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Abstract. Land surface modeling, in conjunction with nu-

merical weather forecasting and satellite remote sensing, is

playing an increasing role in global monitoring and predic-

tion of extreme hydrologic events (i.e., floods and droughts).

However, uncertainties in the meteorological forcings, model

structure, and parameter identifiability limit the reliability of

model predictions. This study focuses on the latter by assess-

ing two potential weaknesses that emerge due to limitations

in our global runoff observations: (1) the limits of identifying

model parameters at coarser timescales than those at which

the extreme events occur, and (2) the negative impacts of not

properly accounting for model parameter equifinality in the

predictions of extreme events. To address these challenges,

petascale parallel computing is used to perform the first

global-scale, 10 000 member ensemble-based evaluation of

plausible model parameters using the VIC (Variable Infiltra-

tion Capacity) land surface model, aiming to characterize the

impact of parameter identifiability on the uncertainty in flood

and drought predictions. Additionally, VIC’s global-scale

parametric sensitivities are assessed at the annual, monthly,

and daily timescales to determine whether coarse-timescale

observations can properly constrain extreme events. Global

and climate type results indicate that parameter uncertainty

remains an important concern for predicting extreme events

even after applying monthly and annual constraints to the en-

semble, suggesting a need for improved prior distributions of

the model parameters as well as improved observations. This

study contributes a comprehensive evaluation of land surface

modeling for global flood and drought monitoring and sug-

gests paths forward to overcome the challenges posed by pa-

rameter uncertainty.

1 Introduction

Droughts and floods can have devastating consequences

on ecosystems, food supply, and economies (Easterling et

al., 2000). Providing real-time information and predictions

to decision makers can be a valuable tool to mitigate their ef-

fects. This is an especially challenging task over data-sparse

regions, where unreliable monitoring networks and generally

low institutional capacity limits the spread of timely infor-

mation (Sheffield et al., 2013). State-of-the-art land surface

models, in conjunction with numerical weather forecasting

and satellite remote sensing, pose a plausible solution to sup-

plement local observation networks. Given the accessibility

of these data sources, multiple systems have arisen over the

past decade that aim to provide continental and global mon-

itoring and predictions of the hydrologic cycle (Sheffield et

al., 2013; Vogt et al., 2011; Svoboda et al., 2002; Verdin et

al., 2005).

The land surface model component of a monitoring sys-

tem is useful to understand the impact of flood and drought

on the energy, carbon, and hydrologic cycles. This is pos-

sible with the current generation of LSMs that include the

main physical, biological, and chemical processes at the land

surface (Niu et al., 2011). The increasing complexity and so-

phistication of land surface models can provide a more com-

plete assessment of the state of the land surface but also re-

quires an increase in the number of process parameterizations

and model parameters. In the past, parameter estimation in

land surface models consisted of using look-up tables to as-

sign model parameters based on similarity between sites as a

function of soil and vegetation. However, sensitivity analysis

of macroscale land surface models suggests that this is overly
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simplistic and can lead to significant uncertainty (Rosero et

al., 2010; Hou et al., 2012).

Parameter calibration, a common practice in hydrology,

can help reduce model bias, understand model deficiencies,

and increase the model’s reliability (Harding et al., 2015;

Cibin et al., 2010; Döll et al., 2003; Sheffield et al., 2013).

However, optimizing model performance to a limited set of

observations does not ensure the model is getting the right

answer for the right reasons (Kirchner, 2006). Instead, there

tend to be multiple parameter sets that satisfy the observa-

tions; in hydrology this is known as model parameter equi-

finality (Beven, 2006). Although the performance might be

similar for a given calibration metric, the results can vary sig-

nificantly when comparing other metrics, timescales, or vari-

ables (Gupta et al., 2008; Herman et al., 2013; Wagener and

Gupta, 2005; Reusser and Zehe, 2011; Reusser et al., 2009;

Clark and Vrugt, 2006).

The model equifinality hypothesis is especially relevant

in global land surface modeling where the sparsity of ob-

servations in space and time and the increasing number of

model parameters leads to heavily underconstrained param-

eter estimation. In this study, we use an ensemble of behav-

ioral parameter sets to capture the spread in simulated energy

and water cycles. This improves model evaluation by en-

abling a comprehensive assessment of the model parameter

and model structure deficiencies (Pappenberger and Beven,

2006). A growing number of hydrologic monitoring systems

already include the impact of uncertainty in meteorological

forcing (Cloke and Pappenberger, 2009); this should be ex-

tended to include model parameter uncertainty.

Given the significant number of model parameters in exist-

ing global land surface models, carefully designed sensitivity

analysis can help minimize the number of uncertain param-

eters that must be explored for effective model evaluations

while reducing computational demands. Up to now, there

have only been a limited number of sensitivity analyses of

macroscale land surface models. These studies have shown

that parameter sensitivity varies with climate, soil, and vege-

tation properties (Liang and Guo, 2003; Rosero et al., 2010).

In the hydrologic cycle, evidence suggests that the runoff par-

titioning (i.e., between baseflow and surface runoff) plays a

dominant role in daily flow estimates over a number of cli-

mates (Demaria et al., 2007). The baseflow generation model

parameters can also play an important role in the seasonality

of the land surface fluxes (Hou et al., 2012). However, ques-

tions remain regarding the applicability of these studies glob-

ally, suggesting the need for similar analyses over all global

land area.

In this study, we accomplish this goal by performing a

comprehensive sensitivity analysis of the global VIC (Vari-

able Infiltration Capacity, Liang et al., 1996) macroscale land

surface model. A Latin hypercube sample of 10 000 parame-

ter sets is used to run the model from 1948 to 2010 per 1.0◦

land grid cell over the globe. The GRDC (Global Runoff

Data Centre) monthly climatology of gridded runoff obser-

vations (Fekete et al., 2002) is used to isolate the behavioral

parameter sets. The constrained ensemble is then used to un-

derstand: first, the consequence of identifying model param-

eters at coarser timescales than those at which the extreme

events occur, second, the impact of not properly account-

ing for model parameter equifinality in the estimates of ex-

treme events, and third, the model parameters that control

the hydrologic processes at the annual, monthly, and daily

timescales. Finally, the results are used to propose paths to

provide reliable uncertainty estimates and suggest processes

and parameters that require improved observations and pa-

rameterizations.

2 Data

2.1 Meteorology: Princeton global forcing data set

The meteorological forcing data set consists of 3 hourly, 1.0◦

resolution fields of near-surface meteorology for global land

areas for 1948–2010 (PGF; Sheffield et al., 2006). The data

set merges data from the NCEP-NCAR reanalysis (National

Center for Environmental Prediction and National Center

for Atmospheric Research; Kalnay et al., 1996) with the

GPCP (Global Precipitation Climatology Project; Adler et

al., 2003) and TMPA (TRMM multi-satellite precipitation

analysis; Huffman et al., 2007) observation-based data sets

of precipitation, temperature from CRU (Climatic Research

Unit; New et al., 2000; Harris et al., 2013), and radiation

from SRB (surface radiation budget; Stackhouse et al., 2004).

For the simulations, we use precipitation, temperature, pres-

sure, downward shortwave and longwave radiation, specific

humidity, and wind speed.

2.2 Land data

The default model soil and vegetation parameters are the

same as those described in Sheffield and Wood (2007). The

global soil texture comes from the 5 min FAO–UNESCO

(Food and Agricultural Organization–United Nations Educa-

tional, Scientific, and Cultural Organization) digital soil map

of the world and the World Inventory of Soil Emission Poten-

tials (WISE) pedon database (Batjes, 1995). Land cover in-

formation is given by the University of Maryland land cover

type data set (Defries et al., 2000). The parameters for each

land cover type are assigned using the sources described in

Nijssen et al. (2001). The monthly climatology of leaf area

index is based on Myneni et al. (1997). The baseline param-

eters for the land surface model come from these data sets.

2.3 Gridded runoff observations: GRDC climatology

The observations of global gridded runoff come from the

GRDC global runoff climatology (Fekete et al., 2002). The

data set provides the interstation observations at 663 stream

gauges. To minimize river routing uncertainty, stream gauges
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are only used when the interstation area between two gauges

is below 1 million km2 and less than 10 % of the grid cells

have a travel time to the gauge above 10 days (assuming a

fixed flow velocity of 1 ms−1). The gridded estimates are

obtained by spatially disaggregating the observed intersta-

tion area runoff using the VIC model ensemble. Following

the work of Fekete et al. (2002), we assume that the sim-

ulations of the land surface model provide the true spatial

heterogeneity at the monthly scale. The observed monthly

climatology is then used to bias-correct each cell’s ensemble

mean of simulated monthly flow. Uncertainty in the observed

monthly flow is assumed to be negligible relative to the im-

pact of parameter uncertainty. Further details on the model

ensemble will be given in Sect. 3.2.

2.4 Köppen–Geiger climate

The Köppen–Geiger climate classification is used to assess

how model parameter sensitivity varies across climates. This

data set divides the world into five different climates based

on five vegetation groups. The second and third categories

consider precipitation and air temperature. The most recent

version of this data set was updated in 2006 using the CRU

(Climatic Research Unit) and GPCC (Global Precipitation

Climatology Centre) data sets. These updates make the data

set suitable for the second half of the 20th century (Kottek et

al., 2006). In this study only the five general climate groups

are used: tropical, arid, temperate, continental, and polar.

3 Methodology

3.1 VIC: land surface hydrologic model

The macroscale VIC land surface hydrologic model (Liang et

al., 1996) simulates the land surface hydrologic and energy

cycles. The model’s sub-grid heterogeneity is parameterized

using the variable infiltration capacity curve and tiling of

land cover classes. Baseflow is modeled as a nonlinear reces-

sion from the lowest soil layer (Dumenil and Todini, 1992)

and evapotranspiration is calculated using Penman–Monteith

(Monteith, 1964). The subsurface is discretized into multiple

soil layers; gravity drainage models the movement of mois-

ture between the soil layers. The model captures cold land

processes through snow pack storage, frozen soils, and sub-

grid distribution of snow based on elevation banding. For fur-

ther details, see Sheffield and Wood (2007).

3.2 Model parameter uncertainty: Latin hypercube

sample

Samples of the model parameter space are obtained using a

Latin hypercube sample (LHS) of size 10 000. LHS is used

due to its strength to properly sample the parameters by di-

viding the parameter space into regions of equal probability

(McKay et al., 1979). Since this study focuses on the hydro-

logic cycle, we focus on sampling parameters that contribute

to runoff generation. Seven of the nine chosen parameters

come from Troy et al. (2008). A multiplier of the tabular min-

imum stomatal resistance values is added due to its potential

impact on the partitioning of runoff and evaporation. Table 1

shows each parameter’s name, description, units, and range.

Each parameter is drawn from a uniform distribution; param-

eters that cover 2 or more orders of magnitude are sampled in

log10 space. For each LHS parameter set, the model is run at a

3-hour time step between January 1948 and December 2010

with a 10-year spin up period. Parameter values are assumed

to be uncorrelated in space. The 10 000 ensemble members

are run for all 1.0◦ land grid cells over the globe excluding

Greenland and Antarctica (15 836 grid cells in total).

To assess how well the model can reproduce observed

runoff, a set of annual and monthly thresholds are used to

obtain each grid cell’s behavioral parameter sets. The 10 000

LHS ensemble is constrained using the 1.0◦ observed grid-

ded runoff. The relative error of the simulated annual runoff

is used as a first constraint. For each grid cell, all parameter

sets that lead to a relative error in annual mean runoff above

10 % are discarded. This threshold is set relatively high due

to measurement uncertainties in the observation data set and

the spatial disaggregation method described in Sect. 2.3. The

second constraint attempts to find all ensemble members that

also follow the observations’ seasonality. The simulated and

observed monthly runoff climatologies are normalized (to re-

move remaining annual biases) and the Pearson correlation

between the observations and simulations is computed. The

correlation threshold is set to 0.75. This threshold is set rela-

tively low due to incomplete accounting of the effects of river

routing in the observations and simulations. Ensemble mem-

bers satisfying both the annual and monthly constraints are

deemed behavioral, and the posterior distributions of behav-

ioral parameter values are used to assess parameter sensitiv-

ity.

3.3 Model parameter sensitivity

Quantifying the role of each model parameter at different

timescales can help discern the parameters (and processes)

that can be constrained using coarse timescale observations

(e.g., annual and monthly flows). It can also inform us about

which parameters play an important role at finer timescales

(e.g., daily flows) and are minimally impacted by coarse

timescale constraints.

3.3.1 Parameter space reduction: annual and monthly

flows

Beyond quantifying how many parameter sets of the 10 000

member ensemble satisfy the monthly and annual con-

straints, we aim to understand how the reduction in bias and

increase in monthly skill is related to a location’s climate. To

accomplish this goal, the annual flows are analyzed by deter-
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Table 1. Range of VIC parameters used in the 10 000 Latin hypercube sample. Each parameter is drawn from a uniform distribution;

parameters that cover 2 or more orders of magnitude are sampled in log10 space.

Parameter Units Range Description

B – 0.001–1.0 Variable infiltration curve parameter

Ds – 0.001–1.0 Fraction of Dsmax where non-linear flow begins

Dsmax mmd−1 0.1–50.0 Maximum baseflow velocity

Ws – 0.2–1.0 Fraction of Wsmax where non-linear flow begins

Layer 2 m 0.1–3.0 Depth of layer 2

Layer 3 m 0.1–3.0 Depth of layer 3

Exp – 0.1–30.0 Characterizing the variation in Ksat with soil moisture

CRsmin – 0.1–10.0 Multiplier of tabular minimum stomatal resistance values

Ksat mmd−1 100–10 000 saturated hydraulic conductivity

mining the change in runoff ensemble mean after applying

the constraints. Furthermore, since the monthly constraint at-

tempts to improve the simulation’s unbiased seasonality, it

effectively aims to capture the temporal smoothness of the

observed climatology. This effect is quantified by analyzing

the change in the 1-month lag autocorrelation.

Our computation of parameter sensitivities after applying

the annual and monthly constraints – summarized in Fig. 1

– follows the work of Fenwick et al. (2014). For each grid

cell, the area between each parameter’s prior cumulative dis-

tribution function and the posterior cumulative distribution

function is computed as

DCDF =

∫ xu

xl

|F (x)−G(x)| dx,

where xl and xu are the lower and upper bounds of the pa-

rameter in question, which are normalized to [0, 1] to im-

prove interpretability of the result. The integrals are com-

puted numerically using the trapezoid rule with 1x = 0.01.

The calculated area serves as a robust sensitivity metric in-

dicating the change in the distribution of each parameter

caused by applying the performance constraints. Because the

prior parameter distributions in this study are uniform, the

maximum value of this metric is 0.5 (i.e., if only a single

ensemble member satisfies the performance constraints and

remains in the posterior distribution). This “CDF distance”

sensitivity method bridges the classical regional sensitivity

analysis framework (Spear and Hornberger, 1980) and the

Delta moment-independent measure (Plischke et al., 2013;

Borgonovo, 2007). Regional sensitivity analysis employs the

maximum difference between cumulative distributions as a

sensitivity measure. The Delta moment-independent measure

(Plischke et al., 2013; Borgonovo, 2007) uses the area be-

tween prior and posterior PDFs rather than CDFs. We com-

pute two CDF distances: first, between the original uniform

distribution and the posterior after applying the annual con-

straint (below 10 % absolute error), and second, between the

posterior after the annual constraint and the posterior after

applying the additional monthly constraint (r > 0.75). The

advantages of the CDF distance method for this study are (1)

it does not require special statistical sampling and will work

for the given data, and (2) it ties parameter sensitivity to a

model performance threshold to identify parameters respon-

sible for a particular outcome rather than overall changes in

the output.

3.3.2 Parameter uncertainty: daily flows

Reducing the annual and monthly model parameter uncer-

tainty using the GRDC monthly climatology does not ensure

a similar reduction in the uncertainty of daily flows. This is

especially relevant to drought and flood monitoring systems

that attempt to capture the sub-monthly hydrologic extremes

over data-sparse regions. If the most sensitive parameters at

the daily scale are also the most sensitive parameters at the

annual and monthly timescales, then there should be a sub-

stantial decrease in uncertainty. However, if the parameter

sensitivity at different timescales is orthogonal, then the re-

duction in uncertainty at the daily scale will be negligible.

To address this question, for each grid cell, the daily flow

duration curves of the full ensemble (10 000 members) and

behavioral parameter sets are calculated. The changes in the

spread at different sections (low, median, and high flows) of

the flow duration curve are analyzed.

Given that uncertainty will persist in the daily flows after

applying the constraints, the question remains about which

parameters control the remaining ensemble spread and need

to be more heavily constrained. This is done by analyzing

the spread in daily flow extremes on both sides of the distri-

bution (1st and 99th percentiles) for the strictest annual and

monthly constraints (relative error below 10 % and monthly

correlation above 0.75). For each percentile, the Spearman

rank correlation between all behavioral parameters and their

associated flow is computed. The Spearman correlation was

chosen here because (1) observations of daily flows are not

available, so behavioral parameters cannot be identified as

with the CDF distance measure described in Sect. 3.2.1, and

(2) in general the relationship between parameter values and

daily extreme flows will be nonlinear. The Spearman corre-

lation provides a metric describing how a given parameter
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For each land 
surface grid cell

Feasible
Parameter Sets

VIC Model Behavioral
Parameter Sets

Q

Constraint 1: Mean
Annual Error < 10%

Behavioral
Parameter Sets

Obs Sim

Constraint 2: 
Monthly r > 0.75

Qsim

Qobs

CDF Distance 2

CDF Distance 1

Parameter

Parameter

Prior
Posterior

Figure 1. Steps used to build and constrain the 10 000 Latin hypercube VIC ensemble. The CDF distance is calculated for each VIC parameter

after applying the annual error constraint and again after applying the monthly correlation constraint.

controls the spread in daily flows, which may have been un-

derconstrained by the annual and monthly performance re-

quirements imposed in the previous step. This is done for

each of the nine parameters.

4 Results

4.1 VIC Latin hypercube sample and behavioral

parameter space reduction

For each land 1.0◦ grid cell (15 836) the VIC (Variable In-

filtration Capacity) land surface model is run between 1948

and 2010 at a 3-hour temporal resolution for 10 000 pa-

rameter sets obtained from a Latin hypercube sample. This

was possible due to the Blue Waters supercomputer (http://

www.ncsa.illinois.edu/enabling/bluewaters); the simulations

required more than 2 million computing hours (> 200 years)

and resulted in an output of over 1.5 petabytes. The data

were then summarized into daily, monthly, and yearly data

sets. Each grid cell’s 10 000 LHS ensemble VIC simulations

are constrained using the observed gridded runoff fields de-

scribed in Sect. 2.3.

Figure 2 shows global maps of the fraction of parameter

sets that fulfill each error criterion. In the Northern Hemi-

sphere, a considerable number of grid cells have a large frac-

tion of ensemble members that are below 10 and 20 % rela-

tive error, suggesting a small annual bias in the input meteo-

rological forcing and a diminished sensitivity to the parame-

ters that impact the annual mean runoff. In many places, there

is a sharp decrease in performance when constraining the en-

semble with the normalized monthly climatology. This can

most likely be attributed to the role that the parameter space

plays in controlling runoff partitioning and the challenges

when attempting to spatially disaggregate point runoff ob-

servations. However, the most prominent feature is the lack

of runoff observations (grey areas) and behavioral parameter

sets (pink areas) over arid regions and countries with limited

adaptation capacity throughout the globe.

Figure 3 further summarizes these results as a function

of climate classification. Although most of the regions with

observations meet the annual constraints (10 and 20 % rel-

ative error), there are distinct differences between climates.

Tropical and dry climates see the smallest proportion of be-

havioral parameter sets while continental, polar, and temper-

ate regions experience the largest. The number of behavioral

parameter sets decreases even further for all climate types

when applying the monthly constraint (Pearson correlation

between the simulated and observed normalized monthly cli-

matology). In the case of arid regions, the number of accept-

able parameter sets is significantly smaller, especially for the

North American Mountain West, the Sahel, and most of Aus-

tralia.

Figure 3 also shows how the change in behavioral param-

eter sets affects the climate-averaged runoff ensemble mean

and 1-month lag autocorrelation. The first annual constraint

(20 %relative error) leads to a decrease in annual runoff (in-

crease in evaporation) in tropical, dry, temperate, and con-

tinental climates; there is an increase in annual runoff in

polar climates. The changes in annual flows are negligible

when applying the monthly constraints (explained by the

normalization of the monthly runoff). The 1-month lag cor-

relation is used as a smoothness metric to assess the im-

pact of the chosen constraints on the simulated seasonality; a

higher autocorrelation indicates smoother monthly flows. In

all cases, the constraints increase smoothness. As expected,

the largest changes occur when using the Pearson correla-

tion as a constraint (increase in accuracy of seasonality of

monthly runoff).

In the context of drought and flood monitoring, these re-

sults may have key implications. These include: (1) the large

fraction of landmass without observations limits our abil-

www.hydrol-earth-syst-sci.net/19/3239/2015/ Hydrol. Earth Syst. Sci., 19, 3239–3251, 2015
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Annual Error < 20% Annual Error < 10%

Annual Error < 10%, Monthly r > 0.5

VIC Parameter Ensemble
Fraction of parameter sets meeting error criteria

No parameter sets meet criteria > 0% 2% 4% 6% 8% > 10%

Fraction of Parameter Sets

Annual Error < 10%, Monthly r > 0.75

(a) (b)

(c) (d)

Figure 2. Fraction of parameter sets from the 10 000 Latin hypercube VIC ensemble that fulfill a set of criteria. The comparison is between

the annual and monthly climatology of simulated runoff and the GRDC database. The grey areas are regions that are not covered by the

GRDC database.

Figure 3. The grid cells with runoff observations are combined

using the Köppen–Geiger climate classification to assess perfor-

mance of the VIC ensemble as a function of climate type. The con-

straints define the fraction of parameters that meet the error criteria

(top), the change in annual mean flow (center), and the change in

1-month lag correlation (bottom). The error bars quantify the vari-

ability within the climate type (25th and 75th percentile).

ity to constrain the model parameter space over the globe;

(2) a limited number of behavioral parameter sets over arid

and regions with limited adaptation capacity – focus areas

for monitoring systems – suggests considerable limitations

in monitoring systems as well as the potential for significant

model structural errors; (3) regions with a high fraction of

behavioral parameter sets will be susceptible to the impact of

model parameter equifinality.

4.2 Model parameter sensitivity

4.2.1 Parameter space reduction: annual and monthly

flows

We formalize the sensitivity analysis by examining the cu-

mulative distribution function (CDF) distance between each

parameter’s prior and posterior distributions. Figure 4 shows

the global maps of the CDF distance metric for each param-

eter after applying the annual and monthly constraints. The

color scale of Fig. 4 ranges from 0.0, where the prior and pos-

terior distributions match exactly, to 0.5, the maximum possi-

ble value of the CDF distance metric when the posterior dis-

tribution contains only a single ensemble member. In general,

B, Dsmax, Exp, and CRsmin are the most sensitive parameters

to the annual constraint (left panel). However, the sensitivity

of CRsmin dominates the other parameters. Since CRsmin con-

strains the maximum transpiration rate in the model, these

results suggest that the partitioning of evaporation and runoff

dominates the model performance at the annual scale. Simi-

Hydrol. Earth Syst. Sci., 19, 3239–3251, 2015 www.hydrol-earth-syst-sci.net/19/3239/2015/
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Figure 4. Global maps of the sensitivity of each VIC parameter used in the 10 000 Latin hypercube sample simulations. The CDF distance is

calculated for each VIC parameter after applying the annual error constraint (left) and again after applying the monthly correlation constraint

(right).

Figure 5. Climate average sensitivity of each VIC parameter used in the 10 000 Latin hypercube sample simulations. The CDF distance is

calculated for each VIC parameter after applying the annual error constraint and again after applying the monthly correlation constraint. The

error bars quantify the variability within the climate type (25th and 75th percentile).

larly, Fig. 5 shows the mean CDF distance metric within each

climate classification, with the interquartile range denoted by

error bars. For the annual constraint, the sensitivities of B,

Dsmax, and Exp are highest in regions with less defined sea-

sonal cycles (e.g., tropical). As will be discussed in the next

www.hydrol-earth-syst-sci.net/19/3239/2015/ Hydrol. Earth Syst. Sci., 19, 3239–3251, 2015
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section, this can likely be attributed to these parameters play-

ing a distinct role in runoff seasonality.

When applying the monthly constraint, the sensitivity of

most parameters changes. In Figs. 4 and 5, the negligible

sensitivity of CRsmin suggests that although it plays a fun-

damental role in ensuring the annual runoff ratio, it does not

play an important role in the seasonality; the same applies to

Exp. Instead, the most sensitive parameters are B and Dsmax

since they control the partitioning of runoff into baseflow and

surface runoff. As shown in Fig. 5, this is especially true over

regions with a characteristic seasonal cycle (e.g., continental

climates). Regions that lack a distinct seasonality (e.g., trop-

ical climates) are only sensitive to these parameters at annual

timescales. When there exists a strong seasonality in runoff,

these parameters can impact the seasonality at the monthly

timescale. However, a weaker seasonality leads these param-

eters to act at an annual scale by controlling the soil water

storage and therefore the partitioning of annual evaporation

and runoff.

The contrast of the annual and monthly results brings to

light the role that timescales can have on the sensitivity of

model parameters (and, by extension, processes). The re-

sults suggest that the annual scale constraint does not play

a large role in the partitioning of monthly baseflow and sur-

face runoff. As will be discussed in the following section,

these timescale-dependent changes in parameter sensitivity

can have large implications on the ability to simulate daily

flows without daily observations to further constrain the en-

semble.

4.2.2 Parameter uncertainty: daily flows

The annual and monthly performance constraints allow us to

explore the role of the remaining parameter uncertainty on

daily runoff estimates. The runoff percentiles are calculated

for each ensemble member of each grid cell. Figure 6 shows

the climate-averaged spread of the flow duration curves of the

10 000 ensemble members and the most heavily constrained

ensemble (annual and monthly). The change in spread pro-

vides insight into how constraining (or tuning) at coarser

timescales can reduce uncertainty at the daily scale.

As expected from Fig. 3, the annual and monthly con-

straints lead to a reduction in the daily mean runoff for all

climates (except polar). However, the constraints’ ability to

tighten the ensemble spread varies significantly among cli-

mates. The most substantial decrease occurs over continental

and polar climates even though these regions experience the

lowest decrease in the number of parameter sets (see Fig. 3).

This decrease is most likely connected to the results from

the monthly sensitivity analysis (see Sect. 4.2.1): over re-

gions that have a distinct seasonal cycle, the monthly cli-

matology is able to heavily constrain the B and Dsmax pa-

rameters; this then helps constrain runoff at daily timescales.

This also explains the small decrease in spread over tropi-

cal climates seen in Fig. 6; since the monthly constraints are

Figure 6. Climate-averaged ensemble spread in the daily flow du-

ration curve. The spread in flow duration curve is calculated for all

10 000 ensemble members. The blue shading shows the spread of

the entire ensemble while the red shading shows the spread for pa-

rameter sets that have an annual mean runoff within 10 % of the

observed runoff and normalized monthly runoff correlation above

or equal to 0.75.

not able to constrain the B and Dsmax parameters, their un-

certainty drives the runoff at daily timescales. While predic-

tions in tropical climates are not well constrained with this

approach, the results are encouraging for monitoring the hy-

drologic cycle with properly-constrained land surface models

in continental and polar climates.

Figure 6 also illustrates differences in the tightening of the

flow duration curve spread at different percentiles. For exam-

ple, in continental climates the percentiles close to the cen-

ter experience a substantial decrease in spread; the change

in the ensemble spread of the tails (hydrologic extremes) is

less significant. This result holds to a varying degree for all

climates. The most likely physical explanation is that the an-

nual and monthly constraints focus on the percentiles that

produce most of the runoff; this leads to a minimal impact

on low flows and a reduced impact on high flows. The non-

negligible role that high flows play in runoff production helps

explain the larger decrease in spread when compared to low

flows.

Given that considerable uncertainty remains in the daily

flows after applying the annual and monthly constraints, we

aim to understand which parameters (and, by extension, pro-

cesses) control the spread. Figure 7 shows the global Spear-

man correlations between the daily flow extremes (1st and

99th percentile, in the left and right panels, respectively) and

the behavioral parameters. Red indicates a negative correla-

tion, blue indicates a positive correlation, and white indicates

no observed correlation. The results in Fig. 7 suggest that B,

Dsmax, Exp, and CRsmin control the daily flow extremes, evi-

denced by a mix of strong positive and negative correlations.

The negative correlation between the B parameter and low

flows occurs because a decrease in B leads to an increase

in infiltration. This results in a dampened response and an

increase in available storage for low flow periods; the oppo-

site is true for high flows. The negative correlation between

low flows and Dsmax occurs because a decrease in Dsmax de-
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Figure 7. Global maps of the Spearman correlation between the simulated extreme daily flows (1st and 99th percentile) and the corresponding

VIC parameter. The correlations are calculated using the ensemble members that fulfill the strongest error criteria (relative error below 10 %

and monthly correlation above 0.75).

lays the release of water from storage, allowing for a thicker

recession curve and higher low flows. Finally, the positive

correlation between CRsmin and high flows is because an in-

crease in CRsmin leads to a decrease in evaporation; an in-

crease in storage leads to an increase in baseflow and sur-

face runoff (increase in soil saturation). By controlling how

quickly the hydraulic conductivity decreases as a function

of soil moisture, Exp controls water movement between soil

layers during dry-down periods. This parameter is negatively

correlated with low flows since it controls the supply to the

lowest soil layer where baseflow is created.

5 Discussion

5.1 Global flood and drought monitoring: ensemble

simulations

The results from this study are relevant to drought and

flood monitoring systems that rely on land surface models to

monitor and predict hydrologic extremes at daily timescales

(Sheffield et al., 2013; Xia et al., 2012). When the land sur-

face model parameters are not tuned, significant uncertain-

ties exist in the estimated runoff. This is especially true over

data-sparse regions where the prior estimates of the model

parameters are inadequate. Furthermore, when the parame-

ters are tuned, a scale mismatch (space and time) between

the observations and the intended application leads to lim-

ited improvement. As shown in Sect. 4.2.2, although using

annual and monthly observations does constrain the daily es-

timates near the median, considerable uncertainties remain in

the simulated hydrologic extremes (low and high flows) over

all Köppen–Geiger climates.

One obvious path forward is to use daily streamflow ob-

servations to further constrain the land surface model. This

solution is practical over dense stream gauge networks but

presents considerable challenges over data-sparse regions

and ungauged basins. A plausible solution is to use a more

sophisticated technique to spatially disaggregate streamflow

observations (e.g., Pan and Wood, 2013) to obtain daily

gridded runoff fields. However, these methods will continue

to struggle over sparse networks (e.g., Congo basin), areas

that are heavily managed (e.g., southeast USA), and basins

that experience substantial reinfiltration and stream evapora-

tion (e.g., Colorado basin). Another option would be to use

satellite-based altimetry measurements (e.g., SWOT; Durand

et al., 2014). These observations could be combined with the
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spatially disaggregated runoff fields to provide the observed

daily estimates of gridded runoff.

In any case, even if high-quality daily runoff observa-

tions existed over the globe, a non-negligible spread will

remain after applying the constraints due to the effects of

model parameter equifinality. For this reason, we suggest that

flood and drought monitoring systems that aim to capture hy-

drologic extremes move towards model parameter ensemble

frameworks to provide not only predictions but also uncer-

tainty estimates. To make this feasible for operational use,

further work will need to determine how to cluster the be-

havioral parameter sets to below 100 per grid cell to mini-

mize the increase in computation and storage requirements.

5.2 Model parameters: improve prior distributions

A common practice when tuning land surface model param-

eters at continental scales (e.g. Troy et al., 2008) is to use

the same prior distribution for each model parameter at each

modeled grid cell or catchment; this uniform distribution is

usually set to cover the entire span of physically plausible

parameter values. This approach is one of the main drivers of

the large spread in flow duration curves shown in Figure 6.

Given the need to rely on monthly and annual observations

to constrain the model parameter uncertainty, local prior dis-

tributions should be informed by spatial land surface charac-

teristics to constrain the initial ensemble spread and the flow

duration curves. Spatially distributed information could also

be used to refine the distribution family and shape of the pri-

ors in addition to their ranges.

One option would be to use the uncertainty estimates avail-

able in remote sensing and in-situ data sets to define the local

prior distributions. An example of this framework would be

to use the Gridded Soil Survey Geographic (gSSURGO) con-

tinental soil data set (Soil Survey Staff, 2014) that provides

detailed three-dimensional texture and hydraulic soil prop-

erties (and uncertainties) over the contiguous United States

(CONUS). This would be simple to test for soil parameters

that are used in land surface models and are generally re-

ported in soil data sets (i.e., porosity). However, for param-

eters that are model-specific (e.g., Dsmax and B in the VIC

model), derived functional relationships will need to relate

the model parameters to the observed parameters to assem-

ble reliable prior distributions. However, as long as the un-

certainties in the functional relationship (e.g., linear regres-

sion) inform the derived local prior distribution, the benefits

should outweigh additional uncertainties.

A similar option would be to estimate model parameter

prior distributions using local information (parameter covari-

ates). The procedure used in this study (Latin hypercube sam-

ple) could be used over catchments with rich databases to

constrain the uniform parameter values using available high

spatial and temporal resolution observed data. The result-

ing behavioral parameter sets could then be related to the

local information using machine-learning algorithms (e.g.,

random forests; Liaw and Wiener, 2002) to provide catch-

ment specific prior distributions. In theory, available or up-

coming high-resolution global data sets could then provide

the covariates to estimate a parameter’s prior distribution at

each catchment or grid cell. These data sets could include

HydroSHEDS DEM (Lehner et al., 2008), MODIS-derived

products (e.g., NDVI, albedo, and land cover type), TMPA

satellite precipitation (Huffman et al., 2007), and the upcom-

ing GlobalSoilMap (Arrouays et al., 2014), among others.

Although the challenges in parameter regionalization (Hra-

chowitz et al., 2013) in-catchment hydrology will also most

likely apply to macroscale land surface models, we view it as

a path that should be explored.

5.3 Model structure: next generation land surface

modeling

Ultimately, more sophisticated parameter estimation tech-

niques cannot fix model structure deficiencies. As the results

of Sect. 4.2.1 indicate, if the observed flow is not contained

in the constrained ensemble then the problem can be traced

to model structure deficiencies (assuming error free obser-

vations and input meteorology). This problem is apparent

over arid regions (see Fig. 3), arguably one of the main re-

gions of focus for drought and flood monitoring systems.

A lack of irrigation, reservoirs, river evaporation and rein-

filtration, and groundwater in this version of VIC are most

likely the drivers of model deficiency. Furthermore, parame-

terizations that play an important role in watershed dynamics

and are highly sensitive to their parameter values (e.g., B in

the variable infiltration curve) should be replaced with up-

dated schemes that can effectively use available local high-

resolution information (e.g., topography, soils, geology, and

land cover) to more accurately represent the local physical

processes while reducing reliance on parameter estimation.

The improved macroscale parameterizations to address

these process deficiencies should capitalize on the increase

in computation resources and available high-resolution land

data and meteorological data to more explicitly model the

fine scale hydrologic processes (Wood et al., 2011; Bierkens

et al., 2014). This effort could provide solutions to improve

the prediction of hydrologic extremes over the globe by in-

cluding: (1) detailed hydrodynamic modeling to account for

flash floods, irrigation, reservoirs, and urban flooding; (2) in-

tegrated river modeling to enable river evaporation and re-

infiltration; (3) improved runoff generation processes. Al-

though the addition of these processes will likely lead to ad-

ditional parameter complexity and uncertainty, it is seen as

a necessary next step to improve the reliability and utility of

global drought and flood monitoring systems.
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6 Conclusions

The Variable Infiltration Capacity model (VIC) has been

run globally at a 1.0◦ spatial resolution between 1948 and

2010 using 10 000 parameter sets from a Latin hypercube

sample to assess the role of parameter uncertainty in flood

and drought monitoring. The 10 000 member ensemble is

constrained using a spatially disaggregated version of the

GRDC runoff climatology at annual and monthly timescales.

A multi-timescale sensitivity analysis is then used to deter-

mine the role of each of the model’s parameters and the

overall model performance. The results vary according to

Köppen–Geiger climate. While in arid and tropical regions

few parameter sets fulfill the constraints, polar and continen-

tal climates maintain a large number of behavioral param-

eter sets. The annual constraints focus on reducing the an-

nual bias by changing the annual evaporation; the monthly

constraints alter the monthly autocorrelation of flow by par-

titioning the runoff into baseflow and surface runoff. The pa-

rameters that control the monthly runoff autocorrelation also

play an important role at the daily timescale. For this rea-

son, regions that have a distinct seasonality (continental and

polar) see the largest decrease in the spread of their represen-

tative daily flow duration curves. These results illustrate the

challenges in using current land surface models for global

drought and flood monitoring. However, they also indicate a

path forward which involves adopting ensemble frameworks

to account for model parameter uncertainty, designing and

implementing improved observation networks to better con-

strain land surface models, providing improved local prior

distributions via emerging high-resolution land data, and im-

proving model structure to better account for the processes

that dominate the hydrology over regions prone to droughts

and floods.
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