values is provided in Table 1.

3.2.1 Overview of the conceptual model’s performance

The simulation and observed reservoir inflow hydrographs

shown in Fig. 2 indicate a certain level of agreement for most

of the calibration and validation periods, which the statistical

evaluations (Table 2) agree with. The overall hourly reservoir

inflow predictions during calibration and validation show ef-

ficiency of NSE> 0.5 and RE<±25 %, even though simu-
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Figure 1. Location, characteristics and potential evapotranspiration estimates of the study catchment.

Figure 2. Observed and predicted reservoir inflow hydrographs during calibration (left-column panels) and validation (right-column panels)

of the conceptual model.
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Table 1. Model parameters and corresponding optimized values.

Parameter Description Unit Optimized

value

Snow routine

TX Threshold temperature for rain/snow [
◦C] 2.23

CX Degree-day factor for snowmelt (forest-free part) [mm day−1 ◦C] 9.95

CXF Degree-day factor for snowmelt (forested part) [mm day−1 ◦C] 5.21

TS Threshold for snowmelt/freeze (forest-free part) [
◦C] 0.73

TSF Threshold for snowmelt/freeze (forested part) [
◦C] −1.80

CFR Refreeze coefficient [mm day−1 ◦C] 0.04

LW Max relative portion liquid water in snow [−] 0.085

Soil and evaporation routine

FC Field capacity [mm] 306.87

FCDEL Minimum soil moisture filling for POE [−] 0.31

BETA Non-linearity in soil water retention [−] 3.84

INFMAX Infiltration capacity [mm h−1
] 30.22

Groundwater and response routine

KUZ2 Outlet coefficient for quickest surface runoff [1/day] 1.65

KUZ1 Outlet coefficient for quick surface runoff [1/day] 0.99

KUZ Outlet coefficient for slow surface runoff [1/day] 0.42

KLZ Outlet coefficient for groundwater runoff [1/day] 0.09

PERC Constant percolation rate to groundwater storage [mm day−1
] 1.60

UZ2 Threshold between quickest and quick surface runoff [mm] 122.34

UZ1 Threshold between quick and slow surface runoff [mm] 49.97

Table 2. Summary of overall and seasonal performance of the

conceptual model during the calibration (September 2001 to Au-

gust 2005) and validation (September 2006 to August 2011) peri-

ods.

Seasons Calibration period Validation period

RMSE RE NSE RMSE RE NSE

[mm] [%] [−] [mm] [%] [−]

Overall 0.139 1 0.842 0.162 18.8 0.700

Autumn 0.147 1.8 0.724 0.147 11.3 0.769

Winter 0.182 −3.7 0.894 0.126 9.7 0.812

Spring 0.131 −2.7 0.709 0.246 24.6 0.509

Summer 0.073 28.2 0.641 0.079 38.2 0.592

lations match observations better during calibration than val-

idation. High NSE values (> 0.8) during both calibration and

validation reveal that the inflow simulations fit the observed

hydrographs best in the winter seasons. Nevertheless, it is ev-

ident that model predictions in the validation period are prone

to underestimation bias (RE> 0). Season-wise assessment

of the validation period reveals the conceptual model’s ten-

dency to underestimate reservoir inflows in spring and sum-

mer considerably. In light of what the NSE and RE metrics

suggest, the lower RMSE values (i.e. for instance summer

season) do not reflect superior model performances.

PVE counts of the six PVE classes (i.e. ≤ 10, 10–20, 20–

30, 30–40, 40–50 and > 50 %) are computed on the resid-

uals between observed and simulated reservoir inflows. The

stacked columns of Fig. 3a and b show how frequently each

of the six absolute PVE classes occurred over the calibra-

tion and validation period. The results reveal a large degree

of discrepancy between observations and predictions during

calibration and validation. Simulated inflows deviated from

the corresponding observed values by a magnitude of more

than±10 % in about 83.3 % (calibration) and 88.6 % (valida-

tion) of the respective simulation time steps. Huge difference

between observations and simulations is noted in the sum-

mer season with absolute PVE of the class> 50 % occurring

in more than half of the simulation time steps throughout the

calibration and validation periods. Winter simulations listed

the highest level of occurrence of PVE of the class ≤±10 %

during both calibration and validation. Comparable to the re-

sults in Table 2, volume errors in winter simulations do not

seem to be a serious problem, probably because the season is

predominantly a snow accumulation rather than runoff gener-

ation period. Errors of the high absolute PVE classes scored

high PVE counts in the spring and autumn seasons.

Details of the extent to which the reservoir inflows are

under- and overestimated can be seen in Fig. 3c and d. The

fraction of time the simulated inflows exhibited under- and

overestimation during calibration is 51.9 and 46.8 %, respec-
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Figure 3. Stacked-column plots of (1) PVE counts of the six absolute PVE classes (≤ 10, 10–20, 20–30, 30–40, 40–50 and > 50 %) during

calibration (a) and validation (b), and (2) the fraction of times under- and overestimation incidents corresponding to the six PVE classes

occurred during calibration (c) and validation (d).

tively. In the validation period, the reservoir inflows are un-

derestimated about 65.6 % of the time compared to overesti-

mation in 33.4 % of the time. This is also revealed in the find-

ings from statistical metrics in Table 2, which disclose the

bias in the model. Yet, the results in Fig. 3 further reveal that

the model predictions deviate from the observations at high

discharges. For example, during the validation period 59.2 %

of the time observations exceeded the predictions by mag-

nitudes of more than 10 %. Such information is useful be-

cause direct evaluation of observed and predicted values ex-

plains the implications of model performance on the planning

and operation of a hydropower system better than an aggre-

gated variance-based statistic. From an operational manage-

ment point of view, considerable underestimation of reser-

voir inflows can have both short-term and long-term effects

on the operation of a hydropower system. In the short-term,

the company could be forced to release unvalued water espe-

cially when the reservoir water level is close to its maximum

capacity. Hence, the high percentage of underestimations that

occur in the autumn and spring seasons (during calibration

and validation) should not be tolerated because the inflows in

the autumn and spring seasons are very important. On the one

hand, substantial overestimation of reservoir inflows can at

least expose any Norwegian hydropower company to unde-

sirable expenses due to obligations to match the power sup-

ply it has failed to deliver by dealing with other producers in

the intra-day physical market (Elbas). Although overestima-

tion does not seem to be a pertinent issue, Fig. 3d unmasks

that the inflows are overestimated by a magnitude> 50 % at

least 10 % of the time in all seasons.

3.2.2 Residual analysis

Following the example of Xu (2001), a Kolmogorov–

Smirnov test is applied to residuals of the conceptual model.

The test revealed that the residuals are not normally dis-

tributed. The maximum deviation between the theoreti-

cal and the sample lines is 0.130, which is larger than

Kolmogorov–Smirnov test statistic of 0.008 at significance

level α= 0.05.

Presence of homoscedasticity in the residuals series is di-

agnosed visually by plotting the residuals versus the pre-

dicted reservoir inflows (Fig. 4a). With respect to the hori-

zontal axis, the scattergram does not remain symmetric for

the entire range of predicted inflows. The residuals show

high variability and possible systematic bias when inflows

are less than 3.5 mm while the opposite is true when the in-

flows exceed 3.5 mm. Inflows of magnitudes between 3.5 and

5.5 mm seem to be underestimated, while overestimation is

visible when the inflow rates are greater than 5.5 mm. How-

ever, as can be seen from Fig. 2, inflows of magnitude up to

3 mm represent reservoir inflows during the rise of the hy-

drographs including all peak inflows for all hydrologic years

except 2005 and 2010. Hence, except for the possible system-

atic bias during low flows, the inference from the scatter plot

is inconclusive to support or dismiss the issue of predominant

underestimation revealed in the model performance evalu-

ation. Moreover, hourly inflows of magnitudes higher than
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Figure 4. Plots of (a) residuals from the conceptual model as a function of predicted inflow during the calibration period, (b) autocorrelation

function of the residuals, and (c) partial autocorrelation functions of the residuals.

3mm are rare and occurred about 0.1 % of the time over the

calibration and validation period.

Plots of autocorrelation and partial autocorrelation func-

tions of the residual time series (Fig. 4b and c) indicate a

strong time persistence structure in the error series. Rapid

decaying of the partial autocorrelation function confirms the

dominance of an autoregressive process, which the gradu-

ally decaying pattern of the autocorrelation function also sug-

gests. Thus, in order to obtain a Gaussian series, it is impor-

tant to address issues of heteroscedasticity and serial correla-

tion in the residual series. As the current study aims at utilis-

ing the persistent structure in the residuals for supplementing

the forecasting system, the corrective action to be taken only

aims at removing the heteroscedasticity. A successful way to

do it is through transformation of the flow data (e.g. Enge-

land et al., 2005). As outlined in the methodology section,

the reservoir inflows (both observed and predicted) are trans-

formed while estimating parameters of the error model.

3.3 Structure and performance of the error model

In accordance with the findings from the ACF and PACF

plots discussed in Sect. 3.3.2, AR models of up to an or-

der of p= 3 were investigated while estimating parameters

of the error model. As outlined in Sect. 2.2.2, coefficient of

the AR(p) model and the transformation parameters were es-

timated by minimizing the sum of the squares of the offsets

between the inflows (observed and predicted) in the trans-

formed space, and assessment of whether the subsequent

residuals from the complementary modelling framework ap-

pear homoscedastic and exhibited correlation. The latter was

assessed using the Kolmogorov–Smirnov (KS) statistic as a

relative quantitative measure followed by visual inspection

of the residual plots, which led to the selection of an AR(1)

model with transformation parameters β = 41.4 and λ= 0.9,

bias correction µe= 0.021 and coefficient a1= 0.97.

Calibration efficiencies calculated for the error model us-

ing the RMSE, RE and NSE metrics are 0.096, −100 %

and 0.517, respectively. Corresponding values for the vali-

dation period are computed as 0.095, 20.3 % and 0.630, re-

spectively. NSE values for the calibration and validation pe-

riods imply the ability of the error model to capture at least

half of the discrepancies observed between observations and

predictions from the conceptual model. All the three met-

rics reveal a higher efficiency in the validation set than the

calibration set. With reference to Table 2, this suggests too

much fitting of the HBV model to the data that led to extrac-

tion of more information from the calibration set. Assess-

ment of the residuals from the complementary framework

reveals that the transformation reduced the maximum devi-

ation between the theoretical and the sample lines slightly

from 0.13 to 0.10; yet the residuals are not normally dis-

tributed (i.e. Kolmogorov–Smirnov statistic of 0.008 at sig-

nificance level of α= 0.05). This implies the assumption
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Figure 5. Stacked-column plots of (a) PVE counts of the six absolute PVE classes (≤ 10, 10–20, 20–30, 30–40, 40–50 and> 50 %) observed

in reservoir inflow forecasts from the complementary set-up, and (b) the corresponding fraction of times under- and overestimation incidents

corresponding to the six PVE classes occurred. Hydrologic years 2006–2010.

that the residuals from the complementary forecasting sys-

tem would be Gaussian is far from being true. As the aim of

this study is to utilize the error and complementary models

additively, we discuss in the next section the extent to which

the complementary set-up boosted prediction ability in the

forecasting mode and come back to the issue of violation of

the Gaussian assumption in section 3.5, where we analyse the

reliability of the forecasts probabilistically.

3.4 Forecasting skill of the complementary set-up

(deterministic assessment)

Imitating operational application of forecasting models in

the Norwegian hydropower system, reservoir inflows for the

day-ahead market (Elspot) are estimated using the presented

forecasting system. The system has to run once a day at an

hourly time step, sometime before 12:00 LT after retrieving

the latest observations, and the inflow forecasts are issued for

the next 24-hourly time steps beginning from 12:00 LT. Over-

all performance of the complementary model in forecasting

the reservoir inflows during the calibration and validation pe-

riods is first discussed and is followed by evaluation of its

forecasting skill with respect to forecast lead times. Evalua-

tion of the forecast skill presented in this paper is based on

assessment of forecasts made for the period between Septem-

ber 2006 and August 2011 as the data sets from Septem-

ber 2000 to August 2006 are used for calibrating the system.

3.4.1 Overall performance

Assessment of the overall forecasting skill of the comple-

mentary set-up shows significant improvement in forecast ac-

curacy. The RMSE and NSE statistical criteria computed be-

tween forecasted and observed inflows are 0.095 and 0.896,

respectively. RMSE values for the autumn, winter, spring and

summer forecasts are 0.094, 0.090, 0.132 and 0.044, respec-

tively, and the corresponding NSE values are 0.904, 0.905,

0.859 and 0.873.

Proving capability of the complementary set-up to reduce

the bias revealed in the simulation forecasts from the concep-

tual model, which was pointed out in the previous section, the

24 h lead-time forecasts exhibited low-level underestimation

bias with RE equal to 3.8 %. Degree of bias in the inflow fore-

casts differed seasonally. The RE computed for each season

in a decreasing order is summer (10.2 %), spring (4.6 %), au-

tumn (2.9 %) and winter (0.7 %). The relatively higher bias

in the spring and autumn forecasts can be related to runoff

generation in the Krinsvatn catchment due to snowmelt or

occurrence of precipitation in the form of rainfall, which can

affect the persistence structure in the residual series obtained

from the conceptual model.

Stacked-column plots in Fig. 5 display the occurrence

level of each of the six PVE classes in the residual series

between forecasts and observations. Visual comparison of

stacked-column plots of Fig. 5 and Fig. 3 shows reduction

in PVE count of the high PVE classes and increase in PVE

counts of low PVE classes; e.g. PVE count for the PVE

class>±50 % decreased by about 15 %, while PVE count

for the PVE class≤±10 % grew by about 50 %. In order

to assess this assertion, a further assessment is carried out

by dividing the six PVE classes into two groups: low PVE

(PVE≤±10 %) and high PVE (PVE>±10 %). Ratio be-

tween seasonal PVE counts of the low and high PVE classes

is taken and comparison is made on two sets of residual se-

ries. These sets of residuals are (1) residuals from the sim-

ulated forecasts (conceptual model) and (2) residuals from

forecasts of the complementary set-up. Results are presented

in Table 3. Apart from confirming the success in reducing

PVE counts of high PVE errors, the results indicate that an

equal level of success is not achieved in all four seasons.

In relative terms, high PVE errors occur more often in the

spring and summer forecasts. As pointed out earlier, this can

be associated with the snowmelt and, to a certain degree, to

rainfall incidents occurring in these seasons.

3.4.2 Forecast skill with respect to forecast-lead times

Relative reductions in RMSE between forecasts from the

complementary set-up and the simulated forecasts from the

conceptual model are computed. Detailed results for each
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Table 3. Ratio between occurrence frequency of low PVE (≤ 10 %) and high PVE (> 10 %) errors for the hydrologic years 2006–2010.

Data set Overestimation Underestimation

aut. win. spr. sum. aut. win. spr. sum.

Simulated forecast (HBV model) 4.4 5.1 7.6 4.5 6.2 5.2 12.8 25.4

Forecast (complementary set-up) 1.1 1.2 1.5 2.0 0.9 0.5 1.1 1.3

Figure 6. Summary of relative seasonal RMSE reductions as a function of forecast lead time (minimum, mean and maximum values com-

puted from corresponding computations for the hydrologic years 2006–2010).

season of the hydrologic years between 2006 and 2010 are

presented in Table 4. The results are also summarized in

terms of the minimum, mean and maximum relative RMSE

reduction as shown in Fig. 6. Excluding forecasts in autumn

and winter seasons of the 2006 water year, relative RMSE

reductions are observed in forecasts of short and long lead

times. Of course, in all four seasons, the achieved level of

improvement in forecast accuracy is high for short lead times

and diminishes gradually with increased lead time. Results

show that accuracy of the reservoir inflows in the spring and

summer seasons are improved over the entire range of the

forecast lead time. Likewise, reduction in RMSE is observed

for all autumn and winter inflow forecasts except for the wa-

ter years 2006 and 2007, respectively.

In order to get insight on the improvement level in a unit

directly related to hydropower production, the change in PVE

count of each PVE class is calculated. Change in PVE count

of a given absolute PVE classes is the difference between the

PVE counts for the complementary set-up and that for the

conceptual model. The results are summarized as shown in

Fig. 7. The figure shows that the PVE count of high mag-

nitude absolute PVE classes are reduced and the opposite

is true for that of the smaller absolute PVE classes. For in-

stance, regardless of the type of discrepancy (under- or over-

estimation) noted, the change in PVE counts of the abso-

lute PVE of the class> 50 % is negative. The negative sign

implies less errors falling in this PVE class in the residual

series from the complementary set-up than those from the

conceptual model. Similarly, the changes in PVE counts of

the 20–30, 30–40 and 40–50 % absolute PVE classes indi-

cate lowered fraction of occurrence of errors of these orders.

In both cases of under- and overestimation, absolute PVE of

the class≤ 10 % occurred more frequently; for example, the

fraction of time reservoir inflow forecasts of 1 h lead-time

deviated from the observations by a magnitude≤ 10 % in-

creased by about 52.7 and 27.7 % during under- and overes-

timations. Overall, the plots show that the magnitude of dis-

crepancy at each forecasting point is significantly reduced.

The improvement level at each forecast lead time is propor-

tional to the vertical distance from the horizontal axis. It can

be noted that, the vertical distance narrows down with in-

creasing lead time suggesting a declining improvement level

with increased lead time.
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Figure 7. Change in number of occurrence of the six absolute PVE classes (≤ 10, 10–20, 20–30, 30–40, 40–50 and > 50 %) as a function of

forecast lead time: (a) overestimation and (b) underestimation.

Calculation of the relative RMSE reduction and the change

in PVE counts agree that the forecast accuracy is improved

through the complementary set-up. The assessments further

revealed that the degree of improvement weakens with in-

creased forecast lead time. However, the relative RMSE re-

duction computations indicate that in some occasions the

simulated inflow forecasts stand out to be better. The relative

RMSE reduction values for lead times longer than 20 h (Ta-

ble 4) show that complementing the conceptual model with

an error model is counterproductive in autumn and winter

seasons of the water years 2007 and 2006, respectively.

3.5 Reliability of the inflow forecast

Computation of the CR for the entire forecast reveals that

95.8 % of the observations are inside the 95 % prediction in-

terval. The inflow hydrographs (Fig. 8) confirm that most of

the observed inflows are contained in the specified uncer-

tainty bounds.

The percentage of observation points falling within the

forecasted 95 % confidence interval varies from season to

season and across hydrologic years (see Fig. 9a). All ob-

served winter and summer inflows are bracketed in the 95 %

uncertainty bound at least 95 % of the time. In general, the

winter season is more of a snow accumulation period and

a closer observation of the hydrographs (see Fig. 8) reveals

that the summer hydrographs cover the recession and base

flow portions of the annual hydrographs. Thus, better persis-

tence structure and predictable discrepancies between sim-

ulated forecasts from the conceptual model and the obser-

vations. As Goswami et al. (2005) argued, the persistence

structure in residual series primarily arises from the dynamic

storage effects of a catchment system.

The desired percentage of autumn observations is con-

tained in the 95 % prediction interval the years 2006, 2008

and 2010. In the years 2007 and 2009, however, only

93.2 and 93.8 % of the observed autumn inflows are brack-

eted in the estimated 95% prediction intervals, respectively.

Reliability score (CR) calculations for the spring season in-

dicate that percentage of observation points falling in the de-

sired prediction interval percentage are below 95 % in the

hydrologic years 2009 and 2010 (i.e. 93.8 and 89.2 %, re-

spectively). Unlike winter and summer inflows, autumn and

spring flows mostly cover portions of the hydrograph corre-

sponding to the rising limb or high-flow regime (see Fig. 8).

While physical factors contributing to the increase in quick

flow into the reservoir are precipitation incidents (in the form

of rainfall) and melting of snow in the headwaters, com-

prehension of this concept and its encapsulation into the

HBV model leaves control of the catchment response to two

threshold values (TX and TS; see Table 1 for description).

Employing such simple threshold values to govern initia-

tion of the runoff generation process based on air temper-

ature measurement at a given time step obviously involves

more sources of uncertainty (i.e. measurement, model struc-

ture and model parameters). For instance, we assume the

input air temperature at a given time step is erroneously

recorded to be higher than TX and/or TS due to measure-

ment error. Subsequently, the model will partition the pre-

cipitation as rainfall and initiate melting of snow, which the

observation does not reveal. This kind of misclassification

of precipitation and/or misrepresentation of snow accumula-
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Figure 8. Observed hydrograph (broken lines) and the forecasted 95 % confidence interval.

tion and melting processes can simply occur due to the er-

ror in the input temperature record. Because of this, the per-

sistence in the errors between simulated forecasts from the

conceptual model and the observations can get weaker. Ac-

cording to Goswami et al. (2005), some degree of persistence

in the model input (i.e. rainfall) is another primary source of

the persistence characteristic of observed flow series. Even

though the least CR calculated for the autumn and spring sea-

sons are by no means too bad (i.e. > 89 %), the requirement

for reliability is for the uncertainty bound to contain as much

fraction of observations as desired percentage of prediction

interval; hence, the complementary set-up presented seems

to have struggled with it in the aforementioned hydrologic

years.

The fraction of observed inflows bounded within the esti-

mated prediction interval decreases with increased lead time

(Fig. 9b). The reliability score for all 24 forecast lead times

fulfil the requirement of containing 95 % of the observations.

For lead times beyond 19 h, the exact CR values are slightly

lower than 95 % with a minimum of 94.8 % at forecasts lead

time of 24 h.

Findings from evaluation of the forecast skill of the com-

plementary set-up using deterministic and probabilistic met-

rics support each other. The present procedure is able to im-

prove accuracy of reservoir inflow forecasts and the level of

improvement decreases as the forecast lead time increases.

Deterministic evaluation of performance of the forecast sys-

tem indicates that the concept of complementing the concep-

tual model with a simple error is not always effective. As

discussed earlier, in some occasions the present method can

get counterproductive in forecasting inflows when the fore-

cast lead time is beyond 20 h. Similarly, detailed assessment

of the reliability (Table 5) shows that the CR of the forecast-

ing system can get below 95 % at forecast lead times less

than 17 h; e.g. at forecast lead time of 9 h, only 89 % of the

observed spring inflows of the 2006 water year are brack-
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Figure 9. Reliability score (containing ratio CR) for 95 % prediction interval for (a) each season of every hydrologic year, and (b) different

forecast lead times based on entire series. In (c)–(f) sample PIT uniform probability plots for each of the four seasons at 1, 6, 12, 18 and 24 h

forecast lead times. Solid line designates the theoretical uniform distribution, broken lines represent the Kolmogorov significance band, and

the dots denote PIT value of the observed p values.

eted in the 95 % prediction interval. It can also be noted that

for shorter forecast lead times, the percentage of observa-

tions contained in the prediction bounds exceed 95 %. Al-

though a greater proportion of observations falling in the pre-

diction bound is desirable, a high CR at short forecast lead

times might indicate too wide a bandwidth. This along a CR

that declines with increased lead time might suggest inva-

lidity of the assumptions behind computation of the bounds

(e.g. Smith et al., 2012). The two issues at stake here are the

Gaussian assumption on the basis of which the prediction

bounds were constructed, and the model identification and

parameter estimation approach implemented. In order to as-

sess the former, we conducted the PIT uniformity probability

test.

From an operational hydrology point of view, we con-

cur with the opinion of Thyer et al. (2009) that the tough-

est goodness-of-fit test the complementary framework has to

pass is whether the predictive distribution is consistent with

the observed inflow, which the PIT uniform probability plots

(PIT plots) evaluate directly. This involves deriving at each

time step the p value of the observation from the correspond-

ing predictive distribution, and constructing the cumulative

distribution function (cdf) of the p values. Subsequently, va-

lidity of the Gaussian hypothesis in the validation set is ex-
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amined by comparing the transformed p values (i.e. trans-

formation defined by own cdf) with that of a uniform dis-

tribution. When the two distributions plot to a straight line

and the points remain within the Kolmogorov bands of 5 %

significance from the diagonal bisector, the PIT plots vali-

date consistency of the calibration assumption. Otherwise,

the PIT plots invalidate consistency of the hypothesis and,

among others, demonstrate whether the prediction uncer-

tainty is over- or underpredicted. PIT plots point to an over-

estimated uncertainty if the points (p values) cluster around

the mid-range and an underestimated uncertainty if the points

(p values) cluster around the tails. We refer readers to Thyer

et al. (2009) for a detailed description of how to interpret the

Q–Q plots, which also apply to the PIT plots.

Comparison of the transformed p values (i.e. different sets

based on season or lead time) with that of a uniform dis-

tribution (Fig. 9c–f) reveal that the uncertainty attached to

the deterministic forecasts is not always perfect. Overall, the

PIT uniformity probability test confirms that the uncertainty

is overestimated (i.e. low slope in the mid-range and thin

tails). Irrespective of the forecast lead time, the highest de-

gree of overestimation is noted in the summer set (i.e. most

points fall outside the Kolmogorov significance band, and the

p= 0.5 values deviate significantly from the bisector) and re-

duces from winter to autumn. On the other hand, PIT plots of

the spring subset reveal that almost all transformed p values

fall within the Kolmogorov significance band, which might

imply validity of the Gaussian assumption used for forecast-

ing the confidence intervals, at least, for the spring subset,

and influence of high flows on the estimation of the model

error variance. The latter might be one of the factors behind

the overestimation of the uncertainty bands the PIT plots ex-

hibited because the LRVE method (i.e. method used for fore-

casting the confidence intervals) solely relies on the historical

residuals between forecasts and observations. While assess-

ing reliability of predictive uncertainty quantifications, Thyer

et al. (2009) reported violation of the probability model as-

sumptions and poor performance of the Bayesian total error

analysis (BATEA) methodology in quantifying the predic-

tion uncertainty during lower flows than higher flows. They

further exemplify that for flows of magnitudes close to zero

the standard deviation the assumed output error model uses

might be too high, leading to overestimation of the uncer-

tainty. According to Schoups and Vrugt (2010), in hydro-

logic applications residual series are often assumed to be in-

dependent and identically distributed but these assumptions

are usually violated. In the next section, we briefly assess re-

liability of the model identification and parameter estimation

approach implemented in this study.

3.6 On the implemented parameter estimation

technique

The parameter (AR model coefficient(s) and transformation

parameters) estimation technique we employed (Sect. 2.2.2)

follows a pseudo multi-objective optimization approach,

which includes minimizing the sum of squares of the resid-

uals and making sure a homoscedastic residual series. We

first employed the least squares (LS) method to estimate the

parameters associated with several AR models (of the order

of 1 to 3). Since the unit of the inflows (the errors as well)

in the transformed space depended on the transformation pa-

rameters, and the inclusion of the transformation parameters

into the calibration problem posed a challenge to identify the

optimal among the candidate AR models, we resorted to the

dimensionless KS statistic. The KS metric served as a rela-

tive quantitative measure to discriminate between candidate

models by measuring how close-to-constant the residual vari-

ances’ are. As a result, the selected AR model is suboptimal

in terms of yielding the least discordance between predic-

tions and observations. Putting aside the issue of (in)validity

of the Gaussian assumption, we demonstrate that shortcom-

ings of the present LS- and KS-based model, which we refer

to as the LS–KS model, the probabilistic metrics revealed

are not unique to the implemented parameter estimation ap-

proach. In order to verify this, we set-up an AR model es-

timating the coefficients and transformation parameters by

maximizing the Gaussian maximum likelihood (GML).

An AR(2) model was identified with coefficients and

transformation parameters: β = 1.08, λ= 0.01, a1= 1.82 and

a2=−0.82. All the deterministic metrics used in this study

confirm performance improvement of a slight degree by the

GML-based model during calibration and validation. This

does not come as a surprise because parameters of the LS–

KS-based model were suboptimal. On the other hand, the KS

test revealed that the maximum distance between the sam-

ple line and the theoretical line increased to 0.290, which

is higher than the statistic the error transformation using pa-

rameterization of the LS–KS model (0.10) yielded. To be fair,

comparison of the KS statistics associated with the GML and

LS–KS transformation parameters might not be appropriate

because the LS–KS-based AR model was selected for its low

KS statistic. Nevertheless, the KS statistic corresponding to

the GML-based transformation shows a heteroscedasticity of

degree higher than the untransformed residuals (0.13). The

PIT uniform probability plots revealed that both approaches

overestimated the uncertainty in a similar pattern with the

probability model assumption only honoured in the spring

season. Comparison of the CR of the GML and LS–KS-

based models showed a similar proportion of observations

contained in the prediction interval. The CR again reveals

the same characteristics of high values at short lead times

and the fraction of observations contained in the prediction

bound declines at longer lead times. This affirms that the va-

lidity of the Gaussian assumptions stand out as the main is-

sue requiring further investigation in relation to probabilistic

forecasting. We emphasise here the importance of formulat-

ing an appropriate likelihood function to ensure the uncer-

tainty estimates that are derived represent the samples they

are built on. Readers are referred to a framework for defining
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the most appropriate likelihood model given the sample be-

ing used (Smith et al., 2015). While not adopted here, such a

framework reduces the need to assume a likelihood function,

adopting instead the most appropriate function suited to the

data at hand.

4 Concluding remarks

In the present study, the forecasting system comprising of

additively set-up conceptual and simple error models is pre-

sented. Parameters of the conceptual model were left unal-

tered, as are in most operational set-ups, and the data-driven

model was arranged to forecast the corrective measures to be

made to outputs of the conceptual models to provide more

accurate inflow forecasts into hydropower reservoirs several

hours ahead.

Application to the Krinsvatn catchment revealed that the

present procedure could effectively improve forecast accu-

racy over a 24 h lead time. This proves that the efficiency of

a flow forecasting system can be enhanced by setting up a

data-driven model to complement a conceptual model oper-

ating in the simulation mode. Furthermore, the current study

reveals that analysing characteristics of the residuals from

the conceptual model is important and heteroscedastic be-

haviour should be addressed before identifying and estimat-

ing parameters of the error model. Compared to past studies

that applied data-driven and conceptual models in a comple-

mentary way, the present procedure is successful in providing

acceptably accurate forecast for extended lead times. It also

outlines procedure for extracting useful information from the

bias, the persistence and the heteroscedasticity the residual

series from the conceptual model exhibited, although the as-

sumption that the residuals from the modelling framework to

be random failed to hold.

Results also indicate that probabilistic forecasts can be ob-

tained from deterministic models by constructing uncertainty

of the complementary set-up based on predictive uncertainty

of the simple error model. The uncertainty bound seems to

satisfy the reliability requirement of containing about 95 %

of the observations in the prediction interval when evaluated

over the entire forecasting period. Its reliability with respect

to forecast lead time also appears satisfactory for all 24 fore-

cast lead times in terms of containing the desired percentage

of observations. Nevertheless, detailed assessment revealed

that the degree of reliability of the forecasts vary from season

to season and one hydrologic year to another. Given that the

error model essentially makes use of the persistence structure

in the residuals from the conceptual model, the present pro-

cedure seems to be unable to capture transitions in the hydro-

graph errors from over- to underestimation (and vice versa).

On the one hand, it was unveiled that the degree of reliability

of the forecasts decline with longer lead times and the deter-

ministic metrics (RMSE and PVE) confirmed the same. Re-

liability assessment using the PIT plots revealed that, regard-

less of season and lead time, the uncertainty bands somehow

appear to be wider than they should be. The PIT plots spot-

lighted the challenge associated with forecasting confidence

intervals using the LRVE or similar methods, which estimate

the model error variance from the historical residuals.

In order to address these challenges, a future development

can be to explore methodologies for taking care of seasonal

variability in the structure of the residual series. Updating the

error models periodically can be one solution but care must

be taken if the selected updating method makes a Gaussian

assumption. Another alternative would be to explore more

complex stochastic models for the residuals, that use exoge-

nous predictor variables either observed directly (much like

the seasonal reservoir inflow forecasting models described in

Sharma et al., 2000), or using state variables simulated from

the conceptual model (like the Hierarchical Mixtures of Ex-

perts framework in Marshall et al., 2006 and Jeremiah et al.,

2013). Formulation of these models will also offer better in-

sight into the deficiencies that exist within the HBV concep-

tual model, thereby allowing further improvement to reduce

the structural errors present. A subsequent study (Gragne et

al., 2015) attempts to address some of these issues using a

filter updating procedure, which assimilates inflow measure-

ments periodically to the error-forecasting model, and ex-

plores the potential of a data assimilation technique for im-

proving model forecast accuracy and constraining forecast

uncertainty without significant computational costs.

Another interesting topic of future investigation is the in-

tercomparison of the probabilistic forecasts presented in the

current paper with the same from popular methods such as

the Bayesian forecasting system, the generalized likelihood

uncertainty estimation and the Bayesian recursive estimation.

We believe this would enable identification of the most ef-

fective and reliable probabilistic forecasting method that can

also be implemented in an operational set-up.
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