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Abstract. This study investigates the suitability of the asyn-

chronous ensemble Kalman filter (AEnKF) and a partitioned

updating scheme for hydrological forecasting. The AEnKF

requires forward integration of the model for the analysis and

enables assimilation of current and past observations simul-

taneously at a single analysis step. The results of discharge

assimilation into a grid-based hydrological model (using a

soil moisture error model) for the Upper Ourthe catchment

in the Belgian Ardennes show that including past predictions

and observations in the data assimilation method improves

the model forecasts. Additionally, we show that elimination

of the strongly non-linear relation between the soil mois-

ture storage and assimilated discharge observations from the

model update becomes beneficial for improved operational

forecasting, which is evaluated using several validation mea-

sures.

1 Introduction

Understanding the behaviour of extreme hydrological events

and the ability of hydrological modellers to improve the fore-

cast skill are distinct challenges of applied hydrology. Hy-

drological forecasts can be made more reliable and less un-

certain by recursively improving initial conditions. A com-

mon way of improving the initial conditions is to make use

of data assimilation (DA), a feedback mechanism or update

methodology which merges model estimates with available

real-world observations (e.g. Evensen, 1994, 2009; Liu and

Gupta, 2007; Reichle, 2008; Liu et al., 2012).

Data assimilation methods can be classified from differ-

ent perspectives. Traditionally, we distinguish between se-

quential and variational methods. The sequential methods are

used to correct model state estimates by assimilating obser-

vations, when they become available. Examples of sequen-

tial methods are the popular Kalman and particle filters (e.g.

Moradkhani et al., 2005a, b; Weerts and El Serafy, 2006;

Zhou et al., 2006). The variational methods on the other hand

minimize a cost function over a simulation period, which in-

corporates the mismatch between the model and observations

(e.g. Liu and Gupta, 2007).

A next distinction can be made between synchronous and

asynchronous methods. Synchronous methods, also called

three-dimensional (3-D), assimilate observations which cor-

respond to the time of update. The ensemble Kalman filter

(EnKF, e.g. Evensen, 2003) is a popular synchronous ap-

proach, which propagates an ensemble of model realizations

over time and estimates the background error covariance

matrix from the ensemble statistics. Asynchronous meth-

ods, also called four-dimensional (4-D), refer to an updating

methodology in which observations being assimilated into

the model originate from times different to the time of up-

date (Evensen, 1994, 2009; Sakov et al., 2010). The ensem-

ble Kalman smoother (EnKS) is a common example of an

asynchronous method (e.g. Evensen and Van Leeuwen, 2000;

Dunne and Entekhabi, 2006; Crow and Ryu, 2009; Li et al.,

2013). The EnKS extends the EnKF by introducing addi-

tional information by propagating the contribution of future

measurements backward in time. The EnKS reduces the er-

ror variance as compared to the EnKF for the past (Evensen,

2009). EnKS and EnKF are identical for forecasting (includ-

ing nowcasting).
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The essential difference between a smoother and a filter is

that a smoother assimilates “future observations”, while a fil-

ter assimilates “past observations”. This implies that for op-

erational forecasting purposes, we need a filter rather than a

smoother. A smoother can help improve the model accuracy

in the past (e.g. for re-analysis), but it does not help improve

forecast accuracy (Evensen, 2009). Therefore, Sakov et al.

(2010) introduced the asynchronous ensemble Kalman filter

(AEnKF), which requires forward integration of the model to

obtain simulated results necessary for the analysis and model

updating at the analysis step using past observations over a

time window. The difference among the EnKF, EnKS and

AEnKF is schematized in Fig. 1.

Sakov et al. (2010) showed that the formulation of the

EnKS provides a method for asynchronous filtering, i.e. as-

similating past data at once, and that the AEnKF is a gener-

alization of the ensemble-based data assimilation technique.

Moreover, unlike the 4-D variational assimilation methods,

the AEnKF does not require any adjoint model (Sakov et al.,

2010). The AEnKF is particularly attractive from an opera-

tional forecasting perspective as more observations can be

used with hardly any extra additional computational time.

Additionally, such an approach can potentially account for

a better representation of the time lag between the internal

model states and the catchment response in terms of the dis-

charge.

Discharge represents a widely used observation for assim-

ilation into hydrological models, because it provides inte-

grated catchment wetness estimates and is often available

at high temporal resolution (Pauwels and De Lannoy, 2006;

Teuling et al., 2010). Therefore, discharge is a popular vari-

able in data assimilation studies used for model state updat-

ing (e.g. Weerts and El Serafy, 2006; Vrugt and Robinson,

2007; Blöschl et al., 2008; Clark et al., 2008; Komma et al.,

2008; Pauwels and De Lannoy, 2009; Noh et al., 2011a;

Pauwels et al., 2013) or dual state-parameter updating (e.g

Moradkhani et al., 2005b; Salamon and Feyen, 2009; Noh

et al., 2011b).

The Kalman type of assimilation methods were developed

for an idealized modelling framework with perfect linear

problems with Gaussian statistics; however, they have been

demonstrated to work well for a large number of different

non-linear dynamical models (Evensen, 2009). It remains in-

teresting to evaluate whether elimination of the non-linear

nature of the model updating can be beneficial. For exam-

ple, Xie and Zhang (2013) introduced the idea of a parti-

tioned update scheme to reduce the degrees of freedom of the

high-dimensional state-parameter estimation of a distributed

hydrological model. In their study, the partitioned update

scheme enabled them to better capture covariances between

states and parameters, which prevented spurious correlations

of the non-linear relations in the catchment response. Simi-

larly, decreasing the number of model states being perturbed

and updated was suggested by McMillan et al. (2013) to in-

crease the efficiency of the filtering algorithm while conserv-
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Figure 1. Illustration of the model updating procedure for the

ensemble Kalman filter (EnKF), the ensemble Kalman smoother

(EnKS), and the asynchronous ensemble Kalman filter (AEnKF).

The horizontal axis stands for time, observations (d1, d2, d3, d4) are

given at regular intervals. The blue arrows represent forward model

integration, the red arrows denote introduction of observations and

green arrows indicate model update. The magenta arrows represent

the model updates for the EnKS and therefore go backward in time,

as they are computed following the EnKF update every time ob-

servations become available. The green dotted arrows denote past

observations being assimilated using the AEnKF. The schemes for

the EnKF and the EnKS are after Evensen (2009).

ing the forecast quality. Such an approach was proposed es-

pecially to states with small innovations, which in their case

was mainly the soil moisture storage.

In this study we present a follow-up of the work of

Rakovec et al. (2012b), in which discharge observations were

assimilated into a grid-based hydrological model for the Up-

per Ourthe catchment in the Belgian Ardennes by using the

EnKF. Here we scrutinize the applicability of the AEnKF us-

ing the same updating frequency (i.e. the same computational

costs) as in the previous study. To our knowledge this is the

first application of the AEnKF in a flood forecasting context.

Firstly, the effect of assimilating past asynchronous obser-
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vations on the forecast accuracy is analysed. Secondly, the

effect of a partitioned updating scheme is scrutinized.

2 Material and methods

2.1 Data and hydrological model

We carried out the analyses for the Upper Ourthe catchment

upstream of Tabreux (area ∼ 1600 km2, Fig. 2), which is lo-

cated in the hilly region of the Belgian Ardennes, western

Europe (Driessen et al., 2010). We employed a grid-based

spatially distributed HBV-96 model (Hydrologiska Byråns

Vattenbalansavdelning; Lindström et al., 1997), with spa-

tial resolution of 1 km× 1 km and hourly temporal resolu-

tion. The model is forced using deterministic spatially dis-

tributed rainfall fields, which were obtained by inverse dis-

tance interpolation from about 40 rain gauges measuring at

an hourly time step. Evaluation of the benefits of differ-

ent rainfall interpolation techniques was deemed beyond the

scope of the study. We used a method used in operational

practice as this study is also oriented towards operational

benefits of asynchronous filtering. Additionally, there are six

discharge gauges (hourly time step) situated within the catch-

ment, some of which are used for discharge assimilation and

some for independent validation.

For a more detailed description of the catchment and

model structure and definition of the hydrological states and

fluxes we refer to Rakovec et al. (2012b) and to Fig. 3.

Briefly, for each grid cell the model considers the following

model states: (1) snow (SN), (2) soil moisture (SM), (3) up-

per zone storage (UZ) and (4) lower zone storage (LZ). The

dynamics of the model states are governed by the following

model fluxes: rainfall, snowfall, snowmelt, actual evapora-

tion, seepage, capillary rise, direct runoff, percolation, quick

flow and base flow. The latter two fluxes force the kinematic

wave model (Chow et al., 1988; PCRaster, 2014). This rout-

ing scheme calculates the overland flow using two additional

model states, the water level (H ) and discharge (Q) accumu-

lation over the drainage network. Model parameterization is

based on the work of Booij (2002) and van Deursen (2004).

In contrast to Rakovec et al. (2012b), in the current

study we employed the HBV-96 model built within a re-

cently developed open-source modelling environment, Open-

Streams (2014), which is suitable for integrated hydrologi-

cal modelling based on the Python programming language

with the PCRaster spatial processing engine (Karssenberg

et al., 2009; PCRaster, 2014). The advantage of using Open-

Streams (2014) is that it enables direct communication with

OpenDA (2014), an open-source data assimilation toolbox.

OpenDA (2014) provides a number of algorithms for model

calibration and assimilation and is suitable to be connected

to any kind of environmental model (e.g. Ridler et al., 2014).

The import and export of hydrological and meteorological

data to the system is done using Delft Flood Early Warn-
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Figure 2. Topographic map of the Upper Ourthe (black line) includ-

ing the river network (blue lines), rain gauges (crosses), six river

gauges (white circles labelled with numbers: 1 – Tabreux, 2 – Dur-

buy, 3 – Hotton, 4 – Nisramont, 5 – Mabompré, and 6 – Ortho).

Projection is in the Universal Transverse Mercator (UTM) 31N co-

ordinate system. After Rakovec et al. (2012b).

ing System (Delft-FEWS, Werner et al., 2013), an open-shell

system for managing forecasting processes and/or handling

time series data. Delft-FEWS is a modular and highly con-

figurable system, which is used by the Dutch authorities for

the flood forecasting for the River Meuse basin (called RW-

sOS Rivers), in which the Upper Ourthe is located. The cur-

rent configuration is a stand-alone version of RWsOS Rivers;

however, it can be easily switched into a configuration with

real-time data import.

2.2 Data assimilation for model initialization

As stated in the introduction, we investigate the potential

added value of the asynchronous EnKF (AEnKF) (Sakov

et al., 2010) as compared to the traditional (synchronous)

EnKF for operational flood forecasting. The derivation of

the AEnKF (Sect. 2.2.2) is based on the equations using the

same updating frequency (i.e. same computational costs, dif-

ferent number of observations) as for the EnKF (Sect. 2.2.1),

as among others presented by Rakovec et al. (2012b).

2.2.1 Ensemble Kalman filter (EnKF)

First, we define a dynamic state space system as

xk = f (xk−1,θ ,uk−1)+ωk, (1)

where xk is a state vector at time k, f is an operator (hy-

drological model) expressing the model state transition from

time step k− 1 to k in response to the model input uk−1 and

time-invariant model parameters θ . The noise term ωk is as-

sumed to be Gaussian white noise (i.e. independent of time).

It incorporates the overall uncertainties in model structure,

parameters and model inputs.
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Figure 3. Left: catchment discretization using a grid-based approach including the channel delineation. Arrows indicate flow direction. Right:

schematic structure of the HBV-96 model for each grid cell. Model states are in bold and model fluxes in italics (after Rakovec et al., 2012b).

Second, we define an observation process as

yk = h(xk)+ νk, (2)

where yk is an observation vector derived from the model

state xk and the model parameters through the h opera-

tor (in our case the kinematic wave routing model generat-

ing discharge). The noise term νk is additive observational

Gaussian white noise with covariance Rk . For spatially inde-

pendent measurement errors, Rk is diagonal. Note that both

the kinematic wave routing model h(.) and the hydrological

model f (.) exhibit non-linear behaviour.

After the model update at time k− 1, the model is used to

forecast model states at time k (Eq. 1). The grid-based model

states form a matrix, which consists of N state vectors xk

corresponding to N ensemble members:

Xk =

(
x1

k, x
2
k, . . .,x

N
k

)
, (3)

where

xi
k =

(
SNi

1:m,SMi
1:m,UZi

1:m,LZi
1:m,H i

1:m,Qi
1:m

)T

k
. (4)

SNi , SMi , UZi , LZi , H i and Qi are the HBV-96 model states

of the ith ensemble member (Sect. 2.1), m gives the number

of grid cells and T is the transpose operator. The ensemble

mean

xk =
1

N

N∑
i=1

xi
k (5)

is used to approximate the forecast error for each ensemble

member:

Ek =

(
x1

k − xk,x
2
k − xk, . . .,x

N
k − xk

)
. (6)

The ensemble-estimated model covariance matrix Pk is de-

fined as

Pk =
1

N − 1
EkET

k . (7)

When observations become available, the model states of the

ith ensemble member are updated as follows:

x
i,+
k = x

i,−
k +Kk

(
yk −h

(
x

i,−
k

)
+ νi

k

)
, (8)

where x
i,+
k is the analysis (posterior, or update) model state

matrix and x
i,−
k is the forecast (prior) model state matrix. Kk

is the Kalman gain, a weighting factor of the errors in model

and observations:

Kk = PkHT
k

(
HkPkHT

k +Rk

)−1

, (9)

where Pk HT
k is approximated by the forecasted covariance

between the model states and the forecasted discharge at the

observing locations, and Hk Pk HT
k is approximated by the

covariance of forecasted discharge at the observing locations

(Houtekamer and Mitchell, 2001):

PkHT
k =

1

N − 1

N∑
i=1

(
xi

k − xk

)(
h
(
xi

k

)
−h(xk)

)T

, (10)

HkPkHT
k =

1

N − 1

N∑
i=1

(
h
(
xi

k

)
−h(xk)

)(
h
(
xi

k

)
−h(xk)

)T

, (11)

where

h(xk)=
1

N

N∑
i=1

h
(
xi

k

)
. (12)

2.2.2 Asynchronous Ensemble Kalman Filter (AEnKF)

The AEnKF should not be considered as a new method

but rather a simple modification of the (synchronous) EnKF

Hydrol. Earth Syst. Sci., 19, 2911–2924, 2015 www.hydrol-earth-syst-sci.net/19/2911/2015/
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(Sect. 2.2.1) using a state augmentation approach. This

means that the ith vector of model states (xi
k) at time k (see

Eq. 4) is augmented with the past forecasted observations

h(xi
k−1), . . . , h(xi

k−W ) (i.e. model outputs corresponding to

the observation locations) from W previous time steps, which

yields

x̃i
k =


xi

k

h
(
xi

k−1

)
h
(
xi

k−2

)
...

h
(
xi

k−W

)

 . (13)

Remember that the size of xi
k and h(xi

k−1), . . . , h(xi
k−W ) can

significantly differ: xi
k contains the complete set of model

states, while h(xi
k−1), . . . , h(xi

k−W ) contains only the fore-

casted observations. Additionally, with the new state defini-

tion comes a new augmented observer operator h̃k (in which

I , with the corresponding subscript, stands for identity ele-

ments on the diagonal, matching the dimensions in Eq. 13), a

new augmented observation vector ỹk and its corresponding

observation covariance matrix R̃k:

h̃k =


hk

I k−1 0

I k−2

0
. . .

I k−W

 , (14)

ỹk =


yk

yk−1

yk−2
...

yk−W

 , (15)

R̃k =


Rk

Rk−1 0

Rk−2

0
. . .

Rk−W

 . (16)

Having these augmented equations for x̃i
k , h̃k , ỹk and R̃k , it is

straightforward to carry out the assimilation in the same man-

ner as presented in Sect. 2.2.1. Note that although current and

past observations are used to construct the augmented state

vector in Eq. (13), in practice Eq. (8) is solved only to the

current state x̃i
k (i.e. the indices that correspond to xi

k) and

the rest is ignored. The presence of past observation terms

increases the dimension of P̃k and K̃k (see Eqs. 7 and 9) in

both directions (rows and columns). Each column of K̃k cor-

responds to an observation. The extra column of K̃k corre-

sponds to the past observations. Hence, it is possible to sim-

ply solve the equations for the first rows, which correspond

only to xi
k . Note that the first rows of K̃k also contain the con-

tributions of the past observations to the current state. These

Table 1. Overview of the periods used in this study.

Period Number of Maximum observed

events discharge [m3 s−1
]

23 Oct 1998–15 Nov 1998 1 210

15 Feb 1999–05 Mar 1999 2 195

15 Jan 2002–06 Mar 2002 4 340

21 Dec 2002–07 Jan 2003 1 380

contributions arise from the off-diagonal terms of the aug-

mented covariance P̃k . Finally, if the time window equals the

current single time step, then W = 0 and the AEnKF problem

reduces to the traditional EnKF.

From the operational point of view, it is preferable to have

a longer assimilation window, because less frequent assimi-

lation eliminates a disruption of the ensemble integration by

an update and a restart. When assimilation is done more fre-

quently, it will cause considerably higher calculation costs,

which can often be a burden for real-time operational settings

(Sakov et al., 2010). The AEnKF uses a longer assimilation

window and assimilates all observations in a single update.

This makes the AEnKF attractive for operational use. The

added value of a longer assimilation window will be a sub-

ject for investigation in this work. Especially, it can provide

an improved representation of the time lag between the inter-

nal model states and the catchment response in terms of the

discharge. Such an idea was investigated for example by Li

et al. (2013), who compared the effect of time-lag represen-

tation using the EnKF and EnKS.

2.3 Model uncertainty

In this study, we assume the source of model uncertainty to

be the HBV soil moisture, which provides boundary condi-

tions for surface runoff and represents interaction from in-

terception, evapotranspiration, infiltration and input uncer-

tainty by rainfall. The uncertainty is represented as a noise

term ω as in Eq. (1). Based on expert knowledge, the noise

is modelled as an autoregressive process of order 1 with a

de-correlation time length of 4 h. The noise process is fur-

ther assumed spatially isotropic with a spatial de-correlation

length of 30 km. The noise is assumed to have a spatially uni-

form standard deviation of 1 mm. The 2-D noise fields with

such statistics were generated by using the OpenDA (2014)

toolbox. This parameterization of the noise model ensures

that the ensemble spread in the simulated discharge corre-

sponds well with the control simulations as presented by

Rakovec et al. (2012b) (not shown). Ideally, all sources of

uncertainty should be accounted for in a DA scheme. How-

ever, this is not yet a common approach in operational hy-

drologic data assimilation. Moreover, as the objective of the

current manuscript is to compare the operational benefits of

application of the AEnKF, we kept the noise model relatively

simple. For more work on the effect of noise specification on

www.hydrol-earth-syst-sci.net/19/2911/2015/ Hydrol. Earth Syst. Sci., 19, 2911–2924, 2015
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Table 2. Four partitioned state updating schemes (indicated in

the first column) for five model states (indicated in the first row)

being updated and thus included in the model analysis. Model

states are described in Sect. 2.1 and Fig. 3 and have the follow-

ing acronyms: discharge (Q), water level (H ), soil moisture stor-

age (SM), snow storage (SN), upper zone storage (UZ), and lower

zone storage (LZ).

Name Q H SM SN UZ LZ

No update

all
√ √ √ √ √ √

noSM
√ √ √ √ √

HQ
√ √

DA using complex spatially distributed hydrological models

see Noh et al. (2014).

2.4 Experimental setup

This section provides a configuration setup of the filtering

methods (Sect. 2.2.1 and 2.2.2) to assimilate discharge ob-

servations into a spatially distributed hydrological model of

the Upper Ourthe catchment. The objective is to improve the

hydrological forecast at the catchment outlet (at Tabreux,

gauge 1 in Fig. 2) by assimilating up to four discharge

gauges, numbered as 1, 3, 5, 6 in Fig. 2. Note that discharge

data from multiple gauges are assimilated simultaneously

and no localization is employed in this study. Additionally,

validation at an independent location is also performed. The

discharge assimilation is performed every 24 h; however, the

forecasts are issued every 6 h, i.e. 4 times a day, with differ-

ent independent starting points at 00:00, 06:00, 12:00, and

18:00 UTC, which is the same implementation as used by

Rakovec et al. (2012b). This study analyses the eight largest

flood peaks observed within the catchment since 1998. An

overview is provided in Table 1.

The ensemble of uncertain model simulations is obtained

by perturbing the SM state with the spatio-temporally cor-

related error model (Sect. 2.3). With this approach we en-

sured that the error model produced reasonable results in the

open loop and did not lead to any numerical instability. More

complex ways of perturbing the model and their effects on

forecast accuracy were studied before (see Rakovec et al.,

2012a; Noh et al., 2014) and were deemed beyond the scope

of this manuscript. The ensemble size in this study was de-

fined to be 36 realizations (for computational reasons). Note

that increased ensemble sizes of 72 and 144 realizations did

not influence the results (not shown). Nevertheless, such a

small ensemble size as presented in the manuscript would

not be possible if parameter estimation would be involved or

if more complex error models would be employed. The error

in the discharge observations is considered to be a normally

distributed observation error with a variance of (0.1 Qobs, k)2

(after e.g. Weerts and El Serafy, 2006; Clark et al., 2008).
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Figure 4. Discharge ensemble forecasts (grey lines) and observa-

tions (points) at four locations (gauges 1, 3, 5, 6; see Fig. 2). Obser-

vations being assimilated using the AEnKF are schematized accord-

ing to the state augmentation size for two scenarios: assimilation of

data from the current time step W = 0 (open circle, traditional EnKF

approach) and assimilation of data including the previous 11 time

steps, W = 11 (black dots). The observations are assimilated into

the model states on 31 December 2002, 00:00 UTC.

The experimental setup scrutinizes the problem of asyn-

chronous filtering from two perspectives. First, we investi-

gate the effect of state augmentation using the past obser-

vations and assimilation of distributed observations on the

state innovation (Sect. 3.1). Recall that the number of ob-

servations being assimilated into the model depends on the

magnitude of W . Furthermore, the choice of which model

states are included in the analysis step to be updated is anal-

ysed (Sects. 3.2, and 3.3). This means that besides updating

all of the model states, we will test two other alternatives.

The first alternative will leave out from the model analysis

the soil moisture state (noSM), which is known to exhibit

the most non-linear relation to Q. The second alternative

will eliminate all the model states except for the two rout-

ing ones (HQ). The scenarios of the partitioned state updat-

ing schemes are shown in Table 2, including the control run

without state updating (no update).

The performance of the data assimilation procedure re-

garding discharge forecasting is evaluated using the Ensem-

ble Verification System (EVS): a software tool for verify-

ing ensemble forecasts of hydrometeorological and hydro-

logical variables at discrete locations (Brown et al., 2010),

which provides a number of probabilistic verification mea-

sures. In this study we used three popular measures: the root-

mean-square error (RMSE), the relative operating character-

istic (ROC) score and the Brier skill (BS) score. We refer

to e.g. Wilks (2006), Brown et al. (2010), Brown and Seo

(2013), and Verkade et al. (2013) for exact definitions of

these measures. In summary, the perfect forecast in terms of

the RMSE has a value of 0, while positive values indicate er-

Hydrol. Earth Syst. Sci., 19, 2911–2924, 2015 www.hydrol-earth-syst-sci.net/19/2911/2015/



O. Rakovec et al.: Asynchronous filtering for flood forecasting 2917

rors in the same units as the variable. The perfect forecast in

terms of the ROC and BS scores has a value of 1 and values

smaller than 1 indicate forecast deterioration.

3 Results

3.1 The effect of state augmentation and distributed

observations on state innovation

To investigate and understand the effect of augmented op-

erators (Eqs. 13, 14, and 15) on the innovation of spatially

distributed model states, we present the following example.

Figure 4 shows discharge simulations and corresponding dis-

charge observations at four locations within the catchment

on 31 December 2002, 00:00 UTC. Note that the magnitude

of the discharge observations is a function of the location

within the catchment; for downstream gauges the magnitude

is larger than for the more upstream gauges. The discharge

observations are further distinguished according to the time-

window length of the state augmentation, which is set to

W = 0 and W = 11. The first example represents the tradi-

tional EnKF algorithm, while the latter assimilates observa-

tions from a 12 h time window (i.e. 1 current observation and

11 past observations), which is arbitrarily defined as half the

24 h assimilation time window. For some cases alternative as-

similation windows were tested, which did not lead to notice-

able differences however (not shown). Note that the amount

of information being assimilated into the model differs for

different values of W .

The mean difference between the forecasted and updated

model states for the whole ensemble is illustrated in Fig. 5

for four scenarios. These examples improve our understand-

ing about the behaviour of the updated model states in rela-

tion to the information content of the observations from two

perspectives: (1) the effect of assimilating also past obser-

vations in addition to observations at the current (analysis)

time, and (2) the effect of assimilating spatially distributed

observations into a grid-based hydrological model.

Let us first consider the traditional EnKF (i.e. no state aug-

mentation with W = 0) to update all the grid-based model

states by assimilating the observation at the catchment outlet

(gauge 1). We observe that the single observation is mea-

sured approximately in the middle of the simulated ensem-

ble (see the open circle for gauge 1 in Fig. 4). Therefore,

there is hardly any difference between the forecasted and

updated model states as we show in Fig. 5a. In the sec-

ond scenario, we still assimilate only one gauge at the out-

let; however, we use the augmented operators with W = 11.

Because the mean of the ensemble simulations is predom-

inantly underestimated as compared to the assimilated ob-

servations (see black dots in Fig. 4 for gauge 1), after the

update more water is added spatially equally into the sys-

tem, as shown in Fig. 5b. In the third scenario, we include

all four gauges being assimilated into the model without any

Q

H

SM

UZ
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−5.6
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∑
N

(X−−X+):

(a) (b) (c) (d)

AEnKF(W=0) AEnKF(W=11) AEnKF(W=0) AEnKF(W=11)
up.all, as.1 up.all, as.1 up.all, as.1356 up.all, as.1356

Figure 5. Mean difference between the forecasted (X−) and up-

dated (X+) model states on 31 December 2002 at 00:00 UTC for

different scenarios (shown in vertical panels). We show only four

sensitive model states: discharge (Q), water level (H ), soil mois-

ture (SM) and upper zone (UZ). We excluded the insensitive lower

zone (LZ). Notations W = 0 and W = 11 indicate the size of the

state augmentation. Notation up.all indicates that all of the model

states are updated. Notation as “xx” indicates the gauges which are

assimilated; see Fig. 2 for their locations. The corresponding en-

semble of model forecasts and observations being assimilated are

shown in Fig. 4.

augmentation. Because the model simulations at the interior

gauges are mostly overestimating the observations, water is

removed from the catchment during the update. Moreover,

since the model overestimation is largest at gauges 3 and 6,

we can also observe in Fig. 5c how well the EnKF is ca-

pable of identifying corresponding regions in a spatial man-

ner. In the fourth scenario (Fig. 5d) we still assimilate all

four gauges; however, we augment the state with W = 11. We

can observe that the innovation of the model states gets even

more spatially differentiated; the updated SM and UZ model

states in the downstream part of the catchment increase the

amount of water in the system, while the updated SM and

UZ model states in the upstream part decrease the amount of

water in the system.

The presented educational examples shows an update for

several scenarios starting from the same initial conditions.

This enables a fair comparison between scenarios; however,

the sensitivity of state augmentation needs to be further scru-

tinized in terms of its cumulative effect over time.
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Figure 6. Ensemble of discharge forecasts for a typical event at the catchment outlet (Tabreux, gauge 1) for three updating scenarios: all,

noSM, and HQ (see Table 2 for definition). The combined effect of the model states being updated (three scenarios shown in rows) and the

length of the state augmentation vector (W ) of past observations being assimilated (two scenarios in columns) is presented. Gauges 1, 3, 5,

and 6 are assimilated. The control run (with no update) is shown in the left panel. The observations are shown in black.

3.2 The effect of the four partitioned update schemes

and asynchronous assimilation on forecast

accuracy

We present a qualitative interpretation of the hydrological

forecasts with a lead time of 48 h in Fig. 6 for different parti-

tioned state updating schemes as defined in Table 2, includ-

ing both a non-augmented state (W = 0) and an augmented

state (W = 11). This analysis focuses on a characteristic win-

ter flood event (December 2002–January 2003) being typical

for a moderate temperate climate caused by a fast-moving

frontal stratiform system (Hazenberg et al., 2011). We ob-

serve that the ensemble of the control runs (top panel of

Fig. 6) simulates the major flood peak reasonably well, in-

cluding the timing and the magnitude; however, it has a larger

spread with respect to the assimilation scenarios. Addition-

ally, when we consider the ensemble mean of the no-update

scenario with respect to the assimilation scenarios, the accu-

racy deteriorates. When discharge assimilation is employed,

an overall reduction of the uncertainty in the forecasted en-

semble is observed. Nevertheless, the forecasted flood peak

becomes underestimated and the forecasted recession re-

mains overestimated, which is acceptable because of the de-

fined uncertainty in the observed discharge. This happens in

particular for the scenario in which all states are updated;

there are marginal differences between the non-augmented

and augmented model states. Furthermore, when we leave

out SM from the state update (noSM), we can observe that

the major flood peak is forecasted more accurately, includ-

ing the rising limb around 31 December 2002. Moreover, for

the augmented state with W = 11, the ensemble spread be-

comes somewhat wider for lead times exceeding 12 h than

for the non-augmented state. Nevertheless, the observations

correspond approximately with the ensemble mean. Finally,

we present the effect of the scenario in which only the two

routing states are updated. The results suggest that the flood

peak is captured most accurately of all scenarios, however

with somewhat wider uncertainty bands. Therefore, it seems

more appropriate to exclude the UZ storage (noSM scenario)

in the model state updating, which represents water storage

available for quick catchment response in the concept of the

HBV model.

Besides a qualitative interpretation of the forecasted hy-

drographs presented in Fig. 6 for one particular event, we

summarize these results in a more quantitative manner for

the whole set of eight flood events (see Table 1) using three

statistical measures with respect to the lead time. Figure 7

shows the average behaviour (over many forecasts) of an im-

proved initial state on the forecast accuracy for the different

filter settings, although individual partial updates may vary

in time. In general, the improvements in forecast accuracy

decay with lead time in a systematic fashion as is to be ex-

pected.
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Figure 7. (a) Root-mean-square error (RMSE), (b) relative operating characteristic (ROC), and (c) Brier skill score (BSS) at Tabreux

(gauge 1) for different discharge observation vectors for which different model states are updated and with different lengths of the state

augmentation vector (W ) of past observations being assimilated. The results incorporate a set of eight flood events shown in Table 1.

Gauges 1, 3, 5, and 6 are assimilated. For BSS, the reference forecast is the sample climatology and only values larger than the 25th percentile

of the whole sample are considered. (d) Same as (a) but the results are presented for Durbuy (gauge 2), a validation location which is not

assimilated.

Figure 7a shows the RMSE as a function of lead time

for different partitioned state updating schemes and for three

scenarios for the state augmentation at the catchment out-

let (Tabreux). The control model run with no update has

a constant RMSE of about 32 m3 s−1 and an improved hy-

drological forecast has a RMSE lower than the control run.

The results suggest that all assimilation scenarios improve

the hydrological forecast, however, with marked differences

between the scenarios. Figure 7a also clearly shows that

the differences in the forecast improvement of these vari-

ous setups are purely due to using multiple data points in

the past at the analysis step. We can further observe that

updating all model states except for SM (noSM scenario)

consistently leads to the most accurate forecasts across the

whole range of lead times. Additionally, state augmentation

using W = 5 and W = 11 indicates improvements compared

to the case without augmentation (W = 0). However, for lead

times longer than the travel time from the most upstream

gauges to the outlet (i.e. exceeding 20 h), the difference be-

tween state augmentations W = 5 and W = 11 diminishes.

Moreover, when only the two routing states (HQ scenario)

are updated, the RMSE is lowered for short lead times, but
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Figure 8. Scaled difference between the ensemble mean for the three partitioned update schemes and the control run without data assimilation

at four gauging locations (shown by different colours) within the Upper Ourthe catchment using the AEnKF with (a) W = 0 and (b) W = 11.

We excluded the insensitive lower zone (LZ). Gauges 1, 3, 5, and 6 are assimilated. The results correspond to the same period as presented

in Fig. 6.

the improved effect does not last as long as for the noSM

scenario. The smallest improvement at shorter lead times is

achieved when all model states are updated (scenario all).

This is due to the strongly non-linear relation between the as-

similated observations and the SM storage, which is further

articulated by the time lag between the state and the catch-

ment response. Nevertheless, for longer lead times it seems

slightly better to update all states rather than only the rout-

ing states. Discharge is related to the SM and UZ storages

through the Kalman gain. When the correlation is lower the

update will be smaller. AEnKF exploits the correlation be-

tween the present discharge state and the discharge state not

only at the previous time step but also further in the past. It

may be possible to use the correlation between discharge at

the present time and UZ/SM in the past for data assimila-

tion; however, this is deemed beyond the scope of this study.

Nevertheless, we speculate that this will only be useful in a

smoothing context (i.e. the present discharge may bring in-

formation on UZ/SM in the past), not in a filtering context as

in the present study.

Validation of the model setup in terms of the RMSE is pre-

sented in Fig. 7d for an independent evaluation of the fore-

casting results at Durbuy, an interior location which was not

used for assimilation. These results show that an improve-

ment of discharge assimilation also occurs at the validation

location and that the pattern corresponds well to the results

presented in Fig. 7a. Such an analysis indicates that there is

no spurious update of the model states.

To present the results in a more robust way, we also anal-

ysed them (at Tabreux) in terms of other probabilistic ver-
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ification measures: the ROC score and the BS score (see

Fig. 7b and c). Recall that values of 1 represent a perfect

forecast, while values smaller than 1 indicate forecast deteri-

oration. Similar to the RMSE results, updating only the two

routing states (HQ) is most efficient for short lead times, but

this skill disappears quickly for longer lead times. In terms

of the ROC and BS scores, for a given augmentation size,

there are marginal differences between the scenarios which

update all states (all) and which leave the soil moisture out

(noSM). However, it is notable that the state augmentation

case (W = 11) improves the forecast performance as com-

pared to the no augmentation case (W = 0). Note that the

state augmentation of W = 5 was not carried out.

3.3 Temporal nature of model state innovations

To reveal the temporal nature of the model being updated

using the AEnKF, using W = 0 and W = 11, we present in

Fig. 8a and b time series of normalized differences between

the ensemble means for the three partitioned update schemes

and the ensemble mean for the no-update scenario. The nor-

malization is achieved by dividing the aforementioned dif-

ference by the no-update scenario mean. In such a way we

obtain the relative change in each of the model states. For the

AEnKF using W = 0 (Fig. 8a), we can observe that for the

scenario “all”, which updates all the model states, the magni-

tude of the percentage change is approximately the same for

all four model states and ranges up to 25 %. When all model

states except for the SM are updated, no changes in the SM

storage occur and the overall magnitude of the changes in the

other states is slightly decreased and smoothed. Furthermore,

when only the two routing states are updated (HQ), the SM

and UZ storages remain constant over time and we observe

a different temporal behaviour of the routing states in com-

parison with the previous cases. For the HQ scenario, the up-

dated time series have a clear zigzag shape, which indicates

that the effect of updating diminishes faster because only the

river channel is updated. In contrast, the routing states for

the other cases show a more stable behaviour over time, il-

lustrated by the stepwise shape. These more persistent results

correspond to the updates in the UZ storage, which is used for

a quick catchment response and has an impact for a longer

time. The benefits of including the UZ storage in the update

and leaving the SM storage out was already presented from

a different point of view in Fig. 7a for longer lead times.

For the AEnKF using W = 11 (Fig. 8b), we can observe

that the overall pattern of the temporal changes in the model

states is similar as for W = 0, but the behaviour of using

W = 11 shows somewhat larger variability. By assimilating

more observations (W = 11), we expect an even larger up-

date, assuming that more observations contain more infor-

mation about the unknown truth. Assuming the underlying

forecast model has a significant error, by assimilating more

observations the Kalman filter will pull the model even closer

to the truth, yielding a larger abrupt update.

4 Conclusions

We applied the asynchronous ensemble Kalman filter

(AEnKF) (Sakov et al., 2010) and identified the effect of

augmenting the state vector with past simulations and ob-

servations. To our knowledge this is the first application of

the AEnKF in flood forecasting. We showed that the ef-

fect of an augmented assimilation vector improves the flood

forecasts, but the contribution gets smaller for longer lead

times. Overall, the AEnKF can be considered as an effective

method for model state updating taking into account more

(e.g. all) observations at hardly any additional computational

burden. This makes it very suitable for operational hydro-

logical forecasting. When compared to standard EnKF, the

AEnKF allows for the choice of a certain assimilation win-

dow length, which adds a degree of freedom to the data as-

similation scheme. The optimal window is very likely re-

lated to the catchment size (i.e. concentration time). It was

noted (not shown) that for the smaller upstream catchments

the optimal window was smaller than for the complete Upper

Ourthe catchment, although there was no negative effect of

a longer assimilation window (W = 5 vs. W = 11). For the

high flows analysed in this study, the AEnKF with a longer

time window W is able to make corrections that last longer

on average than with the shorter time window W . Character-

ization of the statistical properties of the temporal flow dy-

namics (i.e. typical timescales of flood peaks as compared to

low flows) is however a relevant issue. The length of the time

window W has to be seen relative to the timescale of the river

flow dynamics. We assume that for low flow conditions, the

improved skill of longer W with respect to shorter W will be-

come negligible, as low flows exhibit less temporal dynam-

ics than high flows. We refer to Pan and Wood (2013) for

an analysis about explicit handling of lags in space and time,

which uses a state augmentation approach for a linear inverse

streamflow routing model. Note that it was not the objective

of this study to determine the optimal assimilation window

for the AEnKF given various river flow dynamics. Another

limitation of this study is the relatively simple error model

for perturbing only soil moisture states. More complex ways

of perturbing the model and their effects on forecast accuracy

deserve more attention in future studies.

We investigated the effect of a partitioned update scheme

recently suggested by Xie and Zhang (2013). We showed

that for the Upper Ourthe catchment, reducing the number of

model states of a grid-based HBV model using AEnKF can

lead to better forecasts of the discharge. In terms of the root-

mean-square error, the largest improvements in the forecast

accuracy were observed for the scenario where the soil mois-

ture was left out from the analysis (similar to the PDM updat-

ing scheme presented by Moore, 2007). This indicates that

elimination of the strongly non-linear relation between the

soil moisture storage (SM) and assimilated discharge obser-

vations can become beneficial for an improved forecast when

soil moisture observations are not considered. On the other
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hand, it was recently demonstrated that a rainfall–runoff

model can be improved when constrained by remotely sensed

soil moisture (e.g. Alvarez-Garreton et al., 2014; Wanders

et al., 2014a, b) or in situ soil moisture (e.g. Lee et al., 2011).

Moreover, we showed that keeping the quick catchment re-

sponse storage (upper zone; UZ) in the model analysis is im-

portant, especially for longer lead times, when compared to

the scenario in which only two routing storages were up-

dated. The UZ seems to compensate the effect of SM on

discharge. The fact that excluding SM extends the improve-

ments suggests that in our case the discharge forecasts with a

lead time of 2 days (and for major flood events) are less de-

pendent on SM. A possible alternative to excluding the SM

storage from the analysis would be to investigate the use of

other algorithms, for example the maximum likelihood en-

semble filter (MLEF) (Zupanski, 2005; Rafieeinasab et al.,

2014), which is more suited for use with highly non-linear

observation operators.
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