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Abstract. The influence of the temporal changes in lateral

inflow rate on the discharge variability in stream channels

is explored through the analysis of the diffusion wave equa-

tion (i.e. the linearized Saint-Venant equation). To account

for variability and uncertainty, the lateral inflow rate is re-

garded as a temporal random function. On the basis of the

spectral representation theory, analytical expressions for the

covariance function and evolutionary power spectral density

of the random discharge perturbation process are derived to

quantify variability in stream flow discharge induced by the

temporal changes in lateral inflow rate. The treatment of the

discharge variance (square root of the variance) gives us a

quantitative estimate of uncertainty in predictions from the

deterministic model. It is found that the discharge variabil-

ity of stream flow is very large in the downstream reach,

indicating large uncertainty anticipated from the use of the

deterministic model. A larger temporal correlation scale of

inflow rate fluctuations, representing more temporal consis-

tency of fluctuations in inflow rate around the mean, intro-

duces a higher variability in stream flow discharge.

1 Introduction

Surface runoff originates from precipitation intensities ex-

ceeding the infiltration capacity of the surface (e.g. Duan

et al., 1992; Sivakumar et al., 2000; Ruiz-Villanueva et al.,

2012; Valipour, 2015). This process may result in lateral in-

flow to nearby stream channels. Significant lateral inflows

may contribute to streams during storm-runoff periods when

stream reaches are of large lateral watershed areas or ups-

lope accumulated areas (Jencso et al., 2009). These lateral in-

flows may be not only a source of water to streams, but also a

source of contaminants to surface water. Agricultural chem-

icals are frequently mixed into shallow soil layers and lat-

eral inflows may cause the release and migration of them into

streams (Govindaraju, 1996). The effect of the lateral inflow

on the stream flow provides an important basis for analyzing

contaminant transport in surface water. Understanding and

quantification of the influence of inflow process on stream

flow discharge is therefore essential for water resource plan-

ning and management.

Natural variability, such as significant variability of rain-

fall events on both temporal and spatial scales (e.g. Ogden

and Julien, 1993; Redano and Lorente, 1993; Wheater et

al., 2000; Zhang et al., 2001; De Michele and Bernardara,

2005; Haberlandt et al., 2008; Valipour, 2012; Bewket and

Lal, 2014) and the great heterogeneity of soil types at the

ground surface (e.g. Jencso et al., 2009; Fournier et al., 2013)

and surface saturation (e.g. Schumann et al., 2009; Riley and

Shen, 2014) over a watershed, creates a very complex runoff

process on the land surface. Many practical problems of flood

wave routing require predictions over relatively large time

and space scales. The key issue is how one can realistically

incorporate the effect of natural heterogeneity into models to

predict flood wave behavior at large time and space scales.

Due to a high degree of the natural heterogeneity of the sur-

face runoff process, the use of deterministic analysis tech-

niques in stream flow modeling is inevitably subject to large

uncertainty. The theoretical understanding of variability in

flood wave routing is far from complete. Motivated by that,

this article focuses on quantification of the discharge vari-

ability in a lateral-inflow-dominated stream.

In the following, the response of the transient stream flow

process to spatiotemporal lateral inflow in a diffusion wave

model is analyzed stochastically by treating the fluctuations

Published by Copernicus Publications on behalf of the European Geosciences Union.



2506 C.-M. Chang and H.-D. Yeh: Variability of flow discharge in lateral inflow-dominated stream channels

in lateral inflow rate as temporal stationary random pro-

cesses. The non-stationary spectral techniques are employed

to obtain closed-form solutions for quantifying the discharge

variability in stream channels. These solutions provide vari-

ance relations for flow discharge, and thereby allow for as-

sessing the impact of statistical properties of lateral inflow

rate process on the discharge variability.

To the best of our knowledge, the issue on quantifying the

effect of temporal variation of lateral inflow on the stream

flow variability using non-stationary spectral techniques so

far has not been addressed. The approach presented herein

provides not only an analytical methodology but also a basic

framework for understanding the response of transient stream

flow process and quantifying the stream flow variability. It is

hoped that the proposed approach and our findings obtained

in this study are useful for further research in this area.

2 Description of the problem

This study considers the case of unsteady flow in open chan-

nels. The equations that describe the propagation of a flood

wave with respect to distance along the channel and time in

open channels are the so-called Saint-Venant equations, con-

sisting of the continuity equation and the momentum equa-

tion. For most flood events, in most rivers the inertial terms

appearing in the momentum equation of the Saint-Venant

equations can be neglected as they are relatively smaller than

the terms arising from gravity and resistance forces (Hen-

derson, 1963; Dooge and Harley, 1967; Daluz Viera, 1983),

leading to a simplified model of open channel flow. The

diffusion wave equation is then expressed as (e.g. Moussa,

1996; Sivapalan et al., 1997)

∂Q

∂t
+Cd

(
Q,

∂Q

∂X

)[
∂Q

∂X
− qL

]
=

1
√
S0

∂

∂X

[
Dh(Q)

(
∂Q

∂X
− qL

)]
, (1)

whereQ is the discharge, Cd andDh are non-linear functions

of discharge generally known as wave celerity and hydraulic

diffusivity, respectively, S0 is the bed slope, and qL(X, t) rep-

resents the net lateral inflow distribution. The diffusion wave

Eq. (1) is formulated by combining the continuity equations

for both mass and momentum. The diffusion wave approxi-

mation is appropriate for simulations of the flood waves in

rivers and on flood plains with milder slopes ranging be-

tween 0.001 and 0.0001 (Kazezyılmaz-Alhan, 2012). Most

natural flood waves can then be described with the diffu-

sion wave model. Some of the successful applications of the

simplified channel flow models to flood routing are available

in the literature (e.g. Ponce et al., 1978; Singh and Arava-

muthan, 1995; Moramarco and Singh, 2002; Khasraghi et al.,

2015).

Equation (1) is a nonlinear partial differential equation and

has a complex behavior of the stream flow in general. No an-

alytical solution of Eq. (1) is available in the literature. How-

ever, the problem can be solved analytically by some sim-

plifications to Eq. (1), such as linearization for the case of

an initially steady uniform flow. On the basis of expansion

of the dependent variable and the nonlinear terms in Eq. (1)

around the initial condition of steady uniform flow and lim-

itation of the expansion to the first-order variation from the

steady state, the resulting linearized Eq. (1) can be written as

∂Q′

∂t
=D

∂2Q′

∂X2
−C

∂Q′

∂X
+

[
CqL−D

∂qL

∂X

]
. (2)

In Eq. (2), Q′=Q−Q0 (Q0�Q
′, qL), Q0 is the initial

uniform steady-state flow discharge, and C and D repre-

sent constant celerity and diffusivity, respectively, depending

on the initially uniform flow (velocity and flow depth). The

reader may be referred to Dooge and Napiorkowski (1987),

Ponce (1990), Yen and Tsai (2001) or Tsai and Yen (2001)

for the detailed development.

The problem of interest here is the stream flow response to

the temporal changes in lateral inflow rate, which is governed

by Eq. (2). The solution to Eq. (2) with associated initial and

boundary conditions will serve as the starting point for con-

ducting the following investigation of stream flow variability.

To derive the analytical solution of Eq. (2), one needs to

specify the form of qL(X, t). In the present work, the fo-

cus is placed on the case that the net lateral inflow is well-

approximated by the following spatiotemporal distribution

(e.g. Lane, 1982; Capsoni et al., 1987; Goodrich et al., 1997;

Féral et al., 2003).

qL(X, t)= qM(t)exp

(
−
X

η

)
, (3)

where qM is the peak inflow rate, and η is the distance along

the x axis for which the inflow rate decreases by a factor e−1

with respect to qM . In particular, qM is considered to be a

temporally correlated stationary random field. It is apparent

from Eq. (2) that the last two terms associated with the lat-

eral inflow are introduced as the sources of fluctuations in

stream flow discharge and treated here as temporally corre-

lated stochastic processes. Equation (2) is then viewed as a

stochastic differential equation with a stochastic output Q′.

The solution of Eq. (2) will provide a rational basis for quan-

tifying the flow variability through the representation theo-

rem.

Consider that the flow domain is bounded within the range

0≤X≤L. The associated initial and boundary conditions

can be expressed as

Q′(X,0)= 0, (4a)

Q′(0, t)= 0, (4b)

∂

∂X
Q′(L, t)= 0. (4c)

Equation (4) signifies that there is no perturbation from the

reference discharge initially while Eq. (5) assumes no in-

flow at the upstream boundary at all times. The downstream
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boundary condition represented by Eq. (6) is under the condi-

tion of a zero-discharge gradient. Morris (1979) showed that

this downstream boundary condition is applicable to a large

class of problems.

3 General solutions via spectral theory

The approach followed is to develop the analytical solution

of Eq. (2) in the Fourier frequency domain.

Temporal stationarity of the qM perturbation process ad-

mits a spectral representation of the form (e.g. Priestley,

1965)

qL = qM(t)exp

(
−
X

η

)
= exp

(
−
X

η

) ∞∫
−∞

eiωtdZq(ω), (5)

where ω is the frequency parameter, Zq(ω) is an orthogonal

process, and dZq is a zero-mean orthogonal increment pro-

cess with

E
[
dZq (ω1)dZ

∗
q (ω2)

]
= Sqq (ω1)δ (ω1−ω2)dω1dω2, (6)

in which E [–] denotes the ensemble average, the super-

script asterisk stands for the complex-conjugation operator,

and Sqq (–) is the power spectral density for the stationary

random qM perturbation process. On the other hand, with-

out the restriction on the assumption of stationarity the ran-

dom perturbed quantitiesQ′ may be expressed in the form of

the Fourier–Stieltjes integral representation as (e.g. Priestley,

1965; Li and McLaughlin, 1991)

Q′(X, t)=

∞∫
−∞

2Qq(X, t,ω)dZq(ω), (7)

where 2Qq (–) is the transfer function depending on space,

time, and frequency.

It follows from Eqs. (5) and (7) that Eq. (2) takes the form

∂2Qq

∂t
=D

∂22Qq

∂X2
−C

∂2Qq

∂X

+ exp

(
−
X

η
+ iωt

)(
C+

D

η

)
, (8)

subject to the following initial and boundary conditions

2Qq(X,0)= 0, (9a)

2Qq(0, t)= 0, (9b)

∂2Qq

∂X
(L, t)= 0. (9c)

The method of eigenfunction expansion is used to solve this

inhomogeneous boundary value problem, and the solution of

Eq. (8) with Eq. (9) is

2Qq(X, t,ω)= 2
D

L

(
υ +

1

µ

)
exp

(υ
2
ξ
) ∞∑
n=0

an−β exp(−β)cos(nπ)

β2+ a2
n

sin(anξ)

×
exp(−iωt)− exp(−Fnt)

Fn− iω
, (10)

where υ =CL/D, µ= η/L, an=π (2 n+ 1)/2, ξ =X/L,

β = (υ/2)+ 1/µ, and Fn=D[a
2
n+ υ

2/4]/L2. Rewriting

Eq. (7), and using Eq. (10), yields the solution of Eq. (2)

in the frequency domain as

Q′(X, t)= 2
D

L

(
υ +

1

µ

)
exp

(υ
2
ξ
) ∞∑
n=0

an−β exp(−β)cos(nπ)

β2+ a2
n

sin(anξ)×

∞∫
−∞

exp(−iωt)− exp(−Fnt)

Fn− iω
dZq(ω). (11)

The covariance function of the flow discharge field, CQQ (–),

can be computed on the basis of the representation theorem

for Q′ by

CQQ (X, t1, t2)= E
[
Q′ (X, t1)Q

′∗ (X, t2)
]

=

∞∫
−∞

2Qq (X, t1,ω)2
∗

Qq (X, t2,ω)Sqq(ω)dω

= 4
D2

L2

(
υ +

1

µ

)2

exp(υξ)

∞∑
m=0

∞∑
n=0

sin(amξ)sin(anξ)(
β2+ a2

m

)(
β2+ a2

n

) ×{aman
−β exp(−β)

[
am(−1)m+ an(−1)n

]
+β2(−1)m+n exp(−2β)

}
×

∞∫
−∞

exp
[
iω
(
t1 − t2

)]
− exp

(
−Fmt1 − iωt2

)
− exp

(
iωt1 −Fnt2

)
+ exp

(
Fmt1 +Fnt2

)(
FmFn +ω2

)
+ i D

L2

(
a2
n − a

2
m

)
ω

Sqq(ω)dω, (12)

where am=π (2m+ 1)/2 and Fm=D[a
2
m+ υ

2/4]/L2. The

variance of flow discharge fluctuations is obtained by evalu-

ating Eq. (12) at zero time lag as
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σ 2
Q(X, t)= CQQ(X, t, t)= 4

D2

L2

(
υ +

1

µ

)2

exp(υξ)

∞∑
m=0

∞∑
n=0

sin(amξ)sin(anξ)(
β2+ a2

m

)(
β2+ a2

n

) ×{aman−β exp(−β)

[
am(−1)m+ an(−1)n

]
+β2(−1)m+n exp(−2β)

}
×

∞∫
−∞

1− exp[−(Fm+ iω) t]− exp[(iω−Fn) t]+ exp[(Fm+Fn) t](
FmFn+ω2

)
+ i D

L2

(
a2
n − a

2
m

)
ω

Sqq(ω)dω. (13)

In addition, following Priestley (1965), the variance of the

Q′ process may be written in the form of

σ 2
Q(X, t)=

∞∫
−∞

|At (X, t,ω)|
2E
[
dZq(ω)dZ

∗
q(ω)

]
, (14)

so that the evolutionary power spectral density of the non-

stationary random process can be defined as

E
[
dZQ(X, t,ω)dZ

∗

Q(X, t,ω)
]
=|At (X, t,ω)|

2

E
[
dZq(ω)dZ

∗
q(ω)

]
, (15)

where At (–) is referred to as the modulating function of the

non-stationary process. The evolutionary spectrum has the

same physical interpretation as the spectrum of a stationary

process, namely, that it describes the distribution of mean

square signal content (or fluctuations) of the random pro-

cess at a given time t . Comparing Eq. (14) to Eq. (13) leads

Eq. (15) to

SQQ(X, t,ω)= 4
D2

L2

(
υ +

1

µ

)2

exp(υξ)

∞∑
m=0

∞∑
n=0

sin(amξ)sin(anξ)(
β2+ a2

m

)(
β2+ a2

n

) ×{aman−β exp(−β)[
am(−1)m+ an(−1)n

]
+β2(−1)m+n exp(−2β)

}
×

1− exp[−(Fm+ iω) t]− exp[(iω−Fn) t]+ exp[(Fm+Fn) t](
FmFn+ω2

)
+ i D

L2

(
a2
n − a

2
m

)
ω

Sqq(ω), (16)

where SQQ (–) is the spectral density of the Q′ perturbation

process.

The infinite series in Eq. (10) converges rapidly when

τc=Dt/L
2
� 1/π2. Accordingly, Eq. (10) can reduce to

2Qq(X, t,ω)=
D

L

(
υ +

1

µ

)
π − 2β exp(−β)

β2+
π2

4

exp
(π

2
ξ
)

sin
(π

2
ξ
) exp(iωt)− exp(−τ)

ρ+ iω
, (17)

where ρ=D[π2
+ υ2]/(4L2) and τ = ρt . The timescale of

the hydraulic system, τc, is referred to as the hydraulic re-

sponse time (Gelhar, 1993). Here, it is interpreted as the char-

acteristic time for a change in upstream discharge to reach the

downstream end of the stream. For most practical applica-

tions it is much greater than unity, which is the main interest

of this study.

The use of Eq. (17), in turn, simplifies Eqs. (13) and (16),

respectively, to

σ 2
Q(X, t)=

D2

L2

(
υ +

1

µ

)2
[π − 2β exp(−β)]2(

β2+
π2

4

)2
exp(υξ)

sin2
(π

2
ξ
)
×

∞∫
−∞

1− 2exp(−τ)cos(ωt)+ exp(−2τ)

ω2+ ρ2

Sqq(ω)dω, (18)

SQQ(X, t,ω)=
D2

L2

(
υ +

1

µ

)2
[π − 2β exp(−β)]2(

β2+
π2

4

)2
exp(υξ)

sin2
(π

2
ξ
)
×

1− 2exp(−τ)cos(ωt)+ exp(−2τ)

ω2+ ρ2

Sqq(ω). (19)

Equation (19) states that the spectrum of the discharge is a

result of a competitive relation between the signal frequency

and the properties of the stream channel and inflow. Gener-

ally, it is very difficult to quantify the variability of inflow

rate. Equation (19) thus provides information about the na-

ture of inflow processes. For example, on the basis of an

observed discharge perturbation time series with known hy-

draulic parameters, the nature of inflow processes may be

determined from Eq. (19). After normalizing by the spec-

tral density Sqq (–), the evolutionary power spectral density

Eq. (19) as a function of dimensionless frequency for var-

ious time scales and locations are graphed in Fig. 1a and b,

respectively. It shows that the spatial variation of spectral am-

plitude associated with a given frequency increases with the

time and the distance from the upstream boundary as well.

It reveals that the variability of flow discharge increases with

time and distance.

4 Closed-form expressions for the variance and

spectral density of discharge fluctuations

In this work, the spectrum of red noise is used to evaluate

Eqs. (18) and (19) explicitly. The analysis of discharge vari-

ability in this section assumes an exponential form for the au-

tocovariance function of the random fluctuations in the peak

inflow rate (Jin and Duffy, 1994; Kumar and Duffy, 2009),

namely,
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Figure 1. Dimensionless evolutionary power spectral density as a

function of dimensionless frequency for various (a) time scales and

(b) locations.

Cqq (`S)= σ
2
q exp

(
−
|`S|

λ

)
, (20a)

which has the following spectral density function:

Sqq(ω)=
σ 2
q λ

π
(
1+ λ2ω2

) , (20b)

where `S is the time lag and σ 2
q and λ are, respectively, the

variance and temporal correlation scale of peak inflow rate

fluctuations.

Upon substituting Eq. (20b) into Eq. (18) and integrating

it over the frequency domain, one obtains the following ex-

pression for the variance of flow discharge fluctuations as

σ 2
Q(X, t)= 16σ 2

qL
2

(
υ + 1

µ

)2

(
π2+ υ2

)2 [π − 2β exp(−β)]2(
β2+

π2

4

)2

exp(υξ)sin2
(π

2
ξ
)
× τR

{
1+ exp(−2τ)

1+ τR

−2
exp(−τ)

1− τ 2
R

[
exp(−τ)− τR exp

(
−
τ

τR

)]}
, (21)

where τR = ρλ. Equation (21) indicates a linear relation-

ship between the variances of fluctuations in the flow dis-

Figure 2. Dimensionless variance of discharge fluctuations as a

function of dimensionless time for various dimensionless temporal

correlation scales of inflow rate fluctuations.

charge and inflow rate, implying that the flow variability in-

creases linearly with the heterogeneity of the inflow rate.

With Eq. (20b), the resulting expression for the evolutionary

power spectral density in Eq. (19) is given by

SQQ(X, t,ω)=
σ 2
q

π

D2

L2

(
υ +

1

µ

)2
[π − 2β exp(−β)]2(

β2+
π2

4

)2

exp(υξ)sin2
(π

2
ξ
)

×
1− 2exp(−τ)cos(ωt)+ exp(−2τ)

ω2+ ρ2

λ

1+ λ2ω2
. (22)

Figure 2 shows the plot of the dimensionless variance of dis-

charge fluctuations in Eq. (21) as a function of dimensionless

time for various dimensionless temporal correlation scales of

inflow rate fluctuations. The figure indicates that the variabil-

ity of flow discharge induced by the variation of inflow rate

increases gradually with time toward its asymptotic value at

large time. The correlation scale provides a measure of the

strength of the persistence of fluctuations around the mean. It

is anticipated that the stochastic processes will exhibit rather

clear trends with relatively little noise (a smoother data pro-

file) if the correlation scale is larger. In other words, the tem-

poral fluctuations in inflow rate are either consistently above

or below the profile of mean inflow rate in the case of a larger

temporal correlation scale. Those larger inclusions in turn

lead to larger deviations of flow discharge from the initially

uniform steady-state flow discharge.

Variation of flow discharge with the distance from the up-

stream boundary is depicted in Fig. 3 according to Eq. (21).

As noted in the figure, the variability of flow discharge grows

monotonically with distance, implying that due to the natu-

rally inherent variability of lateral inflow, uncertainty in the

flow discharge calculations from a deterministic model in-

creases with the distance from the upstream boundary. In
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Figure 3. Dimensionless variance of discharge fluctuations as a

function of dimensionless distance from the upstream boundary.

other words, the prediction of flow discharge distribution

based on the deterministic simulation results is subject to

the largest uncertainty in the downstream region. The down-

stream region is important in most real applications of mod-

eling, and Eq. (21) provides a way of assessing the variation

around the deterministic model prediction.

Many practical applications involving prediction over a

large scale require measurement of uncertainty. Standard de-

viation is the best way to accomplish that. In this sense, the

prediction results from a deterministic model are treated as

the mean values. The mean value plus one standard devia-

tion (square root of Eq. (21) provides a rational basis for ex-

trapolating relatively small-scale field observations to these

large space scales. Moreover, the likelihood of the flow dis-

charge falling in the range of one standard deviation greater

and smaller than the mean is about 68.27 %.

5 Conclusions

The problem of fluctuations in flow discharge in open chan-

nels in response to temporal changes in lateral inflow rate is

investigated stochastically for a finite flow domain. In this

study, the inflow perturbation field is modeled as a tempo-

rally stationary random process. For a complete stochastic

description of flow discharge variability, expressions for the

covariance function and evolutionary power spectral density

of the random flow discharge perturbation process are devel-

oped. These expressions are obtained using a spectral repre-

sentation theory. The variance relation developed here pro-

vides a rational basis for quantifying the uncertainty in ap-

plying the deterministic model.

This work represents an initial step in stochastic study of

the effect of temporal variation of lateral inflow on the stream

flow discharge variability. To take the advantage of a closed-

form solution, the linearized diffusion wave equation (Eq. 2)

is therefore used as the starting point for this research. It is

important to recognize that the results developed in this work

are valid only for the case of small variations in flow dis-

charge around an initially uniform flow regime.

It is found from our closed-form expressions that the dis-

charge variability in stream channels induced by the temporal

changes in lateral inflow rate increases gradually with time

toward its asymptotic value at large time. A larger tempo-

ral correlation scale of inflow rate fluctuations, which is of

a more persistence of inflow perturbation process, will in-

troduce more variability of the flow discharge. The increase

of discharge variability with the distance from the upstream

boundary suggests that prediction of flow discharge distri-

bution in channels using a deterministic model is subject to

large uncertainty at the downstream reach of the stream.
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