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Abstract. For one-dimensional salt intrusion models to be

predictive, we need predictive equations to link model pa-

rameters to observable hydraulic and geometric variables.

The one-dimensional model of Savenije (1993b) made use

of predictive equations for the Van der Burgh coefficient K

and the dispersion at the seaward boundaryD0. Here we have

improved these equations by using an expanded database, in-

cluding new previously un-surveyed estuaries. Furthermore,

we derived a revised predictive equation for the dispersion

at tidal average condition and with the boundary situated

at the well identifiable inflection point where the estuary

changes from wave-dominated to tide-dominated geometry.

We used 89 salinity profiles in 30 estuaries (including seven

recently studied estuaries in Malaysia), and empirically de-

rived a range of equations using various combinations of di-

mensionless parameters. We split our data in two separated

data sets: (1) with more reliable data for calibration, and (2)

with less reliable data for validation. The dimensionless pa-

rameters that gave the best performance depended on the ge-

ometry, tidal strength, friction and the Richardson number.

The limitation of the equations is that the friction is generally

unknown. In order to overcome this problem, a coupling has

been made with the analytical hydraulic model of Cai et al.

(2012), which makes use of observed tidal damping and by

which the friction can be determined.

1 Introduction

Predictive methods to determine salinity profiles in estuaries

can be very useful to water resources managers, particularly

when applied to ungauged estuaries where only a minimal

amount of data are available. Before any decision is made

on collecting detailed field observations, it is useful to obtain

a first estimate of the strength and range of the salt intrusion

in the area of interest. Such estimate can be made if there

are predictive equations available to compute the longitudi-

nal salinity profile along the estuary. With reliable predic-

tive equations, water managers are able to estimate how far

salt water intrudes into the river system under different cir-

cumstances, and more importantly, how interventions may

change this situation.

The one-dimensional salt intrusion model of Savenije

(1993b) makes use of the Van der Burgh and dispersion equa-

tions to represent the longitudinal variation of the salinity.

The Van der Burgh and dispersion coefficient at the ocean

boundary are obtained by calibration of the simulated salin-

ity curve to observations. Savenije (1993b) established a pre-

dictive equation for each of these parameters, so that the lon-

gitudinal salinity distribution could be estimated when data

were lacking or to monitor the impact of interventions, such

as dredging or fresh water withdrawal. The predictive equa-

tions have subsequently been modified and tested by several

researchers including Savenije (2005), Nguyen and Savenije

(2006), Kuijper and van Rijn (2011) and Shaha and Cho

(2009).

In this paper, we shall revisit the predictive equations in the

light of new insights on how friction and estuary shape affect

tidal mixing by deriving a relationship between several gov-

erning parameters, making use of the salinity measurements

from 30 estuaries including seven new field observations in

previously ungauged estuaries in Malaysia that were sam-

pled through a consistent approach. As a result, we present

the fully revised and more accurate predictive equations for
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the Van der Burgh coefficient and for the boundary value of

the dispersion at a well identifiable location, based on tidal

average (TA) condition.

2 One-dimensional analytical salt intrusion model

The analytical one-dimensional salinity model developed

by Savenije (1993b, 2005, 2012), presented below, is used

to simulate the salinity profile in the estuaries studied. In

a steady-state situation, the partial temporal derivative in

the salt balance equation is zero. Considering a constant

fresh water dischargeQf [L3 T−1] and tidally averaged cross-

sectional area A [L3], the salt balance equation for tidal av-

erage (TA) condition can then be written as

S− Sf =−
A

|Qf|
D

dS

dx
, (1)

where S = S(x) [ML−3] and D =D(x) [L2 T−1] are the

salinity and dispersion at TA condition. Since discharge has

a negative value, the absolute value of Qf is taken in Eq. (1).

Sf [ML−3] represents the fresh water salinity. In 1972, Van

der Burgh derived an empirical equation for the TA disper-

sion making use of a large amount of salinity measurements

in the Rotterdam Waterway. The equation is then revisited

by Savenije (2005, 2012) who described the relation between

dispersion and salinity to be

dD

dx
=−K

|Qf|

A
, (2)

in which K [–] is defined as the Van der Burgh coefficient

(shape factor). Substituting Eq. (1) into Eq. (2), the differ-

ential equation for the tidally averaged longitudinal salinity

distribution is expressed as

dS

S− Sf

=
1

K

dD

D
. (3)

Integration of Eq. (3) leads to

S− Sf

S0− Sf

=

(
D

D0

)1/K

. (4)

The symbols S [M L−3] and D [L2 T−1] are the steady-state

salinity and dispersion coefficient at location x, while S0

[ML−3] and D0 [L2 T−1] are the salinity and dispersion at

the estuary mouth. In alluvial estuaries, the variation of the

estuaries shape over the distance upstream can be expressed

in an exponential function (Savenije, 2005, 2012; Nguyen

and Savenije, 2006; Zhang et al., 2011) as

A= A0 exp
(
−
x

a

)
(5)

B = B0 exp
(
−
x

b

)
, (6)

where a [L] and b [L] representing the cross-sectional area

and width convergence length, A0 [L2] and B0 [L] are the

cross-sectional area and width at the mouth, B [L] is the

width of estuary at distance x [L] (towards upstream). Sub-

stituting the exponential relation of Eq. (5) into Eq. (2) and

the integration gives

D

D0

= 1−β
[
exp

(x
a

)
− 1

]
(7)

with β =
Ka|Qf|

D0A0

. (8)

Here, β [–] is the dispersion reduction rate. At the salt intru-

sion limit (upstream) where only fresh water discharge ex-

ists, the dispersion coefficient becomes zero and x is equal to

the salt intrusion length L [L]. Hence, the intrusion length is

expressed by

L= a ln

(
1

β
+ 1

)
. (9)

Equations (4)–(9) are the general equations used to compute

the longitudinal salinity distribution.

3 Existing predictive equations

3.1 Van der Burgh’s coefficient

Van der Burgh’s coefficient K is also known as the “shape

factor” in the salinity curve (Savenije, 1993a). Based on

salinity measurements of 15 estuaries, Savenije found thatK

is strongly related to the geometry (the convergence length

a or b and the width B [L]) and its influence is more sig-

nificant at the tail of the salinity curve (upstream). More-

over, Savenije (1986, 1989) observed that every estuary had

its own characteristic value of K , ranging from zero to one.

Assuming that the Van der Burgh coefficient is not time de-

pendent, Savenije (1993b) established an empirical predic-

tive equation for K as

K = 0.16× 10−6 h
0.69
0 g1.12T 2.24

H 0.59
0 b1.10B0.13

0

, (10)

where h0 [L], H0 [L] and B0 [L] are the depth, tidal range

and width at the estuary mouth, respectively. The symbol T

[T] represents the tidal period, while b [L] is the width con-

vergence length, and g [L T−2] is the gravity acceleration.

More than 10 years later, Savenije (2005) and Nguyen and

Savenije (2006) made used of an expanded database, modi-

fied the predictive equation involving more parameters:

K = 0.3× 10−3

(
E

H

)0.65(
E

C2

)0.39

(1− δHb)
−2.0

(
b

a

)0.85(
Ea

A′

)0.14

. (11)

The symbolsE [L],H [L] andA′ [L2] refer to the tidal excur-

sion, tidal range and a boundary value for the cross-sectional

Hydrol. Earth Syst. Sci., 19, 2791–2803, 2015 www.hydrol-earth-syst-sci.net/19/2791/2015/



J. I. A. Gisen et al.: Revised predictive equations for salt intrusion model 2793

area, respectively. This relation had a correlation of 0.93 and

seemed very promising. However, as can be seen from the

equation, the Chezy roughness C [L0.5T−1] and damping δH
[L−1] had to be computed from tidal dynamics analysis.

3.2 Dispersion coefficient

Dispersion is not a physical parameter; it is rather the product

of averaging, representing the mixing of saline and fresh wa-

ter in an estuary as a result of residual circulation induced by

density gradients (gravitational circulation) and tidal move-

ment. In salt intrusion modelling, the definition of dispersion

is often unclear as it is scale dependent and not directly mea-

surable. The role of dispersion is only meaningful if it is re-

lated to the appropriate temporal and spatial scale of mixing,

which here we identify as the tidal period (timescale), tidal

excursion (longitudinal mixing length), estuary width (lateral

mixing length) and depth (vertical mixing length). A physi-

cally based description of the dispersion would allow the an-

alytical solution of the salt intrusion profile.

Dispersion due to gravitational circulation has been stud-

ied since 1957, as summarized by Fischer (1976). This type

of dispersion is also known as density-driven dispersion be-

tween the two main sources: sea water and fresh river water.

Schultz and Simmons (1957) were some of the first to relate

buoyancy to mixing in estuaries, whereby they introduced the

ratio between fresh water discharge and tidal volume to rep-

resent the degree of stratification. This ratio is also known as

the Canter–Cremers number N [–] as defined by Harleman

and Abraham (1966). The buoyancy effect or stratification in

an estuary can also be represented by the estuarine Richard-

son number Nr [–] which is the ratio of potential energy of

the buoyant fresh water to the kinetic energy of the tide:

Nr =
1ρ

ρ

gh

υ2

QfT

AE
, (12)

where ρ [ML−3] is the water density,1ρ [ML−3] is the den-

sity difference over the salt intrusion length, and υ [L T−1] is

the tidal velocity amplitude. The difference between N and

Nr lies in the densimetric Froude number Fd [–] which is

expressed as

Fd =
ρ

1ρ
.
υ2

gh
. (13)

Since then, researchers have tried to look for a relation be-

tween dispersion and estuarine numbers. Laboratory results

of WES flume (Van Rees and Rigter, 1969; Rigter, 1973),

Delft flume (Ippen and Harleman, 1961, 1967) and Daniels

(1974) indicated an agreement with the result of Fischer

(1972) in computing the salt intrusion length, using shear ve-

locity instead of mean velocity in the estuarine Richardson

number. Subsequently, the relationship between the disper-

sion and modified Nr also gave good correlation for all the

other cases (mostly flume experiments). Thatcher and Harle-

man (1972) suggested that the longitudinal dispersion is pro-

portional to the salinity gradient and included this in his one

dimensional analytical salt intrusion model, which later was

used by Fischer (1972) to model the vertical salinity and ve-

locity distribution. A disadvantage of all these methods was

that they did not account for convergence (implicitly assum-

ing an infinitely large convergence length) and that the tidal

excursion, as the most important mixing length scale, was

missing in the derivations.

Deriving the dimensionless dispersion coefficient from

scaling the steady-state salt balance equation, Savenije

(2005) developed the following empirical predictive relation

for the longitudinal dispersion at the estuary mouth for high

water slack (HWS):

DHWS
0 = 1400

h

a
Nr

0.5 (υE). (14)

The estuary shape was represented by the ratio of the av-

eraged depth h [L] to the convergence length a, while the

dispersion was made dimensionless by the tidal velocity am-

plitude and tidal excursion which was not considered in any

of the earlier studies. The applicability of these predictive

equations has been widely tested in many estuaries including

multi-channel estuaries.

Kuijper and van Rijn (2011) later modified the empiri-

cal equation using salinity measurements from 13 estuaries,

in which they introduced the inclusion of the dimensionless

friction (C2/g). The predictive equation was divided into two

depending on the types of channel – prismatic and conver-

gent:

convergent channel:

D0 = 60αc
√
π

(√
1ρgh0/ρ

υ

)(
C2

g

)(
|u|

υ

)0.5
E

a
υh0,

(15)

prismatic channel:

D0 = 6αc
√
π

(√
1ρgh0/ρ

υ

)(
C2

g

)(
|u|

υ

)0.5

υh0, (16)

where u [L T−1] is the fresh water velocity. These equations

can be used to calculate dispersion locally at any location.

The coefficient αc is an additional calibration coefficient with

the range of 0.7 to 1.3. From the result of Kuijper and van

Rijn (2011), it is observed that the αc coefficients for pris-

matic channels have values that are closer to 1.0, whereas for

convergent channels, the coefficients are scattered within the

range.

3.3 Salt intrusion length

Several researchers have tried to develop a general relation

for the salt intrusion length. The development of such pre-

dictive equations was done empirically based on a reason-

able amount of data. A pioneer effort was made by van der
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Burgh (1972), making use of prototype information from the

Dutch and German estuaries. His equation for the salt intru-

sion length as summarized by Savenije (1992, 1993b, 2005)

is as follows:

LTA
= 26π

h0

K
F−1.0N−0.5 (17)

with F =
υ
√
gh0

(18)

and N =
|Qf|T

Pt

=
A|u|T

AυT
·π =

|u|

υ
·π. (19)

In this equation, LTA [L] is the salt intrusion length at TA

situation, F [–] is the Froude number, and Pt [L3] is the tidal

flood volume. Fischer (1974) re-analysed the data by Rigter

(1973) and included the Darcy–Weisbach roughness and the

densimetric Froude number, resulting in

LLWS
= 17.7

h0

f 0.625
D

F−0.75
d N−0.25, (20)

where LWS denotes low water slack. It is important to note

here that Van der Burgh’s coefficient K is replaced by the

Darcy–Weisbach roughness fD = 8g/C2 [–] and F is repre-

sented by the densimetric Froude number Fd [–].

About 20 years later, Van Os and Abraham (1990) estab-

lished a similar equation with a slightly different coefficient:

LLWS
= 4.4

h0

fD

(
F−1

d N−1
)
. (21)

All these methods were based on flume data with prismatic

geometry. Savenije (1993b, 2005, 2012) who explicitly ac-

counted for channel convergence and the tidal excursion, de-

veloped a predictive equation for the salt intrusion length at

HWS. The reasoning was that the maximum salt intrusion

length occurs during HWS, which is most important for wa-

ter resources management. Based on Eq. (14), the equation

reads as

LHWS
= a ln

(
1400

hE0υ0

Ka2u0

N0.5
r + 1

)
, (22)

where υ0 [L T−1] is the tidal velocity amplitude at the mouth.

It is worth noting that Savenije follows Van der Burgh’s equa-

tion, with an additional shape indicator referring to the area

convergence length a.

Most of the empirical equations discussed above are based

on LWS except for Van der Burgh’s and Savenije’s meth-

ods which are based on TA and HWS, respectively. However,

they can easily be brought in agreement with each other by

adding E/2 or E to LHWS, respectively. Here, we aim to de-

velop a universal predictive equation for estimating the Van

der Burgh and dispersion coefficient for TA condition, which

can be applied in the salt intrusion model to predict the salin-

ity profile for any estuary worldwide under different tidal and

flood conditions.

 

Fig. 5.1 Global map showing the locations of the estuaries studied. 
  Figure 1. Global map showing the locations of the estuaries studied.

4 Methods

In this paper, the main focus is on the mixing mechanisms

which lead to longitudinal dispersion in estuaries: the tide-

and density-driven dispersion. Key parameters are devel-

oped based on measurable parameters of geometry, tidal hy-

draulics and fresh water discharge. In total 89 measurements

data of 30 estuaries worldwide have been used to develop the

predictive equations. Measurements in seven newly surveyed

estuaries were collected from 2011 to 2013 in Malaysia

(Gisen et al., 2015), whereas the remainder were compiled by

revisiting existing data available in the database of Savenije

(2005) and from professional reports. The locations of the

estuaries studied are displayed in Fig. 1.

Adjustments have been made to the geometry (see Fig. S1

in the Supplement) and salinity analysis for some of the estu-

aries to ensure consistency in the input data used. The entire

data set was split into two: reliable and less reliable data.

The reliable data set have been used to develop the predic-

tive equations, whereas the less reliable ones have been used

for verification purposes. The study was performed based on

Savenije’s (1993b, 2005, 2012) method for predicting K and

D0 with some modifications. The modifications include:

– All geometry and tide information used refers to the

well identifiable inflection point x1 as the boundary con-

dition.

– Analyses were performed on TA condition instead of

HWS, which is consistent with the geometry informa-

tion.

– Estuary roughness and the ratio of estuary width to river

width have been added in the predictive equations.

– The parameters chosen are mostly independent and easy

to observe without the need for prior calibration.

Although the predictive equations are based on the TA situ-

ation, one can still compute the salinity distribution for both

LWS and HWS by shifting the curve over E/2 in seaward

and landward direction.

Hydrol. Earth Syst. Sci., 19, 2791–2803, 2015 www.hydrol-earth-syst-sci.net/19/2791/2015/
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4.1 Selecting the dimensionless ratios

Revising the parameters selected by Savenije (1993b, 2005),

we found that the latter contained some parameters that re-

quired tidal dynamics analysis while one of the ratios was

not dimensionless. The following are the dimensionless ra-

tios selected for the revised predictive equation for the Van

der Burgh coefficient:

K = f

(
Bf

B1

,
g

C2
,
E1

H1

,
h1

b2

,
h1

H1

,
λ1

E1

)
, (23)

where Bf [L] is the river regime width (located upstream of

the tidal limit where the convergence of the river width is

modest and near constant), and λ1 = T

√
gh1/rs [L] is the

wave length at the inflection point with rs [–] being the stor-

age width ratio (defined as the ratio between storage width

and stream width). The symbols B1 [L], E1 [L], h1 [L], H1

[L] and b2 [L] represent the estuary width, tidal excursion,

averaged estuary depth, tidal range and width convergence

length at the inflection point x1. It is worth noting that the

roughness C =Kmh
1/6

1 was obtained through calibration us-

ing the tidal dynamics solution of Cai et al. (2012) which

makes use of observed tidal damping. In the above equation,

it can be seen that all parameters used have been defined at

the inflection point x1. It is also important to note that the

convergence length adopted is of the second reach and not of

the first part of the estuary. Generally the tidal indicators E

and H are defined at the mouth. In order to obtain the tidal

excursion and tidal damping at the inflection point, a projec-

tion can be made considering tidal damping as follows (Kui-

jper and van Rijn, 2011):

H1 =H0 · exp(δHx1) (24)

E1 = E0 · exp(δHx1) , (25)

where the damping factor δH also follows from the tidal dy-

namics simulation of Cai et al. (2012). The values of H1 and

E1 used in the dimensionless ratios represent the condition

of spring tide, where υ is considered to be close to 1 ms−1

(Bruun and Gerritsen, 1960; Pethick, 1984; Langbein, 1963).

This is to ensure that K is time independent representing

a general characteristic of an estuary. As a result, E essen-

tially reflects the tidal period as described in (see also Ta-

ble 1)

E =
υT

π
. (26)

For the dispersion coefficient, eight dimensionless ratios

have been selected with 18 different types of equations in-

cluding the one of Savenije (1993b, 2005) as benchmark. The

dispersion coefficient is represented in dimensionless form as

D1

υ1E1

= f

(
Nr1,

h1

a2

,
g

C2
,
H1

E1

,
h1

E1

,
λ1

E1

,
λ1

a2

,
B1

h1

)
(27)

with: Nr1 =
1ρ

ρ

gh1

υ2
1

QfT

A1E1

, (28)

where Nr1 [–] is the estuarine Richardson number with υ1

[L T−1] being the tidal velocity amplitude, both at the in-

flection point. It is important to note that the values taken

for E1 and H1 in the dispersion analysis are based on the

real-time data captured during measurements and the depth

is referring to the depth at the inflection point. In general,

the density difference between the saline and fresh water is

taken as (25/35)S0 kgm−3 and the fresh water density as

1000 kgm−3. The fresh water discharge data were adjusted

for the seven newly surveyed estuaries so that the runoff con-

tribution downstream of the gauging station was also con-

sidered in the analysis. Stepwise multiple regression analysis

has been used to identify the best combination of the dimen-

sionless ratios in predicting K and D1. The efficiency of the

established equations was examined by comparing the corre-

lation coefficientR2 and the standard error SE. The predicted

results calculated by the most suitable equations were plot-

ted against the calibrated values to evaluate their predictive

performance (see Fig. S2 in the Supplement).

4.2 Substitution of predictive equations in the salt

intrusion model

Since the predictive dispersion is computed at the inflection

point x1, reverse calculation has to be done to obtain the dis-

persion at the mouth. This is necessary to enable the simu-

lation of the longitudinal salinity distribution starting from

the mouth to the salt intrusion limit. Inverse integration from

x1 to x = 0 of Eq. (2) yields for the dispersion at the estuary

mouth:

DTA
0 =D

TA
1

{
1+βTA

rev

[
1− exp

(
−
x1

a1

)]}
(29)

with βTA
rev =

Ka1

αTA
1 A1

(30)

and αTA
1 =

DTA
1

|Qf|
, (31)

where βrev [–] is the reversed dispersion reduction rate,

whereas A1 [L2], D1 [L2 T−1] and α1 [L−1] are the cross-

sectional area, dispersion coefficient and mixing number at

the inflection point, respectively. It is important to note that

the convergence length a1 [L] applied in Eqs. (29) and (30)

is of the first section of the estuary. The relation between dis-

persion and salinity is then expressed by

www.hydrol-earth-syst-sci.net/19/2791/2015/ Hydrol. Earth Syst. Sci., 19, 2791–2803, 2015
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Table 1. Data used to develop the predictive equation for the Van der Burgh coefficient K .

No Estuary A1 a2 B1 Bf b2 h1 x1 H0 E0 T Km δH K K

[103] (km) (m) (m) (km) (m) (km) (m) (km) (h) (10−6 m−1) Cal Pre

(m2)

Reliable sets for calibration

1 Kurau 0.7 46 130 20 28 6.2 3.6 2.3 14 12 30 −6.30 0.40 0.35

2 Perak 9.2 37 2070 130 21 6.3 4.0 2.8 14 12 65 3.00 0.20 0.24

3 Bernam 4.5 25 1270 45 17 5.3 4.3 2.9 14 12 70 1.70 0.20 0.22

4 Selangor 1.0 13 270 35 13 3.7 2.8 4.0 14 12 40 −3.70 0.34 0.42

5 Muar 1.6 100 280 55 31 8.2 3.9 2.0 14 12 45 −2.68 0.25 0.32

6 Endau 2.0 44 310 72 44 6.5 4.8 1.9 14 12 45 −1.30 0.40 0.33

7 Maputo 4.7 16 1150 100 16 4.1 5.1 3.3 14 12 58 2.00 0.38 0.32

8 Thames 10.9 23 780 50 40 8.2 31.0 5.3 14 12 45 1.10 0.20 0.24

9 Corantijn 26.8 64 5000 400 48 6.7 18.0 3.1 14 12 40 −1.70 0.21 0.27

10 Sinnamary 1.1 39 470 95 12 3.9 2.7 3.3 14 12 40 −5.00 0.45 0.46

11 MaeKlong 1.1 150 240 150 150 4.6 3.2 3.6 14 12 40 −4.20 0.30 0.48

12 Lalang 2.9 167 360 130 94 10.3 0.0 2.6 28 24 84 −0.54 0.65 0.57

13 Limpopo 1.1 115 180 90 115 6.3 20.0 1.9 14 12 43 1.70 0.50 0.38

14 Tha Chin 1.4 87 260 45 87 5.6 5.0 2.6 14 12 50 −5.50 0.35 0.31

15 ChaoPhya 3.1 130 470 200 130 6.5 12.0 3.4 28 24 65 −2.20 0.75 0.71

16 Edisto 5.2 15 1250 60 15 4.1 2.0 3.2 14 12 30 −8.80 0.35 0.31

17 Elbe_Flanders 27.3 70 3040 350 80 8.5 33.0 4.7 14 12 32 2.00 0.30 0.27

17a Elbe_Kuijper 46.0 66 4500 350 66 10.2 0.0 4.7 14 12 32 2.00 0.30 0.25

17b Elbe_Savenije 43.0 66 2880 350 50 11.7 0.0 4.6 14 12 32 2.00 0.30 0.28

18 Pangani 0.9 15 270 35 15 3.2 3.1 4.2 14 12 42 10.00 0.60 0.41

19 Linggi 1.5 8 320 25 13 3.2 0.5 2.0 14 12 30 −14.00 0.30 0.36

20 Landak 2.0 60 230 100 60 8.7 0.0 1.6 28 24 45 −6.70 0.60 0.69

Less reliable sets for verification

213,4 Delaware 255.0 41 37 655 120 42 6.4 0.0 1.8 14 12 55 0.65 0.22 0.09

222,3 Westerschelde 150.0 27 16 000 50 27 9.4 0.0 4.0 14 12 46 2.80 0.25 0.10

231,2,4 Pungue 14.5 19 5200 50 19 2.8 0.0 6.7 14 12 31 −8.50 0.30 0.22

242 Incomati 1.1 40 380 22 40 2.8 15.0 3.3 14 12 56 −19.90 0.15 0.34

252,4 Solo 2.1 226 225 95 226 9.2 0.0 1.8 28 24 31 3.00 0.60 0.64

262,4 Eems 120.0 19 31 623 55 19 3.8 0.0 3.6 14 12 31 −0.70 0.30 0.11

272,3 Tejo 100.0 13 20 000 180 13 5.0 0.0 3.6 14 12 56 2.20 0.90 0.16

282,4 Rompin 0.8 110 140 50 110 6.1 19.0 2.5 14 12 15 −33.40 0.30 0.64

292,4 Ulu Sedili Besar 0.7 38 140 35 49 4.1 4.3 2.5 14 12 30 −25.50 0.30 0.45

301,3 Gambia 35.7 96 3700 110 100 8.8 33.0 1.83 14 12 35 −1.00 0.60 0.16

Note: 1 Non-steady state (NSS); 2 uncertain discharge (UQ); 3 non-alluvial (NA); 4 information lacking (IL).

STA
− STA

f

STA
0 − S

TA
f

=

(
DTA

DTA
0

) 1
K

0≤ x ≤ x1 (32)

STA
− STA

f

STA
1 − S

TA
f

=

(
DTA

DTA
1

) 1
K

x > x1, (33)

where S0 [ML−3] and S1 [ML−3] refer to the salinity at the

estuary mouth and the inflection point, respectively.

Substituting the tidally average dispersion coefficient into

the general form of the salt intrusion length of Savenije

(1993b, 2005) yields

LTA
= x1+ a2 ln

(
1

βTA
1

+ 1

)
(34)

with βTA
1 =

Ka2

αTA
1 A1

. (35)

Note that all parameters used in these equations refer to the

inflection point. We obtain the salinity profile at HWS and

LWS by moving the salinity curve over E/2 in the upstream

and downstream direction. Similarly, the maximum salt in-

trusion length can be obtained by shifting the intrusion length

at TA in the landward direction by half of the tidal excursion

at the mouth as

LHWS
= LTA

+
E0

2
(36)
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and the LWS intrusion length by moving the tidal excursion

seaward:

LLWS
= LTA

−
E0

2
. (37)

5 Data

Data were divided into two categories: reliable and less reli-

able. There are 47 measurements grouped under the reliable

data set, and 38 measurements under the less reliable data

set (see Table S2 and S3 in the Supplement). This distinction

was made based on the following criteria.

Criteria for classifying estuaries as reliable:

– the estuary is generally in steady-state condition;

– the fresh water discharge is estimated, observed or mea-

sured correctly;

– the estuary is alluvial and undisturbed;

– complete measurement data for tidal dynamics and

salinity analysis are available.

Criteria for classifying estuaries as less reliable:

– The estuary is not in steady state particularly during

low river discharge. This depends on the ratio of the

timescale of system response to the timescale of dis-

charge reduction (see Savenije, 2012) (NSS).

– The estimation of the fresh water discharge is uncertain

(UQ).

– The estuary may not be alluvial (e.g. dredged, modified

or constricted by rocky banks) (NA).

– Information on tidal dynamics and salinity is lacking or

unclear (IL).

The estuaries that fall under category NSS, UQ, NA and IL

are listed in Table 1. It is worth noting that only the reliable

set is used in regression analysis. The less reliable ones are

merely plotted for verification purpose.

6 Results and analysis

6.1 Predictive equation for the Van der Burgh

coefficient K

Results from the stepwise multiple regression analyses show

that the best combinations of the dimensionless ratios to rep-

 

Fig. 5.4 Performance of the predictive equation for the Van der Burgh coefficient against the 
calibrated values. 
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Figure 2. Performance of the predictive equation for the Van der

Burgh coefficient against the calibrated values.

resent the Van der Burgh predictive equation are

K = 8.03× 10−6

(
Bf

B1

)0.30( g
C2

)0.09
(
E1

H1

)0.97

(
h1

b2

)0.11(
H1

h1

)1.10(
λ1

E1

)1.68

(38)

or

K = 151.35× 10−6

 B0.30
f

H 0.13
1

T 0.97

B0.30
1

C0.18υ0.71
1

b0.11
2

h
0.15
1 r0.84

s

 , (39)

where Eq. (39) is the simplified form. The correlation coef-

ficient R2 and the standard error SE obtained for predictive

K equation is 0.72 and 0.11, respectively. If we had used the

cross-sectional area convergence a2 instead of b2, then the

correlation would be slightly poorer. Hence the width con-

vergence is a better indicator, which is fortunate because it

is easier to determine. From the equation, we can see that

the parameters that have the most influence on the Van der

Burgh coefficient is the tidal period, storage width ratio and

tidal velocity amplitude which have the power of 0.93, 0.84

and 0.71, respectively. The importance of the friction appears

to be minor, which is also fortunate as C is not directly ob-

servable. The estuary to river width ratio shows higher power

than the convergence length, which indicates that the width is

a better shape indicator. Result from the regression is shown

in Table S4 (supplementary material). Finally, we should re-

alize that 0≤K ≤ 1 according to Savenije (1993a). For pris-

matic channels where b2 becomes infinity, K approaches

zero, implying constant dispersion.

Figure 2 shows the plot of the predicted K against the cal-

ibrated value. All the reliable data points appear to fall close

to the perfect agreement line. About half the unreliable data

points were outliers particularly the Gambia (30) and Tejo

(27) estuaries which lie much further away from the per-

fect agreement line. This is not strange in the sense that the

Tejo Estuary is not entirely alluvial, and its narrow and deep

mouth caused by a rock outcrop formation turns it into a fjord
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type estuary. As for the Gambia, it is an unsteady-state estu-

ary. Nevertheless, for the rest of the outliers we believe that

they would fit better if good data had been available. The re-

sults are summarized in Table 1.

6.2 Predictive equation for the dispersion coefficient D

In this study, 18 combinations of the dimensionless ratios

were established by a multiple regression method of which

the results are displayed in Table S1 (equations) and Fig. S2

in the Supplement (correlations and standard error). By ob-

serving the exponent, it can be seen that the power of the

estuarine Richardson number Nr varies little, indicating the

clear correlation with Nr compared to the other parameters.

The next parameter that has a high exponent is the dimen-

sionless roughness, of which the inclusion improves the cor-

relation. As for the rest of the dimensionless ratios, it appears

that the contribution is minimal. Hence, the best equations

chosen for further analysis are

DTA
1

υ1E1

= 0.1167N0.57
r (40)

DTA
1

υ1E1

= 0.3958N0.57
r

( g
C2

)0.21

(41)

DTA
1

υ1E1

= 1.9474
(
Nr ·

g

C2

)0.51

. (42)

More information about the equations tested is provided in

the Supplement (Table S1). Equations (40), (41) and (42) cor-

respond with Eqs. (R2), (R4) and (R9) in Table S1.

It is interesting to note that the performance of the bench-

mark equation of Savenije (1993b, 2005) (Eq. R1) is rather

poor, with R2 and SE of 0.67 and 0.33. These significant dif-

ferences may be caused by the homogenization of the input

information (e.g. geometry), and the use of selective data for

calibration. With more or less equal performance, it is de-

cided that the simplest equation with the best performance is

the most attractive one. Therefore, we conclude that Eq. (41)

is the best to predict the tidal average dispersion coefficient

at x1. This is also theoretically the most attractive, since lab-

oratory experiments of the WES flume (Van Rees and Rigter,

1969; Rigter, 1973), Delft flume (Ippen and Harleman, 1961,

1967) and Daniels (1974) have demonstrated that both Nr

and the roughness are key parameters. Nevertheless, if the

Chezy roughness is unknown, then Eq. (40) can be applied.

Equations (40), (41) and (42) have an R2 of 0.84, 0.86 and

0.80 with SE of 0.14, 0.13 and 0.15, respectively. We can

also conclude that although estuary shape is the key in defin-

ing K , the dispersion boundary condition D1 appears to be

determined by hydraulic parameters. The detailed results ob-

tained from the regressions are shown in Table S5 (Supple-

ment).

Figure 3 displays the plots of the predicted D1 and α1

against the calibrated values for both the reliable and less

reliable data sets using Eqs. (40), (41) and (42). Here, it is

shown that all the reliable data points fall nicely within the

range of a factor 1.5. Some of the less reliable data points are

also within or near the range except for several obvious out-

liers such as the Delaware, Schelde, Pungue and Tejo. This

is because the Pungue is often in an unsteady-state condi-

tion, while the Schelde is dredged, and the Tejo and Delaware

are not completely alluvial. In addition, the doubt on the ac-

curacy of the discharge data is also one of the factors con-

tributing to poor results. It can be seen that all the predic-

tive equations selected have underestimated the values of the

dispersion coefficient for the outlying data points, indicating

a possible underestimation of the river discharge.

Comparing the outliers in both plots, it appears that the un-

reliable data are distributed closer to the reference lines if the

dispersion is represented in term of the mixing number. This

implies that the fresh water discharge is partly to blame for

the discrepancy. The data used for the regression and results

of the predicted dispersion are tabulated in Table S2 in the

Supplement.

6.3 Modified predictive equation for maximum salt

intrusion length LHWS

Comparison between the predicted and calibrated salt intru-

sion length has been done for HWS condition instead of TA.

This is because the salt intrudes furthest into the river system

at HWS, and the maximum intrusion is the information water

managers are most interested in. Substituting the predictive

dispersion Eqs. (40), (41) and (42) into the general form for

salt intrusion length yields

LHWS
= x1+ a2 ln

(
0.1167

E1υ1

Ka2u1

N0.57
r + 1

)
+
E0

2
(43)

LHWS
= x1+ a2 ln

(
0.3958

E1υ1g
0.21

Ka2u1C
0.42

N0.57
r + 1

)
+
E0

2
(44)

LHWS
= x1+ a2 ln

(
1.9474

E1υ1g
0.51

Ka2u1C
1.02

N0.51
r + 1

)
+
E0

2
, (45)

where u1 represents the driver flow velocity at the inflection

point. Figure 4 shows the performance of these equations in

predicting the maximum salt intrusion length. In the plots

using Eqs. (43), (44), and (45), all data points fall within the

range of factor 1.5 except the Solo Estuary. The list of data

and the results are summarized in Table S3 in the Supple-

ment. It appears that the predictive equations overestimated

the intrusion length in the Solo Estuary. This may be due to

the nearly prismatic shape of the channel which has a very

long convergence length of 226 km.

6.4 Longitudinal salinity profiles

The salinity curve can be computed by applying Eqs. (32)

and (33) with the different dispersion calculated by each

of the predictive measures developed. Considering the sub-

stantial amount of salinity measurements available, only the
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Fig. 5.6 Performance of the predictive equations for the dispersion coefficient (left) and 
mixing number (right) against calibrated values. 
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Figure 3. Performance of the predictive equations for the dispersion coefficient (left panel) and mixing number (right panel) against calibrated

values.

 

 

 
 

Fig. 5.7 Comparison between predicted and calibrated maximum salt intrusion LHWS for 
Equations (43), (44), and (45). 
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Figure 4. Comparison between predicted and calibrated maximum salt intrusion LHWS for Eqs. (43), (44) and (45).

www.hydrol-earth-syst-sci.net/19/2791/2015/ Hydrol. Earth Syst. Sci., 19, 2791–2803, 2015



2800 J. I. A. Gisen et al.: Revised predictive equations for salt intrusion model

 

 

Fig 5.8 Calibrated (solid lines) and predicted (dashed lines) salinity curves compared to 
observations (symbols) for HWS, TA and LWS in the 7 newly surveyed Malaysian estuaries. 
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Figure 5. Calibrated (solid lines) and predicted (dashed lines) salinity curves compared to observations (symbols) for HWS, TA and LWS in

the seven newly surveyed Malaysian estuaries.

salinity profiles of the seven newly surveyed estuaries are dis-

cussed. Plots of all salinity profiles are available as electronic

material at the website http://salinityandtides.com. Figure 5

demonstrates the performance of the simulated longitudinal

salinity distribution calibrated against the measurement data,

and the salinity profile obtained from the predictive equations

of K and D1.

From the salinity curve comparison, it appears that all the

predictive equations did not perform very well for Kurau and

Bernam estuaries. This may be caused by the uncertainty in

discharge data. The Kurau and Bernam discharge calcula-

tions were based on the discharge observed in a small part of

the catchments of about 12 and 20 % of the total area, respec-

tively (Gisen and Savenije, 2015). Thus, it is possible that we

may have underestimated the discharge draining into the Ku-

rau Estuary, and overestimated the one for Bernam Estuary.

It is also interesting to note that Eq. (42) works better in pre-

dicting the salinity distribution for some of the estuaries such

as the Perak, Linggi and Endau. As for most of the cases,

Eq. (41) appears to give the best fit. The difference in the

performance of these equations suggests that there is a pos-

sibility that the equations are subject to improvement if more
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reliable measurements are available. Thus, it is appropriate

to retain the three Eqs. (40), (41), and (42) for consideration.

7 Discussion

Before Savenije’s (1993a) effort to develop predictive equa-

tions for the Van der Burgh and dispersion coefficient, these

parameters could only be obtained by calibration. Without

site measurements, it was impossible to make any estimate

of the salinity distribution along an estuary. The predictive

equations of Savenije (1993a, 2005) were able to estimate

the value ofK andD reasonably well in reference to the cal-

ibration data. However, after re-evaluating and re-analysing

the available data, we found that the equations do not work

as well for all estuaries.

In this study, we have collected an additional 32 salin-

ity profiles from 16 new estuaries for consideration in the

analysis. Moreover, the measurements were split into two

data sets to make sure that only the reliable data were used

for establishing the revised equations. In previous work, the

data were not split. The selection process is important so

that the results are not influenced by incomplete or uncer-

tain data. Re-examining the available measurements from

the old database ensures that all data used are accessible

and consistent. The new compilation also provides a sec-

tion containing important information about each measure-

ment (see electronic additional material – salinity worksheet

at http://salintyandtides.com).

Another important modification in this work is the change

in the selected boundary condition. In this research, we de-

cided to process the cross-sectional data in reference to the

TA situation, whereas previous methods were based on HWS

and LWS, which led to inconsistencies because the geome-

try during low and high water can be different from TA sit-

uation. Moreover, in this study we fixed the location of the

downstream boundary at the inflection point x1 and not at

the estuary mouth (adopted by all earlier researchers). The

reasons and advantages of moving the downstream boundary

to the inflection point are:

– to eliminate the difficulty of determining the exact loca-

tion of the estuary mouth;

– to reduce the effect from wind and waves;

– to eliminate the dilemma of which geometry parameters

to use in the predictive equation.

In Savenije’s (1993a, 2005) and Kuijper and van

Rijn’s (2011) predictive model, the cross-sectional area

convergence length applied to calculate the salt intrusion

length was the weighted value obtained from an iteration

process. With the change of the downstream boundary to x1,

this process is no longer needed and the predictive measures

are more consistent.

The new set of dimensionless ratios proposed in this study

to establish the predictive equation for K contains mostly

measurable independent parameters. The selection was made

based on the existing equations, considering only the param-

eters that are easy to obtain. The ratio (1−δHb) has been re-

moved from the equation because the tidal damping changes

from spring to neap tide. Furthermore, the tidal level tends to

increase or decrease when it moves upstream and the changes

are highly influenced by fresh water discharge. The river to

estuary width ratio has been added in the new equation as an

additional geometry indicator besides the depth and conver-

gence length. This ratio appeared to have great influence on

K .

For the predictive dispersion equation, the ratio of the

depth to the convergence length is no longer important, but

the longitudinal length scale E and velocity amplitude υ

remain important in the scaling of D1. The elimination of

h/a allows the new equation to be applied also in prismatic

channels. In the old equation, when a2 approaching infinity,

the calculation became invalid. Since Kuijper and van Rijn

(2011) suggested that the friction parameter is related to the

vertical mixing, g/C2 has been included in this new equation

and it indeed improved the correlation. Savenije (2005) did

not consider roughness in his predictive equation for disper-

sion.

Although some improvements and simplicity have been

introduced in this study, there are limitations in using the

new equations. Until now, we have only taken into account

single-network estuaries. Furthermore, it has implicitly been

assumed that no water is entering or leaving the tributaries

in the estuary region. If there are large tributaries or large ar-

eas draining on the estuary, then these should be accounted

for. From the plot of Van der Burg’s coefficient, we found

that the performance in predicting K is rather low. This indi-

cates that the equation has to be used with caution. Another

constraint in using the developed equations is the friction fac-

tor. The Chezy roughness is not directly measurable and can

only be obtained by calibration using a tidal dynamics model.

However, if this information is impossible to get, it can be

neglected (the correlation only decreases to 0.70 for the pre-

dictive equation without roughness). If cross-sectional area

information is lacking, then b1 can be used to replace a1. For

the depth estimates, one can make use of the method pre-

sented by Gisen and Savenije (2015) which links h1 to the

bankfull discharge.

8 Conclusions

Calibrating K and D1 is only possible if measurement of the

salinity distribution is available. In a situation where data are

limited, a predictive equation is required to estimate the de-

sired variables. A good predictive equation should be simple

(parameters can be easily measured) and efficient. The pre-

dictive equations established in this study consist of mostly
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measurable independent parameters. Options are suggested

for the case in which data are very limited. The adjustment

of the downstream boundary to the inflection point has clari-

fied the selection of the right geometry parameters to be used

and the position of the downstream boundary.

The analysis based on tidal average conditions enables the

entire process to be carried out consistently, whereby model

and data errors can be reduced. The obtained salt intrusion

can easily be converted from TA to HWS by adding half of

the tidal excursion. The performance of the predictive equa-

tion for K is rather weak with a R2 value of 0.72 but still

acceptable. For the dispersion, the correlation of 0.86 seems

very promising. All the reliable data points fall within a fac-

tor of 1.5 for both the predicted K and D1 results. Some less

reliable ones are also within this range. This indicates that

the predictive equations developed are appropriate to be ap-

plied in getting a first estimate of K and D1. Subsequently,

the longitudinal salinity distribution in an estuary can be es-

timated.

Hence, these tools can be very helpful for water managers

and engineering to make preliminary estimates on the salt

intrusion in an estuary of interest and to analyse the impact

of interventions. Finally, it is recommended to collect more

reliable measurements to strengthen the development of the

empirical relationships. New data are also required for vali-

dation purposes.

The Supplement related to this article is available online

at doi:10.5194/hess-19-2791-2015-supplement.
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