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Abstract. An approach is proposed to assess hydrological

simulation uncertainty originating from internal atmospheric

variability. The latter is one of three major factors contribut-

ing to uncertainty of simulated climate change projections

(along with so-called “forcing” and “climate model” uncer-

tainties). Importantly, the role of internal atmospheric vari-

ability is most visible over spatio-temporal scales of wa-

ter management in large river basins. Internal atmospheric

variability is represented by large ensemble simulations (45

members) with the ECHAM5 atmospheric general circula-

tion model. Ensemble simulations are performed using iden-

tical prescribed lower boundary conditions (observed sea sur-

face temperature, SST, and sea ice concentration, SIC, for

1979–2012) and constant external forcing parameters but

different initial conditions of the atmosphere. The ensem-

ble of bias-corrected ECHAM5 outputs and ensemble aver-

aged ECHAM5 output are used as a distributed input for the

ECOMAG and SWAP hydrological models. The correspond-

ing ensembles of runoff hydrographs are calculated for two

large rivers of the Arctic basin: the Lena and Northern Dvina

rivers. A number of runoff statistics including the mean and

the standard deviation of annual, monthly and daily runoff,

as well as annual runoff trend, are assessed. Uncertainties

of runoff statistics caused by internal atmospheric variability

are estimated. It is found that uncertainty of the mean and the

standard deviation of runoff has a significant seasonal depen-

dence on the maximum during the periods of spring–summer

snowmelt and summer–autumn rainfall floods. Noticeable

nonlinearity of the hydrological models’ results in the en-

semble ECHAM5 output is found most strongly expressed

for the Northern Dvina River basin. It is shown that the aver-

aging over ensemble members effectively filters the stochas-

tic term related to internal atmospheric variability. Simulated

discharge trends are close to normally distributed around the

ensemble mean value, which fits well to empirical estimates

and, for the Lena River, indicates that a considerable portion

of the observed trend can be externally driven.

1 Introduction

In river basin hydrology, two groups of approaches are usu-

ally applied to assess the impact of changing climate on

river runoff. The first group of empirical (data-based) ap-

proaches is based on treatment of available hydrometeoro-

logical records and includes, for instance, time series analy-

sis of runoff characteristics (see reviews presented by Lins,

2005; Shiklomanov, 2008; Bates et al., 2008), analysis of

these characteristics’ sensitivity to climate variations, par-

ticularly by using “elasticity” indices (Sankarasubramanian

et al., 2001; Vano and Lettenmaier, 2014), analysis of re-

lationships between spatial and temporal runoff variations

(“trading space for time”) (Peel and Blöschl, 2011; Singh et

al., 2011), etc. The second group includes approaches that

are based on hydrological models forced by assigned sce-

narios of hydrometeorological inputs. These scenarios are
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constructed either by a transformation of available series

of meteorological observations – for example, “delta-change

transformation” (Chiew et al., 2009; Motovilov and Gelfan,

2013), or “power transformation” (Driessen et al., 2010) –

or by using the global (GCM) and regional (RCM) climate

models’ simulation output (see reviews in Praskievicz and

Chang, 2009; Chiew et al., 2009; Peel and Blöschl, 2011;

Teutschbein and Seibert, 2010). The latter approach synthe-

sizes up-to-date hydrological models with climate models

and provides a better basis to take into account various physi-

cal mechanisms of a hydrological system response to the cli-

mate change impacts. However, application of this approach

is hampered by a number of limitations: first of all, the in-

consistency between spatio-temporal resolution of climate

models and characteristic scales of hydrological processes

in river basins, which differ by several orders of magnitude,

both in time and space (Blöschl and Sivapalan, 1995). An-

other serious limitation is related to climate models’ capabil-

ity to accurately reproduce variability and the mean state for

many meteorological characteristics, especially for precipita-

tion (see, for example, Kundzewicz et al., 2008; Kundzewicz

and Stakhiv, 2010; Anagnostopoulos et al., 2010). An explo-

sive increase in computing resources that occurred during the

last years, development of measuring technologies and meth-

ods of data processing, as well as numerical methods, favor

the improvement of climate models, a significant increase in

their productivity and spatial resolution, and better simula-

tion of regional climate (Flato et al., 2013). This promotes a

wider usage of the model-based approach for assessment of

the climate change impact on river runoff. However, a signif-

icant uncertainty in these assessments still remains, and their

interpretation should be considered with caution, especially

for practical applications in the field of long-term water man-

agement (Wilby, 2010; Kundzewicz and Stakhiv, 2010).

Part of the total uncertainty inherent to assessments of cli-

mate change hydrological consequences is caused by lim-

itations of our knowledge about the dynamics of climatic

and hydrological systems, the nature of their interrelation-

ships, insufficiency of measured data, etc., and, potentially,

can be reduced with increasing understanding of these sys-

tems (epistemic uncertainty). Another part of this uncertainty

is a structural one, which does not depend on acquiring new

knowledge and data and is an inherent property of these sys-

tems. Evaluation of this structural, inherent uncertainty im-

pact is the key issue to realize the potential to obtain reliable

assessments of climate-driven changes in river runoff (see,

e.g., the discussion in Koutsoyiannis et al., 2009).

Uncertainty of assessments of hydrological response to

climate change is primarily caused by uncertainty of the fu-

ture climate projections. The latter is related to three indepen-

dent factors (Hawkins and Sutton, 2009; Deser et al., 2012).

The first, so-called “response uncertainty” or “model uncer-

tainty”, is caused by differences in climate response to identi-

cal external (e.g., anthropogenic) forcing in different climate

models. The model uncertainty arises from structural differ-

ences (in particular spatial resolution) between climate mod-

els, different parameterizations of physical processes, numer-

ical methods, etc., related to scientific advances in under-

standing and description of a climate system, and therefore

can be potentially reduced. The second factor is so-called

“scenario uncertainty” and represents uncertainties related

to prescribed scenarios of future anthropogenic greenhouse

and aerosol emissions. The third factor is the internal, nat-

ural variability of a climate system (or so-called “climatic

noise”), which exists also in the absence of external forc-

ing and results from the stochastic nature of atmospheric dy-

namics, its instability to small perturbations, and also inter-

nal (often nonlinear) modes of variability in the atmosphere

and the ocean on different timescales and spatial scales. Cli-

matic noise is a major source of physically based structural

uncertainty in climate change projections and it determines

a lower limit of uncertainty that can be reached in climate

system modeling (Braun et al., 2012).

The major components of climatic noise are stochastic

fluctuations in the atmosphere and the ocean. Large heat ca-

pacity, relatively low ocean circulation velocities (relative

to the atmosphere) and the existence of internal oscillatory

modes with (quasi) periodicity ranging from years to cen-

turies (Semenov et al., 2010; Latif and Keenlyside, 2011;

Latif et al., 2013) provide a certain predictability of oceanic

processes. This so-called “second kind of predictability”,

particularly predictability on a timescale of about 10 years

that has recently been found to be potentially approached

by modern climate models, is currently an object of intense

research (e.g., Latif and Keenlyside, 2011). Another source

of uncertainty is caused by internal atmospheric variability

and related to stochastic dynamics of atmosphere, instabil-

ity of atmospheric circulation, and small perturbation of pa-

rameters. Commonly known as the “butterfly effect”, this

kind of instability was illustrated in the classical work by

Lorenz (1963). Such an uncertainty determines a time limit

for a weather forecast that does not exceed 2 weeks and leads

to essentially different realizations of the atmospheric state

beyond this limit given the same boundary and external forc-

ing but small (within the measurement error) changes in ini-

tial conditions. Hereinafter, we use the term “climatic noise”

to refer only to this kind of uncertainty caused by internal

atmospheric variability. Our study focuses on transformation

of the climatic noise by hydrological models and its impact

on the uncertainty of simulated runoff. Note that the role

of the climatic noise is most important on timescales from

years to first decades and on regional spatial scales (Räisä-

nen, 2001; Hawkins and Sutton, 2009), i.e., on the spatio-

temporal scales of water resource management in large river

basins.

Analysis of uncertainty related to internal atmospheric

variability is based on ensemble climate model simulations

with identical external forcing and different initial conditions

(“multireplicate ensemble”). This approach results in an en-

semble of realizations or trajectories of climate system states
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that differ from each other solely due to internal variability

(Yip et al., 2011; Braun et al., 2012; Deser et al., 2012; San-

som et al., 2013; Semenov, 2014). To obtain reliable statisti-

cal assessments of variability within an ensemble, it is neces-

sary to calculate several dozens of simulation trajectories as a

minimum. Such calculations using GCMs require large com-

putational resources. Simulations with climate models partic-

ipating in the World Climate Research Programme (WCRP)

Coupled Model Intercomparison Project Phase 3 and Phase 5

(CMIP3 and CMIP5) (Meehl et al., 2007; Taylor et al., 2012)

used for the Fourth and Fifth IPCC assessment reports, re-

spectively, include just a few (usually not exceeding ten) tra-

jectories for any particular model (Peel et al., 2015). This

fact is partially responsible for the absence, till recently, of

studies of climate noise effect on assessments of uncertainty

in river runoff climate-driven changes. The first publications

in this field appeared, to our knowledge, in 2014 (Seiller and

Anctil, 2014; Lafaysse et al., 2014; Peel et al., 2015).

Seiller and Anctil (2014) constructed climate scenarios us-

ing the Canadian GCM (CGCM) with a spatial resolution of

3◦× 3.75◦ followed by dynamic downscaling of the calcu-

lated data to a local scale with a resolution of 45 km. An en-

semble of realizations calculated under different initial con-

ditions for simulating climate system internal variability con-

sisted of five members. The realizations were assigned as an

input for 20 conceptual runoff models with lumped parame-

ters to calculate river runoff in a small, around 30 km2, basin

in the southwest of Canada. The authors demonstrated that

the uncertainty of river runoff assessments caused by climate

noise exceeds the uncertainty of hydrological models.

To increase the climate scenario ensemble size, which

simulates internal variability, Lafaysse et al. (2014) used

stochastic generators and assigned the constructed stochas-

tic scenarios as an input into the ISBA/Durance land sur-

face model. A similar approach was presented by Peel et

al. (2015) to increase the number of climatic trajectories sim-

ulated by five GCMs. The authors developed a stochastic

procedure to generate time series of monthly meteorological

variables with statistics close to those obtained from GCM

simulations. The generated 100 of 250-year meteorological

time series were used to force the conceptual PERM hydro-

logical model.

On the one hand, the use of stochastic generators for cal-

culating a large ensemble of climate system trajectories is a

much more efficient (from the computational point of view)

approach to assessing climate-driven changes in river runoff

when compared to simulation of GCM realization ensembles

(Hawkins and Sutton, 2009; Yip et al., 2011; Deser et al.,

2012; Sansom et al., 2013). On the other hand, the applied

stochastic procedures create an additional and ambiguously

interpreted source of uncertainty.

In this paper, we have tried to assess, using physically

based hydrological models, the uncertainty in simulated river

runoff characteristics of large river basins taking into con-

sideration internal variability of the atmosphere. The latter

was simulated in a large (45 members) ensemble of GCM

realizations of the current climate period (1979–2012) ini-

tialized under different initial conditions but using iden-

tical boundary forcing (sea surface temperatures and sea

ice concentrations). Case studies were carried out for two

large watersheds of the Arctic basin: the Lena River (catch-

ment area F = 2 488 000 km2) and the Northern Dvina River

(F = 357 000 km2). We emphasize that our study focuses on

present-day climate variations with a relatively smaller con-

tribution of the external forcing compared to studies con-

sidering future climate projections to the end of the twenty-

first century (e.g., Déqué et al., 2007; Hagemann et al., 2009).

On such timescales, the impact of internal variability dimin-

ishes compared to other uncertainty sources.

The paper is structured as follows. Section 2 presents

the main physiographic and climatic characteristics of the

basins under consideration. Furthermore, a short description

of the used hydrological models ECOMAG and SWAP can

be found, as well as the results of their validation against hy-

drological observations in the basins under study. Section 4

contains a brief description of atmospheric general circula-

tion model (AGCM) ECHAM5, and the design and results

of numerical experiments on simulating internal atmospheric

variability. In Sect. 5, runoff characteristic uncertainty caused

by internal atmospheric variability is analyzed on the basis of

the simulated runoff ensemble. Uncertainties of the mean and

the variance of the river discharge averaged over different

time intervals (calendar day, calendar month, year), as well

as the uncertainty in the long-term trend of the simulated an-

nual discharge, are emphasized. The last section summarizes

the results and presents the main conclusions.

2 Study basins and data sets

The case studies were carried out for two Arctic river basins:

the Lena River and Northern Dvina basins. The Lena River

is one of the largest rivers in the Arctic that flows northward

from mid-latitudes to the Arctic Ocean (Fig. 1), and it con-

tributes about 15 % of total freshwater flow into the ocean.

The basin occupies an area of 2 460 000 km2 extending from

103 to 142◦ E and from 52 to 74◦ N. The length of the basin

from the south to the north is more than 2400 km; its av-

erage width is about 2000 km. There are four main types

of landscapes within the Lena River basin: Arctic wilder-

ness, tundra, forest tundra and taiga forests, which occupy

almost 70 % of the basin area. The main part of the basin

has a mountain relief with heights ranging in general from

600 to 2000 m (reaching 3500 m in the southern part of the

basin). The climate is extremely continental, with surface

air temperatures being extremely low in winter (as cold as

−50 to −65 ◦C) and high in summer (up to +20–+35 ◦C).

The whole territory of the basin is located in the permafrost

zone. The Lena River runoff is characterized by spring–

summer snowmelt flood, summer and autumn rain floods and
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Figure 1. Case study basins: location (a), Northern Dvina River basin (b), Lena River basin (c).

extremely low water levels in winter. A maximum discharge

of 189 000 m3 s−1 was observed at the Stolb basin outlet – on

1 June 1984. The average annual discharge of the Lena River

is about 15 370 m3 s−1. There are over 80 meteorological and

over 20 runoff hydrological stations within the basin.

The Northern Dvina River basin with an area of

360 000 km2 occupies vast flat forested territory in the north-

ern part of the East European Plain from 39 to 56◦ E and

from 58 to 66◦ N and flows northward to the White Sea basin.

Taiga forest covers more than 80 % of the river basin, with the

northern part changing into tundra landscapes. The climate of

the territory is influenced by cyclonic activity. Precipitation

exceeds evaporation, which leads to excessive wetness. More

than 60 % of the annual runoff belongs to the spring flood

period. Maximum discharge of 36 200 m3 s−1 was observed

at the Ust’–Pinega basin outlet on 28 April 1953. The aver-

age annual discharge of the Northern Dvina River is about

3400 m3 s−1. There are 35 meteorological and over 10 runoff

hydrological stations within the basin.

Due to low anthropogenic burden and the absence of reser-

voirs for regulating the main river flow, the Northern Dvina

and Lena river basins are good objects for case studies aimed

at estimating runoff response to climate variations.

3 Hydrological models

Two hydrological models, ECOMAG (Motovilov et al.,

1999a) and SWAP (Gusev and Nasonova, 1998), developed

at the Water Problems Institute of RAS (Moscow), are used

in this study. These models have been successfully tested

against observation data all over the world.

Physically based semi-distributed model ECOMAG

(ECOlogical Model for Applied Geophysics) developed by

Yu. Motovilov (Motovilov et al., 1999a) was earlier applied

for hydrological simulations in many river basins of various

sizes and located in different natural conditions: from small-

to-middle size Scandinavian basins (e.g., Motovilov et al.,

1999b) to the great Volga and Lena rivers with watershed ar-

eas exceeding 1 million km2 (Gelfan and Motovilov, 2009;

Motovilov and Gelfan, 2013). Since 2004, the ECOMAG

model has been utilized in an operational mode for hydro-

logical characteristics and water inflow simulation into the

Volga–Kama and Angara–Yenisey reservoir cascades in Rus-

sia, which are among the largest reservoir cascades world-

wide.

Physically based land surface model Soil Water-

Atmosphere-Plants (SWAP) developed by Ye. Gusev and

O. Nasonova (Gusev and Nasonova, 1998) was intensively

validated, in particular, within several model intercompar-

ison projects (PILPS, Rhone-AGG, MOPEX, SnowMIP,

GSWP-2) for different river basins and experimental sites lo-

cated in various natural zones (from areas in tropical zones

to regions with permafrost) and characterized by different

spatial scales (from small experimental sites and catchments

to the whole land surface of the Earth). The results of the

model testing are presented, particularly, in Gusev and Na-

sonova (1998, 2003) and Gusev et al. (2011).
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Both models describe interception of rainfall/snowfall by

the canopy, processes of snow accumulation and melt, soil

freezing and thawing, water infiltration into unfrozen and

frozen soil, evapotranspiration, thermal and water regime of

soil, and overland, subsurface and channel flow. The ECO-

MAG model utilizes a semi-distributed approach with the

whole river basin interpreted as a number of sub-basins. It

takes into consideration topography, soil and land cover char-

acteristics of a particular sub-basin. For each sub-basin, hy-

draulic properties of soil as well as land-cover properties are

scaled taking into account sub-basin area (Motovilov et al.,

1999a, b). Subsurface and groundwater routing is based on

the Darcy law, while the surface runoff and channel flow are

described by a kinematic wave equation. The SWAP model

utilizes a regular spatial grid with a size of 1◦× 1◦. The cells

are connected to the channel network. Streamflow transfor-

mation within the network is calculated with the use of a lin-

ear model using the TRIP algorithm (Oki et al., 1999).

Most of the parameters are physically meaningful and can

be assigned from the literature or derived through available

measured characteristics of topography, soil, and land cover.

Some key parameters of the models are calibrated against

streamflow measurements and, if available, measurements of

the internal basin variables (snow characteristics, soil mois-

ture, groundwater level, etc.).

The ECOMAG model is forced by daily time series of air

temperature, air humidity and precipitation. The SWAP in-

puts include 3 h data of incoming radiation, precipitation, air

temperature and humidity, atmospheric pressure, and wind

speed. The forcing data can be taken from meteorological

observations or GCM outputs.

Both models were applied earlier for simulating runoff hy-

drographs based on multi-year hydrometeorological obser-

vations in the Lena and Northern Dvina River basins and

demonstrated good performance of simulations (Motovilov

and Gelfan, 2013; Gusev et al., 2011, 2015; Krylenko et

al., 2014). Trial-and-error manual procedure and the shuffle

complex evolution (SCE-UA) automatic algorithm were ap-

plied for calibration of ECOMAG and SWAP, respectively.

The widely used split-sample test (Klemeš, 1986) was uti-

lized for model validation. Both calibration and validation

procedures were carried out against daily streamflow data

measured at several gauges of these large basins. Nash and

Sutcliffe (1970) efficiency, NSE, and bias evaluation crite-

ria were adopted to summarize the goodness of fit of simu-

lated and measured daily discharge series. As an example, the

evaluation criteria calculated for the outlets of the Lena and

Northern Dvina River basins and adopted from Motovilov

and Gelfan (2013), Gusev et al. (2011, 2015) and Krylenko

et al. (2014) are shown in Table 1.

Table 1. The Nash and Sutcliffe efficiency, NSE, and bias eval-

uation criteria calculated from simulated and measured daily dis-

charge at the outlets of the Lena and Northern Dvina river basins.

River (gauge) Period NSE Bias, %

ECOMAG (calibration period)

Lena (Stolb) 2000–2009 0.90 −2.9

N. Dvina (Ust’–Penega) 2000–2009 0.88 1.4

ECOMAG (validation period)

Lena (Stolb) 1987–1999 0.86 1.4

N. Dvina (Ust’–Penega) 1970–1999 0.81 2.0

SWAP (calibration period)

Lena (Stolb) 1971–1977 0.82 −4.9

N. Dvina (Ust’–Penega) 1986–1990 0.86 −1.1

SWAP (validation period)

Lena (Stolb) 1978–1999 0.80 −3.7

N. Dvina (Ust’–Penega) 1967–1985; 1991–1998 0.85 −0.6

4 Atmospheric general circulation model description

and internal variability simulations

Ensemble simulations were performed with atmospheric

general circulation model (AGCM) ECHAM5 developed at

the Max Planck Institute for Meteorology (Roeckner et al.,

2003). This model is a climatic version of AGCM based on

the spectral weather forecast model of the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) that

employs state-of-the-art physics. The model version used

here has a horizontal resolution of T63 (1.8◦× 1.8◦ lati-

tude× longitude) and 31 vertical levels. All 45 ensemble

simulations use identical prescribed lower boundary condi-

tions at the atmosphere–ocean interface. These conditions

are taken from the HadISST1.1 (Hadley Centre, UK) data

set that consists of global empirical analysis of the sea sur-

face temperature (SST) and the sea ice concentrations (SIC, a

portion of the model grid cell covered by sea ice) (Rayner et

al., 2003). The simulation period is from 1979 to 2012. The

start of simulations in 1979 was motivated by the beginning

of the era of continuous satellite monitoring of the sea ice

cover that provides the most reliable SIC data. This is impor-

tant for correct simulations of the climate at high latitudes

(Semenov and Latif, 2012). Greenhouse gas concentrations

in the model are kept constant and represent modern climate

conditions (348 ppm for CO2, and 1.64 ppm for methane).

All other external forcing parameters (such as orbital pa-

rameters, solar radiation, other radiatively active gases and

aerosols) also correspond to modern climate conditions and

do not vary. The only differences between the simulations are

the initial conditions of the atmosphere (model atmospheric

state on 1 January 1979) that are prescribed as instant atmo-

spheric states at different 12 h intervals in December 1978.

Thus, the ensemble consists of 45 simulations with identical
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Figure 2. ECHAM5-simulated ensembles of mean annual surface air temperature (SAT) (top left panel) and precipitation (top right panel),

as well as mean daily SAT (bottom left panel) and precipitation (bottom right panel) averaged over the Lena River basin. Dots in the top

figures and the bold line in the bottom figures denote corresponding ensemble mean values.

boundary and external forcing but different initial conditions.

Note that the characteristics at the atmospheric lower bound-

ary over land (soil temperature and moisture, snow cover) are

computed by AGCM using a land surface model and simu-

lated heat and water fluxes (Roeckner et al., 2003).

Such ensemble simulations with time-varying SST and

SIC according to observational data allow one to estimate

a contribution of the varying SST and SIC fields to the

observed changes in atmospheric characteristics (the mean,

trends, variability) during the simulation period (assum-

ing that AGCM correctly reproduces a response to varying

boundary conditions). When considering changes in atmo-

spheric variables consisting of changes caused by factors ex-

ternal to the atmosphere (SST and SIC) that are supposed to

be the same in all simulations and internal variability (due

to stochastic atmosphere dynamics and thus independently

distributed), the averaging over large ensemble members ef-

fectively filters stochastic terms (climatic noise) and results

in an estimate of the external signal related to SST and SIC

changes. A similar approach will be applied in Sect. 5.3 to

estimate the externally forced part of long-term changes in

hydrological characteristics that provides a basis for estimat-

ing potential predictability limits for hydrological systems.

To illustrate differences between individual ensemble

members arising from internal atmospheric dynamics, sev-

eral meteorological characteristics were averaged over the

Lena River catchment area. Figure 2 (top panels) shows the

ensemble (45 realizations) of the mean annual temperature

and precipitation for the period of simulations (1979–2012);

Fig. 2 (bottom panels) demonstrates the ensemble of the

mean daily values of these variables averaged over the simu-

lation period.

A positive trend for both temperature and precipitation

(Fig. 2, top panels) agrees with global warming and the ten-

dency of precipitation increase in high northern latitudes ac-

companying temperature increase. Intra-ensemble standard

deviations of the annual temperature and precipitation val-

ues caused by internal stochastic atmospheric dynamics ac-

count for 0.5 ◦C and 0.08 mm day−1, respectively. The stan-

dard deviations of the daily mean temperature vary within

0.4–0.8 ◦C during a year, while the deviations of precipita-

tion are about 0.02–0.04 mm day−1 in winter and reach as

much as 0.30 mm day−1 for some summer days. The follow-

ing section will address a question of how such uncertainty

is transformed into uncertainty in river discharge.

An important factor that should be taken into account

while analyzing ECHAM5 simulations is a model bias

(e.g., Hagemann et al., 2006, 2013). Even when forced with

observed fields of SST and SIC, ECHAM5 simulates the

mean climate over land areas that differs from observations

of the corresponding period. The sources of model bias in-

clude deficiencies in parameterizations and incomplete de-

scription of some physical processes, numerical schemes,

and low model resolution (Flato et al., 2013, IPCC AR5). In

our experiments, ECHAM5 simulates a colder winter climate

at high latitudes of the Northern Hemisphere that is related to

higher sea level pressure over the Arctic and weakened zonal

flow at mid and high latitudes (not shown).
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Figure 3. Observed (left panels) and the bias-corrected ECHAM5-simulated (right panels) patterns of mean annual values of air temperature

(◦C), precipitation (cm) and air humidity deficit (hPa) within the Lena River basin.

A post-processing procedure, analogous to that proposed

by Velázquez et al. (2013), was applied to correct biases in

ECHAM5 outputs before using them as inputs into hydro-

logical models. The correction factors were computed based

on the difference between the ensemble-mean climate vari-

ables modeled for the reference period (1979–2009) and cor-

responding observed variables averaged over the basin areas

under consideration. The correction factors were then added

to ECHAM5-simulated 6 h meteorological fields. Compari-

son of the spatial fields of mean annual values of precipita-

tion, air temperature and humidity obtained from data regis-

tered in the meteorological stations located within the Lena

River basin and processed from the simulated data is illus-

trated, as an example, by Fig. 3. Figure 3 shows that the

applied post-processing allowed us to obtain rather simi-

lar patterns of the above-listed variables taking into account

sparseness of the meteorological monitoring network in the

basin. In addition, the similarity is rather surprising taking

into account that the assigned correction factor is based on

the model–observation differences averaged over very large

basins. Thus, ECHAM5 demonstrates good performance in

simulating spatial distribution of deviations from the basin

averaged values of precipitation, air temperature and humid-

ity.
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5 Experiment design, results and discussion

Due to the stochastic nature of climate, hydrological mod-

els cannot provide predictions of specific streamflow hydro-

graph series (even for the past, not to mention for the future)

on the basis of the climate model outputs. In other words, hy-

drological models operating on outputs from a climate model

are confined, similarly to climate models, to making projec-

tions rather than predictions (Refsgaard et al., 2014), and are

only able to provide information on statistical characteristics

of runoff series. Below we present approaches to and results

of estimating these statistical characteristics from simulated

ensembles of multi-year streamflow hydrographs, as well as

to analyzing the uncertainty of the estimations.

An ensemble of NI= 45 time series of meteorologi-

cal variables simulated by ECHAM5 for the period of

NY= 34 years (from 1 January 1979 to 31 December 2012)

was assigned as a distributed input into the ECOMAG and

SWAP hydrological models. With the help of these two mod-

els, 45-member ensembles of daily streamflow series each

of 34-year length were calculated for the Lena River and

the Northern Dvina River. From these hydrograph ensem-

bles, the mean values and the standard deviations of annual,

monthly and daily runoff were estimated. Then, 95 % confi-

dence intervals for the estimates were calculated as an indica-

tion of uncertainty in these estimates caused by the internal

variability of the atmosphere. Whilst calculating the confi-

dence intervals, it was assumed that these estimates followed

the Gaussian probability distribution.

More precisely, the estimates were calculated as fol-

lows. Assume a calculated water discharge to be Xij , where

i= 1, 2, . . . , 45 is the realization number referred to as the as-

signed initial conditions in the climate model; j = 1, 2, . . . 34

is the number of the year within the simulation period. In this

study, Xij can be either an annual discharge for a specific

year, or a monthly discharge for a specific calendar month, or

a daily discharge for a specific calendar day, derived from the

ith realization and related to the j th year. Thus, according to

the experimental design, any variable, be it annual, monthly

or daily, is considered as a 45× 34 matrix (for instance, the

matrix of January discharges or the matrix of 25 July dis-

charges).

To obtain the above-mentioned statistical characteristics

and their confidence intervals, the following formulae were

used:

M estimate of the mean value:

M =
1

(NY×NI)

NY∑
j=1

NI∑
i=1

Xij . (1)

SD estimate of the standard deviation:

SD=

√√√√√√
NY∑
j=1

NI∑
i=1

(
Xij −M

)2
(NY×NI)− 1

. (2)

The confidence interval γM for M:

γM =

(
M +8−1

(
1+α

2

)
σM; M −8

−1

(
1+α

2

)
σM

)
. (3)

The confidence interval γSD for SD:

γSD =

(
SD+8−1

(
1+α

2

)
σSD; SD−8−1

(
1+α

2

)
σSD

)
, (4)

where α is the confidence probability, and 8−1(x) is the in-

verse of the cumulative normal distribution function; σM is

the standard deviation of M , equal to

σM =

√√√√√ NI∑
i=1

(Mi −M)
2

NI− 1
,

Mi =
1

NY

NY∑
j=1

Xij . (5)

σSD is the standard deviation of SD, equal to

σSD =

√√√√√ NI∑
i=1

(SDi −MSD)
2

NI− 1
,

SDi =

√√√√ 1

(NY− 1)

NY∑
j=1

(
Xij −Mi

)2
,

MSD =
1

NI

NI∑
i=1

SDi . (6)

Hereafter, the confidence intervals of estimates

are evaluated for α= 95 % confidence probability,

i.e., 8−1
(

1+ 0.95
2

)
= 1.96.

To compare uncertainty in statistical estimates of runoff

characteristics, which differ in their absolute value, normal-

ized widths of the confidence intervals were used. Uncer-

tainty indices UN(M) and UN(SD) of M and SD estimates,

respectively, are introduced, which are considered to be half

of the width of the 95 % confidence interval of the corre-

sponding estimate divided by its mean value, i.e.,

UN(M)=
γ+M − γ

−

M

2M
=

1.96σM

M
, (7)

UN(SD)=
γ+SD− γ

−

SD

2SD
=

1.96σSD

SD
, (8)

where γ+• and γ−• are the right and left limits of the confi-

dence interval, respectively.
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Figure 4. Intra-annual variation of uncertainty indices UN(M) (in %) for the M estimates of daily runoff.

In the next sub-sections, the results of ensemble simulation

of river runoff for each study basin are presented. First, anal-

ysis of the uncertainty indices of annual, monthly and daily

mean estimates for both river basins is presented. The cal-

culated estimates are compared to the corresponding obser-

vation data estimates. Then, analogous results are shown for

standard deviations of runoff values averaged over the same

time intervals (a year, a month, a day). Finally, uncertainty in

trends in annual runoff is calculated and discussed.

5.1 Estimates of the mean runoff and their uncertainty

Table 2 demonstrates the uncertainty indices UN(M) for M

estimates of annual, monthly and daily runoff calculated by

Eq. (7). Intra-annual variation of uncertainty indices UN(M)

for M estimates of daily runoff is shown in Fig. 4.

The following conclusions can be derived based on the

presented results:

1. Uncertainty in the mean runoff values calculated by

both of the models for both rivers decreases with the

increasing interval of runoff averaging. It is shown in

Table 2 that the uncertainty index UN(M) for the M es-

timates of daily runoff varies from 8 to 24 %; UN(M)

for monthly runoff – from 7 to 19 %; and UN(M) for

annual runoff – from 6 to 10 %, depending on the model

used and the study river basin. However, uncertainty in-

dices for monthly and daily runoff estimates have dis-

tinguished seasonal variations, and maximum values of

the uncertainty considerably exceed their average values

within a year. For example, as can be seen from Fig. 4,

the uncertainty index UN(M) for daily runoff can be

more than 50 %, and UN(M) for mean monthly runoff

estimates reaches 41 % (Table 2).

Table 2. Uncertainty indices UN(M) (in %) for M estimates of an-

nual, monthly and daily runoff.

Runoff Lena River Northern Dvina River

characteristic ECOMAG SWAP ECOMAG SWAP

Annual runoff 6 7 10 7

Monthly runoff 7 11 19 19

January 3 9 5 9

February 2 8 2 9

March 1 8 5 23

April 1 24 33 41

May 21 9 10 23

June 6 9 14 18

July 8 9 22 9

August 10 9 32 14

September 13 10 35 17

October 10 11 29 21

November 8 12 22 24

December 5 13 17 19

Daily runoff 8 12 24 21

2. Internal atmospheric variability has maximal influence

on uncertainty in the estimates of the mean runoff dur-

ing snowmelt/rainfall flood periods for both rivers. Un-

certainty of estimates of the mean runoff during winter

months is small. Uncertainty indices UN(M) forM esti-

mates of monthly runoff during the period of snowmelt

floods and rainfall floods amount to 21–24 % for the

Lena River and 35–41 % for the Northern Dvina River,

depending on the applied hydrological model (see Ta-

ble 2). The uncertainty UN(M) for daily runoff is even

greater (Fig. 4): for snowmelt flood, this value is 42–

55 % for both rivers. Uncertainty UN(M) for monthly

runoff during winter periods is much less (2–13 % for

the Lena River and 2–19 % for the Northern Dvina

www.hydrol-earth-syst-sci.net/19/2737/2015/ Hydrol. Earth Syst. Sci., 19, 2737–2754, 2015
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Figure 5. Mean hydrographs calculated as an averaged response to ensemble input (solid line) and as a response to ensemble averaged input

(dotted line).
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Figure 6. M estimates of annual and monthly discharges at the outlets of the Lena River (top panels) and the Northern Dvina River (bottom

panels). Black columns show estimates obtained from the observation data for 1979–2009. Gray columns show estimates obtained from the

ensemble simulation (with indicated 95 % confidence intervals γM for these estimates).

River); the same applies to daily runoff during winter

(see Fig. 4). A possible explanation for these findings is

that physical mechanisms of flood events are more sen-

sitive to intra-ensemble changes in the climate model

outputs than more inertial mechanisms of low flow gen-

eration.

3. Uncertainty in the mean runoff estimates for the Lena

River basin turned out to be significantly less than the

ones for the Northern Dvina River when using both

models. Moreover, intra-annual irregularity of UN(M)

is more noticeable for the Northern Dvina simulations

both on monthly (Table 2) and daily (Fig. 4) timescales.

In other words, the Northern Dvina simulated hydro-

graphs appeared to be more sensitive to the atmospheric

variability. This difference in uncertainty in the mean

runoff estimates is related to peculiarities of river runoff

generation in the study basins. These peculiarities can

manifest themselves, for example, in a degree of nonlin-

earity of river basin response to climate impact: increase

in nonlinearity, generally speaking, should lead to in-

crease in the uncertainty in the calculated runoff char-

acteristics. Therefore, one can assume that the mech-

anisms of runoff generation and transformation of cli-

mate impact on variations of river runoff are more lin-

ear in the Lena River basin than in the Northern Dvina

River basin. To validate this assumption, we compared

two mean hydrographs for each basin. One was calcu-

lated by averaging over the ensemble of 45 simulated
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Figure 7.M estimates of the daily discharges at the outlets of the Lena River (top panels) and the Northern Dvina River (bottom panels). Blue

points show estimates based on observational data for the period of 1979–2012. Red points show estimates based on ensemble simulations

(gray thin lines). Red dotted line shows the boundaries of the 95 % confidence interval of mean daily discharges.
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Figure 8. Uncertainty indices UN(SD) (in %) for the SD estimates of the daily runoff.

mean hydrographs (an averaged response to ensemble

input) and the other simulated by the hydrological mod-

els using one meteorological input obtained by averag-

ing over 45 ECHAM5 outputs (a response to the ensem-

ble averaged input).

If the response of the hydrological system to climate

impact is linear, these hydrographs should be similar,

whereas nonlinearity should lead to an increased dif-

ference between these hydrographs. The results of the

comparison are shown in Fig. 5.

As one can see from Fig. 5, both models show that the

response of the hydrological system of the Lena River

basin is close to linear, while the response of the North-

ern Dvina River is essentially nonlinear. This supports

the above-mentioned assumption about an increased ef-

fect of internal atmospheric variability on uncertainty of

the mean river runoff estimates in the Northern Dvina

River basin due to a greater nonlinearity of the mech-

anisms of runoff generation compared with the Lena

River basin. Note that, due to the effect of averaging,

peak discharge of the ensemble mean hydrographs is al-

ways lower than the hydrograph peak simulated from

the mean outputs (see Fig. 5).

4. Uncertainty in the mean runoff estimates determined

using different models varies insignificantly, despite

the fact that these models require different input data,

www.hydrol-earth-syst-sci.net/19/2737/2015/ Hydrol. Earth Syst. Sci., 19, 2737–2754, 2015
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and are differently structured and parametrized. Thus,

the average uncertainty indices UN(M) for SWAP-

simulated monthly runoff are 11 % for the Lena River

and 19 % for the Northern Dvina River; when using

ECOMAG, the values are 7 and 19 %, respectively.

As the next step, we compare the obtained M estimates

of the simulated runoff with the corresponding estimates de-

rived from streamflow observations in the basins under con-

sideration.

Figures 6 and 7 present a comparison between M esti-

mates for annual, monthly and daily discharges calculated at

the basin outlets with the corresponding estimates obtained

from the time series of the discharges observed for 31 years

(1979–2009). These figures also show 95% confidence in-

tervals γM for the calculated estimates of the mean values

computed by Eqs. (3) and (5).

The comparison of the calculated estimates with the mean

runoff characteristics evaluated by available observational

series has demonstrated that calculation errors, when using

both models, increase with a decreasing time interval of dis-

charge averaging. Estimates of the mean annual runoff are

characterized by the smallest error: 5 and 18 % for the Lena

River, and 10 and 33 % for the Northern Dvina River, de-

pending on the hydrological model used. The errors of the

mean monthly and mean daily runoff estimates are usually

much greater. It is especially noticeable for the periods of

spring–summer snowmelt flood and summer–autumn rain-

fall floods for both rivers: error of the mean monthly runoff

can reach several dozens of percent, and, for the mean daily

runoff – hundreds of percent. Winter months are an excep-

tion, with errors for both mean monthly and mean daily

runoff usually not exceeding 30–40 %. It turned out that all

calculated estimates of mean runoff were closer to the cor-

responding estimates based on empirical data for the Lena

River than for the Northern Dvina River. This can be ex-

plained by a weaker natural variability of the runoff char-

acteristics at a larger basin of the Lena River.

5.2 Estimates of the standard deviation of runoff and

their uncertainty

While analyzing SD estimates of runoff, we focused on the

same issues, which were discussed in the previous sections

when analyzing the correspondingM estimates. Specifically,

we considered dependence of uncertainty indices UN(SD)

on the interval of runoff averaging, intra-annual changes in

UN(SD), difference in UN(SD) for different basins, and com-

parison of the SD estimates with the corresponding estimates

calculated from the available observed streamflow time se-

ries.

Table 3 presents the uncertainty indices UN(SD) for SD

estimates of annual, monthly and daily runoff at the outlet of

the studied rivers, which were calculated by Eq. (8). Intra-

annual variation of the uncertainty indices UN(SD) for daily

runoff SD estimates is shown in Fig. 8.

Table 3. Uncertainty indices UN(SD) (in %) for SD estimates of the

annual and monthly runoff.

Runoff Lena River Northern Dvina River

characteristic ECOMAG SWAP ECOMAG SWAP

Annual runoff 24 26 30 31

Monthly runoff 32 30 52 33

January 29 35 85 29

February 30 33 95 29

March 30 25 104 36

April 31 23 36 42

May 84 55 24 45

June 25 21 27 39

July 29 17 39 23

August 25 26 46 26

September 26 28 47 27

October 22 34 37 30

November 23 32 33 29

December 28 33 51 35

Daily runoff 45 36 98 45

A comparison of the uncertainty index estimates for the

standard deviation (Table 3, Fig. 8) and the mean (Table 2,

Fig. 4) reveals that the uncertainty indices UN(SD) for SD

estimates of runoff characteristics are, unsurprisingly, much

higher than the uncertainty UN(M) for M estimates for the

same runoff averaging interval. Similar to UN(M), an uncer-

tainty trend of the standard deviation can be noticed when

the time averaging interval of water discharge decreases:

UN(SD) increases from 24–31 % for annual runoff to 30–

52 %, as the average, for monthly runoff, and 36–98 % for

daily runoff.

At the same time, uncertainty in SD estimates of monthly

and daily water discharges significantly varies within a year,

and the maximum values of the uncertainty index UN(SD)

for these estimates considerably exceed their mean values.

For example, UN(SD) for some calendar months is close

to 100 % (Table 3), and UN(SD) for daily runoff estimates

reaches hundreds of percent (Fig. 8).

Similar to the results for the uncertainty of the mean runoff

estimates, the impact of atmospheric variability on standard

deviation uncertainty has a significant intra-annual variation.

Uncertainty UN(SD) for monthly and daily runoff reaches its

maximum in the periods of spring–summer snowmelt floods

and summer–autumn rainfall floods at both rivers (see Ta-

ble 3 and Fig. 8). Uncertainty UN(SD) for winter runoff is

somewhat smaller but still large, in contrast to the uncer-

tainty in the mean values during winter months, which, as

was shown above, significantly decreases. This result can be

explained by a small variation of winter runoff.

Uncertainty indices UN(SD) for SD estimates of the Lena

River runoff for both hydrological models are smaller than

for the Northern Dvina River (which is similar to results for

UN(M)). Uncertainty in annual runoff varies very slightly

(24–36 % for the Lena River and 30–31 % for the Northern
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Figure 9. SD estimates of the annual and monthly discharges at the outlets of the Lena River (top panels) and the Northern Dvina River

(bottom panels). Black columns show estimates obtained from the observational data for 1979–2009. Gray columns show estimates obtained

from the ensemble simulation (with indicated 95 % confidence intervals γSD for these estimates).

Figure 10. SD estimates of the daily discharges at the outlets of the Lena River (top panels) and the Northern Dvina River (bottom pan-

els). Blue points show estimates based on observational data for the period of 1979–2012. Red points show estimates based on ensemble

simulations (gray thin lines). Red dotted line shows the boundaries of the 95 % confidence interval of mean daily discharges.

Dvina River). However, the decrease of the averaging inter-

val to a month and a day leads to a significant increase in

UN(SD) variations for both basins. As was shown above, the

difference in UN(SD) values can account for stronger nonlin-

earity of the runoff generation mechanisms for the Northern

Dvina River than for the Lena River.

Figures 9 and 10 show comparison of SD estimates for

annual, monthly and daily discharges calculated at the basin

outlets with the corresponding estimates obtained from the

observed time series of the discharge for the period 1979–

2009. These figures also present 95 % confidence intervals

γSD of the standard deviation calculated estimates (according

to Eq. 4).

The calculations showed that the relative errors of the SD

estimates derived by simulated runoff time series were fairly

large in comparison with the corresponding estimates based

on empirical data. These estimates were most similar for the

annual runoff: 3 and 21 % for the Lena River and 41 and 57 %

for the Northern Dvina River, depending on the hydrological

model. When the time averaging interval for water discharge

decreases, errors in the estimates increase for both models

and both rivers, which is particularly noticeable for the win-

ter season, when the SD estimates are sometimes hundreds

of percent lower in comparison with their observed variabil-

ity. It should be noted that large relative errors may result

from the small absolute differences due to very small dis-
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Figure 11. Observed (line with blue markers) and simulated series of annual discharges. Thin lines show the ensemble (45 realizations) of

the calculated annual discharges. The line with red markers shows the ensemble mean. The line with green markers shows the realization

most strongly correlated with the observed time series.

charge values in the winter season. Similar to M estimates,

SD estimates are closer to corresponding estimates based on

empirical data for the Lena River than for the Northern Dvina

River.

5.3 Estimate of annual runoff trend and its uncertainty

As has already been discussed in Sect. 4, averaging over the

ensemble of simulated realizations allowed us to filter off a

random component caused by atmospheric variability and to

assess the impact of the “signal” caused by factors external

to the atmosphere (related to the prescribed observed SST

and SIC changes in our experiments). Such an assessment is

presented in this sub-section with an analysis of long-term

annual runoff trends.

Figure 11 shows long-term variations of the annual dis-

charge values observed at the outlets of both rivers compared

with the corresponding values averaged over the ensemble of

45 runoff hydrograph realizations calculated using the ECO-

MAG model.

It is shown that individual realizations of calculated an-

nual discharges differ from each other and are, in general,

only slightly correlated with corresponding observed time

series. For the Lena River simulations, correlation coeffi-

cients vary from −0.31 to 0.56, with the mean value of 0.17.

Note that the correlation between the observed annual dis-

charges and the ensemble mean annual discharges is rather

high (0.51). However, the standard deviation of the observed

discharge time series (17 616 m3 s−1) is almost 1.3 orders

greater than that of the mean ensemble discharge time series

(901 m3 s−1). It is necessary to mention that corresponding

correlations derived from SWAP simulation experiments are

very close to the ones listed above: correlation coefficients

vary from the minimum of −0.29 to the maximum of 0.53,

with the mean value of 0.14.

For the Northern Dvina River, correlation coefficients be-

tween individual realizations and the observed annual dis-

charge series are, mostly, statistically insignificant under a

reasonable significance level. The coefficients vary from the

minimum of −0.56 to the maximum of 0.30, with the mean

value of −0.04. The correlation coefficient between the ob-

served annual discharges and mean ensemble annual dis-

charges is also insignificant (−0.19). Again, corresponding

correlations derived from the SWAP simulation experiments

are very close to those obtained by ECOMAG simulations:

correlation coefficients vary from the minimum of −0.40 to

the maximum of 0.33, with the mean value of−0.03, and the

correlation between the observed annual discharges and the

mean ensemble annual discharges calculated by the SWAP

model is insignificant and equals −0.13.

Figure 12 shows histograms of linear trends of annual

runoff obtained for each realization from the calculated en-

sembles. The trend calculated from the observational data

(Slope(fact)) and the mean trend calculated by averaging

over 45 trends for the individual realizations (Slope(mean

calc)) are also shown. Both models in most cases repro-

duce well the observed trend of annual runoff changes. Cal-

culated increase of annual discharge at the outlet of the

Lena River is around 748 and 581 m3 s−1 decade−1 for the

ECOMAG and SWAP models, respectively (in other words,

235.9 and 183.2 km3 decade−1, respectively). The observa-

tional data for 1979–2009 result in the increase of approx-

imately 1000 m3 s−1 decade−1 (315.4 km3 decade−1). The

simulated ensemble mean Lena River discharge is statisti-

cally different from zero, indicating that a considerable por-
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Figure 12. Histograms of the linear trend slope derived from the ensembles of simulated annual discharge time series.

tion of the observed trend can be externally driven. For the

Northern Dvina River, the simulated trends are insignificant,

as well as the observed trend.

6 Conclusions

We have presented an analysis of large-basin hydrological

response uncertainty originating from internal atmospheric

variability that was for the first time performed with such a

large (45 members) ensemble of climate model simulations.

Internal variability is considered as one of three main factors

of uncertainty in hydrological response to climate change (to-

gether with so-called “forcing” and “climate model” uncer-

tainties). Importantly, in the presented simulations, the role

of internal atmospheric variability is most visible for the

timescales from years to first decades and for the regional

spatial scales (e.g., Hawkins and Sutton, 2009), i.e., over

spatio-temporal scales of water management in large river

basins.

Our study focused on transformation of internal atmo-

spheric variability by physically based hydrological models

ECOMAG and SWAP and on the impact of the variability

on simulated runoff for the large Lena and Northern Dvina

River basins located within the Arctic basin. It is important

to emphasize that, due to the stochastic nature of atmospheric

variability, hydrological models driven by the output of a cli-

mate model are confined, as well as a climate model, to mak-

ing projections rather than predictions (even in the past, not

to mention the future); i.e., hydrological models are only able

to provide information on statistical characteristics of runoff

time series.

Internal atmospheric variability was simulated using en-

semble simulations with the ECHAM5 atmospheric general

circulation model. The ensemble consists of 45 simulations

performed under identical prescribed lower boundary condi-

tions (observing the sea surface temperature and the sea ice

concentration for 1979–2012) and constant external forcing

parameters corresponded to modern climate conditions. The

only differences between the simulations were initial con-

ditions of the atmosphere prescribed as instant atmospheric

states changed by small perturbations.

The ensemble of the bias-corrected ECHAM5 outputs was

assigned as distributed input for the ECOMAG and SWAP

hydrological models, and corresponding ensembles of runoff

hydrographs were calculated for the Lena River and the

Northern Dvina River. From these hydrographs, hydrologi-

cal indicators, namely, the mean and the standard deviations

of the annual, monthly and daily runoff, and annual runoff

trend, were estimated. Uncertainties of the hydrological in-

dicators caused by the internal variability of the atmosphere

were determined as normalized confidence intervals of the

corresponding estimates.

The main findings of our research are the following:

1. Uncertainty in estimates of both the mean and standard

runoff deviation values increases with a decreasing time

interval of runoff averaging: from minimal uncertainty

for annual runoff to a maximal one for daily runoff. The

mean annual runoff uncertainty that originated from the
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internal variability of the atmosphere was found to be 6–

10 %, depending on the model used and the study basin.

2. Atmospheric variability impact on uncertainties of the

mean and the standard runoff deviation has a signifi-

cant seasonal dependence. Uncertainties of monthly and

daily runoff reach their maximum values during the pe-

riods of spring–summer snowmelt and summer–autumn

rainfall floods for both rivers. A possible explanation for

this finding is that physical mechanisms of flood events

are more sensitive to intra-ensemble changes in the cli-

mate model outputs than more inertial mechanisms of

low flow generation.

3. Simulated hydrographs for the Northern Dvina runoff

are found to be more sensitive to internal atmospheric

variability than those for the Lena River runoff. This is

also manifested by the findings that runoff estimate un-

certainties and their intra-annual irregularity are much

higher for the Northern Dvina River simulations, when

using both hydrological models. It is shown that in-

creased effect of the internal atmospheric variability

in uncertainty of the Northern Dvina River runoff es-

timates can be explained by stronger nonlinearity of

runoff generation mechanisms compared to those of the

Lena River basin.

4. Individual realizations of the simulated annual dis-

charge series differ and are, in general, insignificantly

correlated with the corresponding observed time series

for both the Lena and Northern Dvina rivers. However,

for some individual realizations, the linear link to ob-

servations is found to be quite strong: maximum corre-

lation coefficients are 0.56 and 0.30 for the Lena and

Northern Dvina River simulations, respectively.

5. It is shown that the averaging over large ensemble mem-

bers effectively filters the stochastic term related to in-

ternal atmospheric variability and results in an esti-

mate of an externally forced signal related, in our ex-

periments, to global sea surface temperature and sea

ice concentration changes. We found that both models

for the ensemble mean results reproduce the observed

trend of the annual Lena River discharge. The simu-

lated trends are (close to) normally distributed around

the ensemble mean value that indicates, for the Lena

River discharge, that a considerable portion of the ob-

served trend can be externally driven. The trend for

the Northern Dvina River changes appeared to be in-

significant both for the simulation results and the ob-

servational data. This assumes a dominant role of inter-

nal variability in generating the Northern Dvina runoff

changes during the simulation period.

Our results, in line with the conclusions of Deser et al. (2012,

2014), who analyzed temperature and precipitation changes,

assume the importance of performing large ensembles of cli-

mate change projections with climate models also for mak-

ing robust estimates of uncertainty and externally forced sig-

nals in hydrological response on decadal to multi-decadal

timescales.
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