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Abstract. During the last decade the opportunity and use-

fulness of using remote-sensing data in hydrology, hydrom-

eteorology and geomorphology has become even more ev-

ident and clear. Satellite-based products often allow for the

advantage of observing hydrologic variables in a distributed

way, offering a different view with respect to traditional

observations that can help with understanding and model-

ing the hydrological cycle. Moreover, remote-sensing data

are fundamental in scarce data environments. The use of

satellite-derived digital elevation models (DEMs), which are

now globally available at 30 m resolution (e.g., from Shuttle

Radar Topographic Mission, SRTM), have become standard

practice in hydrologic model implementation, but other types

of satellite-derived data are still underutilized. As a conse-

quence there is the need for developing and testing tech-

niques that allow the opportunities given by remote-sensing

data to be exploited, parameterizing hydrological models and

improving their calibration.

In this work, Meteosat Second Generation land-surface

temperature (LST) estimates and surface soil moisture

(SSM), available from European Organisation for the Ex-

ploitation of Meteorological Satellites (EUMETSAT) H-

SAF, are used together with streamflow observations (S. N.)

to calibrate the Continuum hydrological model that computes

such state variables in a prognostic mode. The first part of

the work aims at proving that satellite observations can be

exploited to reduce uncertainties in parameter calibration by

reducing the parameter equifinality that can become an issue

in forecast mode. In the second part, four parameter estima-

tion strategies are implemented and tested in a comparative

mode: (i) a multi-objective approach that includes both satel-

lite and ground observations which is an attempt to use dif-

ferent sources of data to add constraints to the parameters;

(ii and iii) two approaches solely based on remotely sensed

data that reproduce the case of a scarce data environment

where streamflow observation are not available; (iv) a stan-

dard calibration based on streamflow observations used as a

benchmark for the others.

Two Italian catchments are used as a test bed to verify the

model capability in reproducing long-term (multi-year) sim-

ulations.

The results of the analysis evidence that, as a result of the

model structure and the nature itself of the catchment hydro-

logic processes, some model parameters are only weakly de-

pendent on discharge observations, and prove the usefulness

of using data from both ground stations and satellites to ad-

ditionally constrain the parameters in the calibration process

and reduce the number of equifinal solutions.

1 Introduction

The estimation of parameters in hydrological models is still

a challenge in hydrology. Much work has been devoted to

determining the best calibration strategy (Yapo et al., 1998;

Madesen, 2000; Kim et al., 2007; Singh and Bardossy, 2012;

Xu et al., 2013) with some trying to evaluate the uncertain-

ties associated with the parameter estimation process (Beven

and Binley, 1992; Vrugt et al., 2003; Carpenter and Geor-

gakakos, 2006; Zappa et al., 2011). This issue has become

even more complex with the increasing use of continuous

and distributed hydrological models. This trend led to a sig-

nificant increase of the number of parameters that need cal-

ibration. A large number of parameters allow for good per-
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formance in the calibration phase, but this can lead to a large

number of equifinal parameter sets (Beven and Binley, 1992)

sometimes hampering the forecast ability of the models.

Traditionally, the calibration of hydrological models re-

quires the appropriate series of historical data, particularly of

streamflow data, which are not easily available everywhere in

the world; this condition aggravates the equifinality problem,

which is higher the lower the observation capacity. Such is-

sues raised the attention of the scientific community, becom-

ing the focus of coordinated scientific initiatives (e.g., predic-

tion in ungauged basin (PUB), a science initiative of the In-

ternational Association of Hydrological Sciences, which was

developed in the period 2003–2012). In a world where the

data sharing capacity is increasing, it seems that the problem

of data shortage for hydrologic model calibration is not going

to disappear; the level gauge stations can be at a limited num-

ber of locations in a catchment and in some areas are very

rare; additionally, in some areas the access to river-discharge

information has been declining since the 1980s (Vörösmarty

et al., 2001).

As a consequence, the use of remote sensing for direct

streamflow measurements has received increased attention

lately although, even if promising in some cases, it faces

various technological, physical and scale limits. The more

straightforward approaches use statistical relationships be-

tween remotely sensed river widths and in situ measurements

(Brakenridge et al., 2005; Pavelsky, 2014) making them suit-

able for the extension of existing historical data, but unus-

able for ungauged sites. The limits are mainly due to the fact

that accurate estimates of streamflow require the availability

of several hydraulic parameters (width, depth, slope, channel

morphology), which are difficult to derive entirely from re-

mote sensing. Simplified models that make use of some of

these parameters introduce uncertainties that limit their ap-

plicability; moreover, the detection of changes in hydraulic

parameters has to do with the spatiotemporal resolution of

the satellite sensors. These models (see Bjerklie et al. (2003)

for a comprehensive review) are therefore not suitable for

detecting changes in discharge for medium to small-scale

basins (Brakenridge et al., 2012).

It is therefore compulsory to look at other possibilities of-

fered by satellite sensors. Nowadays, the remote sensing of

other meteorological, hydrological and ecological variables

is more reliable and widely available at the global scale.

Satellite products such as precipitation, shortwave and long-

wave radiation, atmospheric profiles, vegetation parameters,

land-surface temperature (LST), evapotranspiration (ET) and

digital elevation models (DEMs) are now operational and

widely used in meteorological and hydrological modeling.

Experiments to understand the accuracy of these products

are quite popular (see e.g., Bitew and Gebremichael, 2011;

Brocca et al., 2011a; Crow et al., 2012; Göttsche and Hul-

ley, 2012; Yu et al., 2012; Murray et al., 2013; Zhang et al.,

2013). This kind of data is by now available for a very high

percentage of the earth’s surface, and covers most of the areas

where the density of ground stations is poor. This leads to a

panorama in which estimating the parameters of a hydrolog-

ical model by using only satellite information is a real possi-

bility (Silvestro et al., 2013). However, the ability to calibrate

a model using satellite data, even in combination with tradi-

tional in situ data, is still a challenging topic. Scientific work

in this field goes in many directions: Rhoads et al. (2001)

used satellite-derived LST to validate a land-surface model,

Caparrini et al. (2004) and Sini et al. (2008) assimilated re-

motely sensed measurements into a land-surface model to

estimate the surface turbulent fluxes, Brocca et al. (2011a)

analyzed different remotely sensed soil humidity estimations

with the perspective of using them in hydrological modeling,

White and Lewis (2011) used satellite imagery to monitor

the dynamics of wetlands of the Australian Great Artesian

basin and Khan et al. (2011) have recently proposed a proce-

dure to calibrate a fully distributed hydrological model using

satellite-derived flood maps.

The objective of this work is to analyze the calibration skill

of a distributed continuous hydrologic model by augment-

ing the model constraints with satellite-retrieved data. As a

first analysis, in the context of a classical uncertainty analy-

sis (Beven and Binley, 1992; Shen et al., 2012), it is shown

that using satellite data together with ground station observa-

tions can reduce both parameter uncertainty and equifinality.

The uncertainty analysis is also used here to define parameter

sensitivity to different types of observation, with the goal of

underpinning the importance of having a plurality of obser-

vations that might influence different models parameters in

different ways.

After that, three simple calibration methods were applied

in order to exploit the advantages of utilizing multi-sensor

observations. The first method belongs to the family of the

multi-objective calibration (M. O.) approaches (Efstratiadis

and Koutsoyiannis, 2010) and simultaneously tries to ex-

ploit satellite and streamflow data. The second and third

methods are two attempts at using only satellite data with-

out any streamflow measurements, simulating the case of a

basin in a scarce data environment. These last experiments

are conceived along the lines of Silvestro et al. (2013), but

with a more comprehensive approach that exploits both LST

and SSM estimates from satellites. The results of the pre-

sented methods are then compared with those obtained using

a fourth standard calibration methodology based on stream-

flow data.

The hydrological model used in the study is Continuum

(Silvestro et al., 2013). It is a distributed continuous model

conceived to satisfy the principle of parsimony in parameter-

ization (Perrin et al., 2001; Coccia et al., 2009; Todini, 2009;

Efstratiadis and Koutsoyiannis, 2010) and to be balanced be-

tween a good representation of physical processes and the

simplicity of the schematizations and implementation.

The article is organized as follows: Sect. 2 provides a short

overview of the Continuum hydrological model, the descrip-

tion of the data set used, the parameter uncertainty analysis
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Figure 1. Representation of the different processes described in Continuum model and how different cells are connected. Surface flow is

described by nonlinear and linear motion equations, respectively, on channels (qc) and hillslopes (qh). Two consecutive cells are represented,

each cell has the x and y dimensions that correspond with the spatial resolution of the model.

and the proposed calibration methods. The application and

the analysis of the results are presented in Sect. 3, while Sect.

4 contains discussion and conclusions.

2 Material and methods

2.1 Model overview

Continuum is a continuous distributed hydrological model

that relies on a morphological approach, based on drainage

network component identification (Giannoni et al., 2000,

2005). These components are derived from DEMs. The DEM

resolution drives the model spatial resolution. Flow in the

soil is divided first into a sub-surface flow component that

is based on a modified Horton schematization (see Gabellani

et al., 2008 for details) and that follows the drainage net-

work directions; and second into a deep flow component that

moves following the hydraulic head gradient obtained by the

water-table modeling. The surface flow schematization dis-

tinguishes between channel and hillslope flows. The overland

flow (hillslopes) is described by a linear reservoir scheme,

while the channel flow (channel), a schematization derived

by the kinematic wave approach (Wooding, 1965; Todini and

Ciarapica, 2001), is used. The energy balance is solved ex-

plicitly at cell scale by means of the force–restore equation,

which allows the LST to be a distributed state variable of the

model (e.g., Lin, 1980; Dickinson, 1988; Sini et al., 2008).

For further details on the model please refer to Silvestro et

al. (2013).

Various authors highlighted the importance of reducing the

model parameterization and maintaining a stable and simple

structure (Montaldo et al., 2005; Coccia et al., 2009; Todini,

2009; Brocca et al., 2011b). The design of Continuum fol-

lows the philosophy of finding a balance between a detailed

description of the physical processes and a robust and parsi-

monious parameterization (Fig. 1).

Leaf area index (LAI) is used to parameterize the storage

capacity of the vegetation (Kozak et al., 2007).

Continuum has six parameters that need calibration at the

basin scale: two for the surface flow, two for the sub-surface

flow and two for deep flow and the water table. In Table 1 the

calibration parameters are listed and linked to the physical

processes parameterized.

The hillslope flow motion parameter uh influences the gen-

eral shape of the hydrograph, while the impact of uc on the

hydrograph shape depends on the length of the channeled

paths. These are two lumped parameters: uc represents the

friction coefficient in the channel motion equation; uh ac-

counts for the general characteristics of the hillslope that in-

fluence the motion (e.g., friction, slope) and is more an em-

pirical parameter (see Fig. 1).

The parameter ct is related to the soil field capacity Vfc and

identifies the fraction of water volume in the soil that can be

extracted only through evapotranspiration. The relationship

is
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Table 1. The parameters of Continuum model that need calibration

at basin scale are reported with a brief description.

Parameter Physical process parameterized

uh [s
−1
] Flow motion in hillslopes

uc [m
0.5 s−1

] Friction in channels

cf [−] Infiltration capacity at saturation

ct [−] Mean field capacity

Rf [−]
Anisotropy between the vertical and horizontal

saturated conductivity and soil porosity

VWmax
[mm] Maximum storage capacity of the aquifer

Vfc = ctVmax, (1)

where Vmax is the maximum capacity of the soil to storage

water in the root zone.

The infiltration capacity parameter cf controls the velocity

of sub-surface flow (i.e., it is related to saturated hydraulic

conductivity), defining the asymptotic minimum infiltration

rate for saturated soils f1 with the following equation

f1 = cff0, (2)

where f0 is the maximum infiltration rate for completely dry

soil.

The parameters ct and cf regulate the dynamics of satura-

tion at cell scale. Since both f0 and Vmax are distributed pa-

rameters estimated as functions of curve number (Gabellani

et al., 2008), the pattern of f1 and Vfc is spatially modulated

by the pattern of curve number maps (Silvestro et al., 2013)

which are a synthetic representation of the local soil proper-

ties.

The parameters VWmax and Rf govern the deep flow and

the water-table dynamic (Silvestro et al., 2013). VWmax rep-

resents the absolute maximum water content of the aquifer

on the whole investigated area; the maximum water content

on each cell is estimated based on VWmax and on the slope

(Saulnier et al., 1997). Rf is a multiplicative factor in the

Darcy equation used to estimate the flux per unit area be-

tween two contiguous cells and mainly takes care of differ-

entiating the saturated vertical and horizontal conductivity.

These two parameters have a reduced influence compared to

the other four parameters because of the slow temporal dy-

namic of the water table. The sensitivity to Rf increases with

the total basin drainage area when the effect of the interac-

tion between the water table and the vadose zone becomes

crucial in the formation of the recession curve between the

rainfall events (Silvestro et al., 2013).

Continuum accounts for LST as an explicit state variable

and allows for the estimation of the soil moisture in the root

zone as the saturation degree (SD), which is defined here by

the ratio of the actual soil water content V (t) and the maxi-

mum storage capacity Vmax (see Fig. 1):

SD=
V (t)

Vmax

. (3)

Both of these variables are represented at DEM spatial reso-

lution.

The snow-melting process was not considered in Silvestro

et al. (2013); since multi-year simulations are carried out in

this work, a simple snow-melting model has been introduced

and described in Appendix A.

2.2 Data set

The first test case is the Orba basin that is located in the

Apennine part of the Piemonte region (Italy). It has a to-

tal area of approximately 800 km2 and is a tributary of the

Tanaro River (Fig. 2).

The Piemonte and Liguria region’s meteorological net-

works monitor the basin. Data from rain gauges, thermome-

ters, hygrometers, shortwave radiometers and anemome-

ters are available with a temporal resolution of 1 h. Two

stage-gauging stations are working with maintained stage-

discharge rating curves; the two stations are located quite far

from each other along the river: Tiglieto in a head catchment

(drained area: 75 km2) and Casalcermelli near the basin out-

let (drained area: 800 km2).

For this application, we extended the data set used in Sil-

vestro et al. (2013). The chosen period starts on 1 June 2006

and ends on 31 December 2011. The first 5 months of 2006

are used as the model warm-up period.

The second test case is the Casentino basin (Fig. 2). It is

a head catchment of the Arno River basin located in Tus-

cany. The watershed is located in the central Apennines with

an elevation that ranges between 200 and 1600 m a.s.l. The

mountainous part of the basin is mainly covered by forest,

while cultivated fields or zones with low vegetation primar-

ily makeup the flat areas. Urban areas cover a low percentage

of the territory.

The two basins are only marginally impacted by snowfall

and snow cover during winter.

The meteorological network of the Tuscany region pro-

vides rainfall, air temperature, air humidity, solar radiation

and wind speed and direction with a temporal resolution of

1 h. Only one stage-gauging station (Subbiano) is working

with a maintained stage-discharge rating curve; the gauge

is located in the flat area of the basin at about 10 km from

the confluence of the Casentino River along the Arno River

(drained area 670 km2). The period of simulation ranges

from 1 June 2005 to 31 December 2011. The first 5 months

of 2005 are used to warm up the model.

In both cases the period has been chosen based on the

data availability and in order to have reliable stage-discharge

curves to estimate the observed streamflow.

The model temporal resolution is set to 1 h as the micro-

meteorological observations; the surface flow needs a finer

time step for computational stability reasons and it was fixed

to 30 s.
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Figure 2. Location of the study areas. The Orba basin (in red) in the north-west of Italy and the Casentino basin (in yellow) in central Italy.

The remote-sensing data employed to implement the

model and set additional constraints to the model parameters

are

– the Istituto Geografico Militare (IGM) DEM used to ex-

tract the basin morphological parameters (http://www.

igmi.org/prodotti/datinumerici/datimatrix.php);

– Land Surface Analysis Satellite Applications Facil-

ity (LSA-SAF) LST product retrieved from Meteosat

Second Generation (MSG) observations (http://landsaf.

meteo.pt);

– SM-OBS-1 surface soil moisture (SSM) retrieved from

advanced scatterometer (ASCAT) (Wagner et al., 2013)

and distributed within the European Organisation for

the Exploitation of Meteorological Satellites (EUMET-

SAT) Satellite Application Facility on Support to Op-

erational Hydrology and Water Management (H-SAF)

program used as a benchmark to be compared with the

model output (http://hsaf.meteoam.it);

– LSA-SAF LAI to parameterize the vegetation cover.

The DEM resolution is 0.0011◦ (about 100 m). The model

spatial resolution is set equal to the DEM resolution. LST

estimations are provided by LSA SAF of EUMETSAT (EU-

METSAT, 2009). LST data have been available every 15 min

with a spatial resolution of approximately 0.04◦ (about

4.5 km) since 2009. In order to compare model and satel-

lite data, the approach followed by Silvestro et al. (2013) has

been adopted. It allows LST obtained from the model to be

projected to the same geometry of the satellite observations.

In order to carry out comparison at basin scale the mean of

the pixel values has been used:

LST=
1

N

N∑
i=1

LSTi, (4)

where N is the number of cells of the spatial grid, and LSTi
the LST of ith cell. The comparison is carried out at those

instants where both model and satellite data are available (1 h

resolution) and if at least 50 % of satellite pixels that cover

the basin have reliable data (e.g., in case of bad weather no-

data values can be found in satellite product).

The H-SAF SM-OBS-1 product consists of European

maps of large-scale SSM retrieved from ASCAT, the active

microwave sensor, which flies on board two polar-orbiting

Meteorological Operational (METOP) satellites. This prod-

uct gives soil moisture estimates across different test sites in

Europe, the Americas and Africa (Brocca et al., 2010; Al-

bergel et al., 2012). EUMETSAT makes the product avail-

able, from 3 June 2009, in near real time with a spatial res-

olution of approximately 25 km and a revisit time of twice a

day.

The SSM have been re-sampled to the model resolution us-

ing the nearest neighbor method. SM-OBS-1 (H07) data with

quality flag (provided with the product) greater than 15 were

discarded. Since the product is referred to the first centime-

ters of soil, the soil water index (SWI) method, developed by

Wagner et al. (1999), was applied to SSM satellite data to ob-

tain an estimate of the saturation degree in the root zone. This

filter allows the SSM estimates to be related to the profile soil

moisture content. It relies on the assumption that the varia-
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tion in time of the average value of the soil moisture profile

is linearly related to the difference between the surface and

the profile values. In this study a simple recursive formula-

tion of the method was used (Stroud, 1999; Albergel et al.,

2008) and the characteristic time length T , which represents

the timescale of soil moisture variation (Wagner et al., 1999),

was considered equal to 10 days. Since in situ soil moisture

measurements are not available and the soil properties are not

known quantitatively with high detail, the parameter T was

set to a priori value that was estimated, as an order of mag-

nitude, using the definition of T from Wagner et al. (1999)

and also from Parajka et al. (2006) based on the mean soil

characteristics of the considered catchments as described in

the model (the average potential soil moisture capacity of the

considered basins is around 150–170 mm; assuming a poros-

ity of 0.3, a pseudo diffusivity of 10 days would then translate

into a wetting front celerity of around 50 mm per day which

is a reasonable value for these soils). The SWI was then

rescaled to model climatology using a minimum–maximum

correction technique (Brocca et al., 2013). After the rescal-

ing, the mean SWI at basin scale was computed as a simple

average of the values of pixels that cover the basin and used

for comparison with model SD. The comparison is carried

out at those instants where both model and satellite data are

available (twice a day) and if at least 50 % of satellite pixels

that cover the basin have reliable data (quality flag greater

than 15). LAI maps were produced with a temporal update

of 15 days as averaged values of daily LSA-SAF maps at a

spatial resolution of 0.04◦ (EUMETSAT, 2008) and gridded

with the nearest neighbor method on model resolution.

2.3 Statistics and scores

A series of statistics and scores are used to carry out the un-

certainty analysis, the calibration and the validation of the

Continuum model. They are presented and described in this

section. A different subsection is used for each of the three

considered observable variables: streamflow, LST and SWI.

2.3.1 Streamflow

The Nash–Sutcliffe (NS) coefficient (Nash and Sutcliffe,

1970) was chosen as the main likelihood function since it

is one of the most widely used measures to evaluate model

performances in hydrology:

NS= 1−

tmax∑
t=1

(Qm(t)−Qo(t))
2(

Qm(t)−Qo

)2 , (5)

where Qm(t) and Qo(t) are the modeled and observed

streamflows at time t . Qo is the mean observed streamflow.

Five other scores were evaluated to assess the model per-

formance (Madsen, 2000; Batholomes and Todini, 2005):

the Chiew–McMahon (CM) coefficient (Chiew and McMa-

hon, 1994):

CM= 1−

tmax∑
t=1

(√
Qm(t)−

√
Qo(t)

)2(√
Qm(t)−

√
Qo

)2
; (6)

the root mean square error (RMSE):

RMSE=

√√√√ 1

tmax

tmax∑
t=1

(Qm(t)−Qo(t))
2
; (7)

the correlation coefficient (CORR):

CORR=

tmax∑
t=1

(
Qm(t)−Qm

)
·

tmax∑
t=1

(
Qo(t)−Qo

)
√√√√(tmax∑

t=1

(
Qm(t)−Qm

)2)
·

(
tmax∑
t=1

(
Qo(t)−Qo

)2) , (8)

where Qm is the mean modeled streamflow;

the relative error (Rel. Err.):

Rel. Err.=
1

tmax

tmax∑
t=1

|Qm(t)−Qo(t)|

Qo(t)
; (9)

the peak flow relative error (PFRE):

PFRE=
1

Npeaks

Npeaks∑
tp=1

Qpm(tp)−Qpo(tp)

Qpo(tp)
, (10)

where Qpm(tp) and Qpo(tp) are the modeled and observed

peak flows. The peak flows are selected considering the val-

ues larger than a fixed threshold Qth.

NS, CM and CORR indicate good matching between

model and observations when they are close to 1, and RMSE,

Rel. Err. and PFRE when they tend to 0.

2.3.2 Land-surface temperature

The bias between modeled and satellite-derived LST was

considered as a skill score:

BIAS=
1

tmax

tmax∑
t=1

∣∣∣LSTm(t)−LSTs(t)

∣∣∣ , (11)

where LSTm(t) and LSTs(t) are the modeled and satellite

LST averaged at basin scale at time t .

We used the BIAS in order to check the capability of the

model to reproduce the mean LST on the selected period,

more than it would for the overall shape of the time series.

2.3.3 Soil water index

We considered NS as a score to evaluate the performances

of the model to reproduce the SWI derived by the satellite
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observations. In this case, considering SD and SWI to be di-

rectly comparable, (SD≡SWI) NS is defined as

NS= 1−

tmax∑
t=1

(
SWIm(t)−SWIs(t)

)2

(
SWIm(t)−SWIs

)2
, (12)

where SWIm(t) and SWIs(t) are the modeled and satellite

SWI averaged at basin scale at time t .

SWIs is the satellite SWI averaged in space and time.

2.4 Experimental setup

2.4.1 Uncertainty analysis

The issue of model parameter uncertainty and sensitivity has

been one of the main themes of scientific discussions over

the last 30 years. Many authors faced the problem following

different approaches (see e.g., Beven and Binley, 1992; Liu

et al., 2005; Carpenter and Georgakakos, 2006; Zappa et al.,

2011; Rakovec et al., 2014), but it is widely accepted and

recognized that parameter uncertainty is inevitable and that

an optimal set of parameters rarely exists that allows for the

best performance of the model in every condition; generally,

there are multiple sets of parameters able to give similar re-

sults and which are therefore equivalent if the final aim is

identified, i.e., the so-called equifinality (Savenije, 2001).

In this work, we did not carry out a full predictive uncer-

tainty analysis, but we analyzed the parameter uncertainty

based on equifinal realizations obtained by a Monte Carlo

experiment; hence to achieve this some concepts of the gen-

eralized likelihood uncertainty estimation (GLUE) method

(Beven and Binley, 1992) are used, similarly to what was

done by Zappa et al. (2011) and Shen et al. (2012). Finally,

we made reference to the work of Liu et al. (2005) in order

to estimate the probability of parameter couples conditioned

to the observations.

The concepts of the GLUE approach are applied using

objective functions (scores) based on streamflow, LST and

SWI in order to analyze how these variables, which are mod-

eled by Continuum and measured through ground-based or

remote measurement systems, are related to the model pa-

rameters. The main objective of the analysis is to study the

dependence of each single parameter from the observed vari-

ables in order to pinpoint the importance of the different ob-

servations in determining the parameter set performing best

in reproducing the full set of observations.

The uncertainty analysis has been done in the Orba basin

by considering the four most sensitive parameters of the

model as in Liu et al. (2005) (ct , cf, uc, uh; for Continuum,

see Silvestro et al., 2013, for details).

First, the analysis based on streamflow is done using NS as

likelihood function (Eq. 5). The sampling space of the four

parameters was defined by combining the literature (Beven

and Binley, 1992; Liu et al., 2005; Zappa et al., 2011; Shen et

Table 2. Range of variability of the parameters used in the calibra-

tion and uncertainty analysis.

Parameter Unit Min Max

ct [−] 0.15 0.65

cf [−] 0.015 0.1

uc m0.5 s−1 15 55

uh 1/s 0.0002 0.0015

al., 2012) with the results of the preliminary sensitivity anal-

ysis done by Silvestro et al. (2013) and considerations on the

role and physical meaning of the parameters themselves. In

Table 2 the range of variability of the parameters is reported.

The other two parameters were set based on physically

reasonable values (due to the morphology and the soil type

of the basins) assuming that there is no additional informa-

tion about them. VWmax is set equal to 2000 mm, and Rf is set

equal to 1, which indicates a weak anisotropy between verti-

cal and horizontal saturated conductivity. These two param-

eters, which represent deep soil processes, are only weakly

related to the processes that influence LST and SWI obser-

vations and hence they are unlikely to be influenced by the

chosen calibration strategy.

The analysis was done by simulating the four parameters

ct , cf, uc, uh, and generating a set of 3000 streamflow sim-

ulations for the sub-period 16 August 2006 to 30 Septem-

ber 2006. The parameters have been extracted from a multi-

uniform distribution bound in the domain of the parameters.

The chosen sub-period includes various streamflow regimes.

As a further method to deepen the parameter uncertainty

assessment the original data were transformed into a Gaus-

sian space and ranked in increasing order once standardized

(see Liu et al., 2005, for details). Observed and modeled data

are then related as follows:

ηo = ηs+ ξ , (13)

where ηo and ηs are the normalized vectors of observed and

modeled streamflow with 0 mean and unit variance, and ξ is

the error vector. The likelihood function Lj for the j th pa-

rameter set after Imax simulation steps can be expressed as

(Xu et al., 2013)

Lj = exp

(
−

1

2
·

Imax∑
i=1

ξ2
i,j

)
. (14)

This function, when properly scaled, can be considered as the

posterior parameter probability density.

Similarly to what has been done with streamflow data,

by comparing modeled and satellite-derived LST and SWI

(mean at basin scale) it is possible to carry out the uncertainty

analysis to understand how these two variables are related to

the model parameters.
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In the case of LST the considered analysis period is

August–September 2009. The BIAS between modeled and

satellite-derived LST was considered as a skill score.

The procedure was then applied to the ASCAT SSM data

after their transformation in SWI (Wagner et al., 1999). The

considered period is August–October 2011. The model SD

and the satellite SWI maps have been averaged at basin scale

and the resulting time series have been used to compute the

NS that, as for the hydrograph, has been considered as a score

to evaluate the performances of the model in reproducing the

SWI derived by the satellite observations.

2.4.2 Parameters estimation methodologies

To investigate the different ability of traditional streamflow-

based and satellite-based calibration methods in identify-

ing soil parameters is one of the objectives of this study.

For this purpose, three satellite-driven calibration method-

ologies have been designed and benchmarked to a standard

streamflow-based methodology for the detection of the most

sensitive and impacting parameters of the model (uc, uh, ct ,

cf).

Calibration based on streamflow observations (S. N.):

the benchmark

A methodology based on the maximization of the Nash–

Sutcliffe coefficient between observed and modeled stream-

flow time series has been considered as a benchmark in order

to compare the methods described in the next two subsections

with a more standard approach; hence, hereafter we will call

this method S. N.

Multi-objective calibration (M. O.)

The M. O. approach has been designed in order to exploit

the use of all the information available for the calibration

process that is generally represented by different observed

variables. The method is based on the setup of a multiple ob-

jective function such that

Min {F1(θ),F2(θ), . . . Fn(θ)} with θ ∈2. (15)

θ is restricted to the feasible parameter space 2 (Mad-

sen, 2000; Kim et al., 2007; Efstratiadis and Koutsoyiannis,

2010).

This calibration approach is based, in our case, on the

comparisons of (ground or satellite) observed vs simulated

streamflow, LST and SWI.

The multi-objective function is designed through the fol-

lowing single objective function:

F1 =

[
tmax∑
t=1

(Qm(t)−Qo(t))
2

(Qm(t)−<Qo >)
2

]
, (16)

F2 =

[
tmax∑
t=1

|LSTm(t)−LSTs(t)|

]
, (17)

F3 =

[
tmax∑
t=1

|Qm(t)−Qo(t)|

Qo

]
Qo>QT

, (18)

F4 =

[
tmax∑
t=1

(SWIs(t)−SDm(t))
2

(SWIs(t)−< SDm >)
2

]
, (19)

whereQ is the streamflow; LST the mean LST at basin scale;

SWI and SD are the mean of soil water index and SD at basin

scale; subscripts m, o and s indicate model, gauge observa-

tions and satellite estimation, respectively; t is the time; and

QT is a discharge threshold. Different periods for LST, SWI

and Q could be considered in order to choose the most suit-

able time window in terms of availability of data and good

representativeness of the variable dynamic.

Following Madsen (2000), the n (where n= 4) contribu-

tors Fi have been combined in the following way:

Fadj =

[
(F1+A1)

2
+ . . .(Fn+An)

2
]0.5

, (20)

where the transformation factor Ai is calculated as

Ai =MAX(Fj,min; j = 1,2, . . . n)−Fi,min. (21)

Fadj (Eq. 20) consists in four terms and Ai , . . . An have the

role of balancing the weights of the different objectives that

can have, as in the presented application, different ranges and

units.

The term F1 depends on the streamflow and it is the com-

plement to 1 of the Nash–Sutcliffe coefficient; the term F2

depends on LST and it is the mean of the absolute errors (ab-

solute BIAS) calculated at each time step; F3 is a relative

error estimated on streamflow values larger than a threshold

and it is useful to reproduce flow peaks, and F4 depends on

the soil humidity and it is the complement to 1 of the Nash–

Sutcliffe coefficient. The different terms have also been cho-

sen to be consistent with the results shown in the uncertainty

analysis. All the components tend to 0 when simulated and

observed variables coincide, so that the calibration process

consists in the minimization of the function Fadj. The result-

ing parameters set is representative of a balance point of the

multi-dimensional Pareto front due to the different compo-

nents of the multi-objective function (Madsen, 2000, 2003).

The introduction of remotely sensed LST and SWI in a

multi-objective calibration is a new approach since objective

functions are usually based on parameters related to observed

hydrographs (e.g., total volume as in Yapo et al., 1998; Ef-

stratiadis and Koutsoyiannis, 2010). This approach follows

and improves the investigations carried out by other authors

(Crow et al., 2003; Santanello et al., 2007; Koren et al., 2008;

Flores et al., 2010; Montzka et al., 2011; Ridler et al., 2012;

Corbari and Mancini, 2014; Sutanudjaja et al., 2014; Wan-

ders et al., 2014) who attempted to combine, in the calibra-
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Table 3. Characteristics of the synthetic rainfall events used for the estimation of the two surface parameters in the R. S. approach. The event

length is set depending on the considered basins and sections. Sections with smaller upstream drainage area are used to estimate uh while

sections with larger area to estimate uc.

Parameter Pcum [mm] Reference Area tlo Duration

section [km2
] [h] [h]

uh [s
−1
] 10, 20, . . . , 60, 70 Tiglieto 75 4.5 4

uc [m
0.5 s−1

] 10, 20, . . . , 60, 70 Casalcermelli 800 11.6 10

uh [s
−1
] 10, 20, . . . , 60, 70 Upstream (no gauge) 58 2.98 4

uc [m
0.5 s−1

] 10, 20, . . . , 60, 70 Subbiano 670 8.4 9

Figure 3. Scheme of calibration of the surface parameters in

R. S. approach based on the reproduction of the basin lag time at

two different closure sections using synthetic rainfall events. A first-

guess uc is used to calibrate uh on section S1, this latter is used to

calibrate uc on S2, then the procedure is iterated for N times.

tion process, remote-sensed and in situ observations of vari-

ables other than streamflow. The target here is not applying

and testing quite sophisticated or complex algorithms for cal-

ibration, like those described in Yapo et al. (1998) or Vrugt

et al. (2003), rather to assess if the use of satellite observa-

tions leads to an advantage in model calibration with respect

to its capability of simulating discharge values. Here, a very

simple brute-force calibration approach was used.

Remote-sensing data calibration approach (R. S.)

When no streamflow data are available, we can still calibrate

the model on satellite data, LST or SWI (derived by SSM),

and on the morphologic characteristics of the basin extracted

from the DEM. This methodology was presented in Silve-

stro et al. (2013) with respect to LST and it investigates the

possibility of calibrating a subset of model parameters in an

ungauged basin. Since it can be applied using LST or SWI

we have two calibration methods to be tested.

The morphologic characteristics mainly influence the sur-

face flow while LST and SWI are more related to sub-surface

flow.

The estimation of the overland and channel flow param-

eters is carried out by using geomorphological information

derived from the DEM. The methodology is described in Sil-

vestro et al. (2013), and we synthetically report its descrip-

tion in the following steps and in Fig. 3:

1. Step 1: identify a formulation to estimate the typical

lag time (tlo: temporal distance between the center of

mass of the hydrograph and the center of mass of the

mean hyetograph) of a basin based on its main morpho-

logic characteristics. The soil was considered to be com-

pletely impermeable so that the sub-surface and deep

flow parameters (ct , cf, Rf and VWmax ) therefore become

irrelevant.

2. Step 2: identify two sections along the streamline of the

basin, one at the head of the basin and the other down-

stream. Estimate the time lag, tlo based on the DEM and

geographical information.

3. Step 3: generate a set of synthetic events with constant

intensity in space and having a duration equal to the typ-

ical response time of the basin closed at the abovemen-

tioned sections (see Table 3).

4. Step 4: set a first estimate for the value of uc and cali-

brate uh for each value of Pcum referring to the upstream

section, using the objective function to minimize:

Of= |tlo− tlm| , (22)

where tlo is the tl derived by the geomorphologic char-

acteristics of the basin while tlm is the tl obtained from

the model simulations. Calculate the average of the uh

values.

5. Step 5: fix uh and calibrate uc as in Steps 3 and 4, refer-

ring this time to the downstream section.

6. Step 6: iterate the process until it converges.

According to Silvestro et al. (2013), it is possible to sepa-

rate the calibration of the two surface flow parameters. In the

case of the head section with reduced paths in the channel-

ized network, the influence of uc is scarce; as a consequence,

an average value of uc can be set and the calibration can be

done only for uh. The value of uc is then calibrated based on

data from a downstream section with a longer channelized
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Table 4. Summary of the periods considered for the calibration pro-

cess for each variable. In the case of M. O. approach the three peri-

ods are merged.

Basin Q LST SWI

Orba Aug–Oct 2006 Jul–Oct 2009 Jul–Nov 2011

Casentino Sep–Dec 2005 Jul–Oct 2009 Jul–Nov 2011

network. This procedure is iterated as shown in Fig. 3. Usu-

ally 3–4 iterations are sufficient for a good convergence of

the process.

Once the surface flow parameters are estimated, the sub-

surface soil parameters can be evaluated optimizing a proper

score between satellite derived and modeled LST (Silvestro

et al., 2013) or SWI. In this case we considered the BIAS and

Nash–Sutcliffe coefficient at basin scale as scores for LST for

SWI, respectively.

2.4.3 Calibration settings

In both test cases a calibration period has been chosen for

each variable (Streamflow, LST, SWI). Using a same period

for all the variables is not always the best option, in fact they

describe components of the hydrological cycle that need to

be sampled in different periods of time; moreover, in cer-

tain cases data are available on different periods that do not

always overlap. Furthermore, it is interesting to understand

what kind of results can be achieved reducing the length of

calibration periods but augmenting the number of observed

variables. Alternatively, in the case data are available, one

could work on longer periods of time that ensure to catch the

seasonality of the hydrological processes but with the disad-

vantage of lengthening the calculation time.

The four calibration strategies that have been compared

are the following:

– The standard approach S. N. described in the “Cali-

bration based on streamflow observations (S. N.): the

benchmark” section.

– The M. O. strategy described in the “Multi-objective

calibration (M. O.)” section (in this case the calibration

periods of the different observations are merged).

– The R. S. approach described in the “Remote-sensing

data calibration approach (R. S.)” section using the

satellite LST as comparison data. Hereafter we will call

this strategy R. S. (LST).

– The R. S. approach described in the “Remote-sensing

data calibration approach (R. S.)” section using SWI es-

timation derived from satellite SSM as comparison data.

Hereafter we will call this strategy R. S. (SWI).

The periods used for calibration are chosen in order to bal-

ance the following characteristics:

– have the presence of different streamflow regimes and

soil moisture conditions;

– presence of extreme conditions: e.g., flood and drought

periods;

– presence of reliable data, especially for SWI and LST

comparison;

– having periods’ length manageable in terms of compu-

tational time.

In the case of the Orba basin the calibration was carried out

considering the period July–October 2009 for LST compari-

son, July–November 2011 for SWI comparison and August–

October 2006 for streamflow comparison (in this latter pe-

riod, two intense events preceded by periods of droughts oc-

curred; as a result, the model is forced to work under ex-

treme conditions). The streamflow threshold used in the third

component of the M. O. function is QT= 200 m3 s−1. Val-

idation of multi-annual simulations were carried out using

the parameters calibrated with the proposed methodologies.

The validation period is from 1 January 2006 to 31 Decem-

ber 2011; the first 5 months were used for the model warm-

up.

In the case of the Casentino basin the calibration was

carried out considering the July–October 2009 for LST

comparison, July–November 2011 for SWI comparison and

September–December 2005 for streamflow comparison. The

periods were chosen based on the same constraints presented

for the Orba case study (see previous paragraph). The stream-

flow threshold used in the third component of the M. O. func-

tion was QT= 200 m3 s−1. The validation period is from

1 January 2005 to 31 December 2011; the first 5 months were

used for the model warm-up.

Table 4 summarizes the calibration periods for the two test

cases.

3 Results

3.1 Uncertainty analysis

Each score based on streamflow data, and presented in

Sect. 2.3.1, can be influenced differently by different flow

regimes and hydrograph characteristics; therefore, for each

simulation the NS was plotted against the other scores

(Zappa et al., 2011); the results are reported in Fig. 4 and the

graphs show that in all cases there are sets of behavioral pa-

rameters (Beven and Binley, 1992) that give similarly good

values of the scores, indicating good simulation of the ob-

served streamflow series.

In Fig. 5, the dotty plots of the four parameters are re-

ported. Each graph shows the NS value as a function of the

parameter values. The variability of NS for a single parame-

ter is quite high. In the case of the two surface parameters, uc

and uh (upper subplots in the figure), a maximum for NS can

Hydrol. Earth Syst. Sci., 19, 1727–1751, 2015 www.hydrol-earth-syst-sci.net/19/1727/2015/



F. Silvestro et al.: Uncertainty reduction and parameter estimation of a distributed hydrological model 1737

Figure 4. The Orba basin, August–September 2006. NS on the hydrographs (x axis) versus other statistics (y axis): Chiew–McMahon

coefficient (CM), root mean square error (RMSE), the correlation coefficient (CORR) and the relative error (Rel. Err.). The graphs show that

in all cases there are sets of parameters that give similarly good values of the compared scores.

be identified, while for ct and cf the behavior of NS is quite

homogeneous for all the values in the physically acceptable

range. This indicates that uc and uh are closely linked to the

streamflow simulation in the model regardless of the other

parameter values, while the impact of cf and ct in the dis-

charge follows more complex paths, and it is hard to iden-

tify such parameters by matching the streamflow time series

alone. For values of uc greater than 30–35 m0.5 s−1 and val-

ues of uh greater than 7–9 s−1, the values of the NS coeffi-

cient seem to be uniformly distributed over a large range, this

indicates that different combinations of the two parameters

can lead to very different performances. For lower values of

uc and uh, the NS coefficient converges to high values high-

lighting a minor variability of the score and general better

performances.

Simulations with NS lower than a fixed threshold

(NS= 0.4) are considered non-behavioral according to Shen

et al. (2012). By sorting the discharge time series accord-

ing to NS values it is possible to evaluate the percentiles at

each time step and show the uncertainty in terms of confi-

dence intervals. In Fig. 6, the 10 and 90 % confidence limits

are reported for two time windows across the main stream-

flow events, which occurred in the considered period. The

results show that the observed streamflow lays at the 90 %

limit; therefore, a parameter configuration that allows for the

reproduction of flow observations exists at any time. Most of

the observed hydrographs, and specifically the peak flow, lay

in the 10 % limits. Part of the receding curve is not included

showing some limited ability of the model in the representa-

tion of the processes related to the drainage of the soil and

aquifers.

The results of the analysis done using the likelihood func-

tion represented by Eq. (14) are presented in Figs. 7 and 8

where the probability density is plotted considering two pa-

rameters at a time. In this case, a more evident concentra-

tion of the likelihood function appears when compared to the

dotty-plot representation of the NS score presented in Fig. 5.

This is again valid, especially if the case of parameters uc

versus uh is considered (Fig. 7). Nevertheless, various rela-

tive maximums of the likelihood function are present.

The uncertainty analysis using skill scores based on

streamflow provides evidence of the presence of equifinal

sets of model parameters, this behavior can be found in other

continuous and distributed models; nevertheless, there is a re-

duced number of parameter sets that generate evidently bet-

ter performances among all the possible configurations ran-

domly generated. This raises the necessity of finding addi-

tional constraints to improve the estimation of the parame-

ters. The focus was then placed on two meteo-hydrological

variables whose observations are now widely available from

remote-sensing techniques: LST and SWI.
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Figure 5. The Orba basin, August–September 2006. Dotty-plot representation of the NS on the hydrographs. Each subplot reports the

parameter value on x axis and the value of NS statistic on y axis. The surface parameters, (a) and (b), have quite clear ranges where NS

reaches maximum values independently from other parameters. This does not occur for sub-surface flow parameters, (c) and (d).

Figure 6. The Orba basin, August–September 2006. Confidence intervals compared with observed streamflow. Two representative periods

are shown. x axis reports time while y axis reports streamflow. Observed streamflow is compared with the confidence intervals based on NS

statistic and the ensemble mean.
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Figure 7. The Orba basin, August–September 2006. Example of a

two by two sensitivity analysis: surface parameters, uc versus uh.

On x and y axis the values of the two parameters are reported while

on z axis the parameter likelihood is shown.

By comparing modeled and satellite-derived LST (mean at

basin scale), it is possible to build dotty-plot representations

similar to those presented in Fig. 5 but using the BIAS score

(Eq. 11). Figure 9 shows that it is almost impossible to find

a well defined or unique set of surface parameters that min-

imize BIAS on LST. The same considerations can be done

for cf. The ct shows an evident trend: this is reasonable since

this parameter strongly influences the time of permanence of

water in the soil and the LST diurnal dynamics (Caparrini et

al., 2004; Sini et al., 2008; Silvestro et al., 2013).

Finally, the time series obtained by averaging at basin

scale the model SD and the satellite SWI maps have been

used to build a dotty-plot graph using NS described in

Eq. (12) as score (Fig. 10). The maximum of NS lies in

the range 0.45–0.55 of the parameter ct ; and a weak, but

quite evident independence of cf arises with optimal values

around 0.015–0.025 (close to the lower limit of the param-

eter range). In both cases the NS values are in a quite nar-

row range in correspondence of the aforementioned parame-

ter ranges.

The values of the parameters individuated by the LST and

SWI analysis are consistent with some of the best equifinal

parameter combinations on the basis of the streamflow anal-

ysis.

3.2 Calibration and validation on multi-yearly

simulations

The results of the uncertainty analysis presented in Sect. 3.1

show that it is possible to use ground and remote-sensing

observations in order to reduce equifinality of the parame-

ters defining the hydrological model. The analysis evidences

Figure 8. The Orba basin, August–September 2006. Example of a

two by two sensitivity analysis: sub-surface parameters, ct versus

cf. On x and y axis the values of the two parameters are reported

while on z axis the parameter likelihood is shown.

Table 5. The Orba basin parameters were calibrated following the

different approaches: using the multi-objective function (M. O.),

remote-sensing data and morphologic characteristics (R. S.), and

the standard hydrographs comparison (S. N.). The table reports the

values obtained by the 4 different calibration strategies.

Basin Orba

Parameter S. N. R. S. (LST) R. S. (SWI) M. O.

uc [m
0.5 s−1

] 29.0 29.42 29.42 29.92

uh [1/s] 0.00052 0.000458 0.000458 0.00041

ct [−] 0.52 0.56 0.58 0.40

cf [−] 0.020 0.030 0.018 0.020

that is possible to identify relatively narrow ranges of pa-

rameters’ values that optimize the scores based on different

observations, each parameter being mainly linked to one or

more observed variables and less to others. The uncertainty

analysis also highlights that streamflow-based calibration of-

fers very limited capability to detect soil parameters and that

satellite-based observations deliver a complementary capa-

bility in this respect. To exploit this opportunity, the three

parameters estimation methodologies presented in Sect. 2.4.2

that use satellite data have been tested and compared with the

more standard calibration method based on streamflow data

described as well in Sect. 2.4.2.

3.2.1 The Orba basin

The sets of parameters obtained by the four calibration strate-

gies are reported in Table 5.
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Figure 9. The Orba basin, August–September 2009. Dotty-plot representation of the BIAS on mean LST at basin scale. Each subplot reports

the parameter value on x axis and the value of BIAS statistic on y axis. The parameter ct (c) has a quite clear range where BIAS reaches

minimum values independently from the other parameters. This does not occur for the other parameters (a, b, d).

Table 6. The Orba basin skill scores on hydrographs for the entire validation period (2006–2011) and for the different parameter sets.

The scores value is calculated for the two sections with available streamflow observations. PFRE is calculated with Qth= 200 m3 s−1 for

Casalcermelli section and with Qth= 50 m3 s−1 for Tiglieto section.

Basin Section Parameter N. S. CM RMSE CORR PFRE

set

Orba

Casalcermelli

M. O. 0.82 0.81 1.67 0.91 −0.162

R. S. (LST) 0.81 0.83 1.41 0.90 −0.133

R. S. (SWI) 0.82 0.82 1.35 0.90 −0.063

S. N. 0.83 0.82 1.31 0.91 −0.095

Tiglieto

M.O. 0.69 0.65 0.80 0.87 −0.251

R. S. (LST) 0.67 0.62 0.78 0.83 −0.245

R. S. (SWI) 0.66 0.63 0.76 0.81 −0.143

S. N. 0.66 0.62 0.70 0.80 −0.213

The surface flow parameters obtained with the R. S. and

M. O. calibration methodologies are similar, while the

S. N. method produces slightly lower uc and higher uh val-

ues. In the case of sub-surface flow, the values are a little

bit different for the three considered cases probably because

they are more sensitive to the different adopted approaches

(Efstratiadis and Koutsoyiannis, 2010).

In the case of R. S. (SWI), the calibrated ct and cf val-

ues confirm the results of Sect. 3.1, even if the dotty plot in

Fig. 10 does not show a really strong independence of ct and

cf from the other parameters, but more a range of the two

parameters that shows good simulations of SWI.

In the case of R. S. (LST), results are different in respect

to the results of Sect. 3.1 (Fig. 9). The ct optimal param-

eter has a different value with respect to the optimal range

found in uncertainty analysis; this is probably related to the

fact that the simulations show a complex inter-dependency

between the parameter ct and the parameter cf both closely

related to LST. This ends up increasing the equifinal param-

eter sets when only LST is used; on the other hand, ct and cf
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Figure 10. The Orba basin, August–October 2011. Dotty-plot representation of the NS on mean SWI at basin scale. Each subplot reports the

parameter value on x axis and the value of NS statistic on y axis. The parameter ct (c) has a quite clear range where NS reaches maximum

values independently from the other parameters. This occurs even for parameter cf although the independence is weaker (d). No independence

is evident for the surface parameters (a, b).

influence in a complex way the different terms of the multi-

objective function during the calibration process driving to

the direction of a reduction of equifinality. When using the

R. S. (LST) strategy, the benefit of exploiting LST data seems

more related to the opportunity of doing a calibration in case

of lack of streamflow data than in reducing equifinality as

already noted in Silvestro et al. (2013).

Figure 11 reports values of the Nash–Sutcliffe coefficient

(that depends only on the streamflow) versus values of the

objective function of the M. O. approach. The parameter val-

ues that optimize the single score (S. N.) are not the same

that optimize the M. O. function.

M. O. approach appears to be a good way to reduce equi-

finalty. Looking at the dotty-plot representations in Sect. 3.1

built with streamflow, LST and SWI data, it is evident that

even when graphs show an independence of a parameter from

the others, this independence is not very pronounced. In other

cases there is no evident independence. Combining the dif-

ferent objectives showed in the “Multi-objective calibration

(M. O.)” section, we should eliminate those solutions (pa-

rameters combinations) that give good values for a certain

metric (e.g., NS on streamflow) but not optimal values for

another one (e.g., BIAS on LST), thus obtaining an overall

better calibration.

Obviously, the choice of the single components of the

M. O. function influences the way the various variables im-

pact on the final results, but the applied methodology pro-

posed by Madsen (2000) helps to normalize and balance the

weights of the components.

In Table 6 the values of the scores for the validation pe-

riod are reported, while Figs. 12 and 13 show the comparison

between modeled and observed streamflow. The calibration

period belongs to the validation period but it is considerably

shorter. We thus decided to estimate the scores on the entire

time window. In each figure some significant sub-periods are

reported on small panels, while in the bottom panel the entire

simulation period using a logarithmic scale is shown.

The values of the scores are good in all the cases. The

Casalcermelli section performances are better than those for

Tiglieto; this may be due to the fact that the first section cor-

responds to a larger drainage area and therefore the integra-

tion effects smooth the uncertainties of the rainfall fields. The

M. O. approach leads to score values on the streamflow sim-

ilar to the S. N. method in the validation period, while the

R. S. approach produced poorer performance with respect to

the other two approaches. In the case of PFRE, the two best

sets of parameters are S. N. and R. S. (SWI). Notwithstand-

ing, all the parameter sets led to good results in terms of the

modeled hydrographs.

www.hydrol-earth-syst-sci.net/19/1727/2015/ Hydrol. Earth Syst. Sci., 19, 1727–1751, 2015



1742 F. Silvestro et al.: Uncertainty reduction and parameter estimation of a distributed hydrological model

Figure 11. Nash–Sutcliffe coefficient of hydrographs (x axis) ver-

sus the multi-objective function (Fadj on y axis). The maximum

of NS does not correspond with the minimum of the Fadj because

this latter is influenced by the component that depends on LST ad

SWI. Nevertheless, in correspondence of the minimum value of

Fadj (y axis) the NS value (x axis) is around 0.9, which means good

performance in terms of NS score.

The M. O. calibration strategy leads to good performances

in reproducing the observed streamflows despite the fact that

these latter measurements are not the only ones used in the

calibration process; there are good performances over long

periods of simulation for both of the considered outlet sec-

tions. The peak flows and the time of the peak flows are gen-

erally well reproduced as well as the periods of flow reces-

sion and drought between the most relevant events. In gen-

eral M. O. produces better results with respect to S. N. when

it comes to correlation and CM; similarly, in the Tiglieto

section where the uncertainty in rainfall input hampers the

S. N. calibration strategy performance and the advantage of

having more sources of observation is more evident.

The series of mean LST at basin scale were compared with

LST satellite estimation. A similar comparison was made be-

tween the satellite SWI and modeled SD. Tables 7 and 8 show

the values of the scores for the four considered parameter

sets.

The classic calibration obtained with the maximization of

the Nash–Sutcliffe coefficient of the streamflow (S. N.) al-

lows good performances to be obtained in terms of stream-

flow simulation, but it produces higher values of LST BIAS,

while the M. O. approach balances between the different

components. The reproduction of SWI is quite good for both

the M. O. and S. N. cases.

The accumulated discharge volume simulated by the

model was compared with that derived from the streamflow

observations in order to verify the behavior of the model in

Table 7. The Orba basin. Values of bias on LST series obtained

with the different parameter sets. The basin scale mean has been

considered.

Variable Parameter BIAS

set

LST

M. O. 0.89

R. S. (LST) 0.58

R. S. (SWI) 0.92

S. N. 1.02

Table 8. The Orba basin. Values of NS on SWI series obtained with

the different parameter sets. The basin scale mean has been consid-

ered.

Variable Parameter NS

set

SWI

M. O. 0.74

R. S. (LST) 0.56

R. S. (SWI) 0.80

S. N. 0.77

Table 9. The Casentino basin parameters were calibrated following

the different approaches: using the multi-objective function (M. O.),

remote-sensing data and morphologic characteristics (R. S.), and

the standard hydrographs comparison (S. N.). The table reports the

values obtained by the four different calibration strategies.

Basin Casentino

Parameter S. N. R. S. (LST) R. S. (SWI) M. O.

uc [m
0.5 s−1

] 28.51 43.02 43.02 47.43

uh [1/s] 0.00052 0.00047 0.00047 0.00043

ct [−] 0.44 0.49 0.52 0.51

cf [−] 0.018 0.032 0.018 0.029

terms of total runoff volumes. The results are reported in

Fig. 14. The model reproduces with fine approximation the

observed volumes; the error on the entire period is approxi-

mately−1.9,−1.3,−3.0 and−2.5 % for M. O., R. S. (LST),

R. S. (SWI) and S. N., respectively. These errors are prob-

ably lower than the uncertainties introduced by the level-

discharge transformation.

3.2.2 The Casentino basin

The sets of parameters obtained by the four calibration strate-

gies are reported in Table 9.

In Table 10 the scores are reported, while Figs. 15 and 16

show the comparison between modeled and observed stream-

flow. The figures report on small panels different significant

events, while in the bottom panel the entire simulation period

is shown using a logarithmic scale.
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Table 10. The Casentino basin skill scores on hydrographs on the entire validation period (2005–2011) for the different parameter sets. The

scores value is calculated for the Subbiano section. PFRE is calculated with Qth= 200 m3 s−1.

Basin Section Parameter NS CM RMSE CORR PFRE

set

Casentino Subbiano

M. O. 0.80 0.77 2.37 0.89 −0.251

R. S. (LST) 0.78 0.74 2.39 0.88 −0.311

R. S. (SWI) 0.79 0.75 2.25 0.88 0.092

S. N. 0.81 0.75 2.23 0.89 0.075

Figure 12. Observed streamflow for the Orba basin compared with simulations obtained using the M. O. and S. N. parameter sets for the

period 2006 to 2008. Time is reported on x axis and streamflow on y axis. The bottom subpanel shows the entire period with log scale on

y axis. The other subpanels show the main flood events with linear scale on y axis.

Table 11. The Casentino basin. Values of BIAS on LST series ob-

tained with the different parameter sets. The mean basin scale has

been considered.

Variable Parameter set BIAS

LST

M. O. 1.83

R. S. (LST) 1.79

R. S. (SWI) 1.87

S. N. 1.88

Table 12. The Casentino basin. Values of NS on SWI series ob-

tained with the different parameter sets. The mean basin scale has

been considered.

Variable Parameter set NS

SWI

M. O. 0.80

R. S. (LST) 0.63

R. S. (SWI) 0.83

S. N. 0.73
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Figure 13. Observed streamflow for the Orba basin compared with simulations obtained using the M. O. and S. N. parameter sets for the

period 2009 to 2011. Time is reported on x axis and streamflow on y axis. The bottom subpanel shows the entire period with log scale on

y axis. The other subpanels show the main flood events with linear scale on y axis.

Tables 11 and 12 show the values of the scores for the

variables LST and SWI. The values of the scores are good in

all the cases; they are better for M. O. with respect to S. N. for

both LST and SWI variables.

The model delivers good performances over long periods

for all the considered calibration strategies. As in the case

of the Orba basin, M. O. finds a compromise parameter set

that allows a good modeling of all the three variables in-

volved to be obtained in the objective functions, while the

two R. S.: method shows that is possible to obtain a rea-

sonable calibration even in the case of an ungauged basins.

The peak flows are better reproduced by the configurations

S. N. and R. S. (SWI) which show PFRE values smaller

than 0.1 (10 %).

The accumulated volume over the 7 years of simulation

is generally well simulated (Fig. 17); in this case, there is a

larger difference between the total volumes obtained with the

four different parameter sets, the errors are in fact of the order

of 9, 8.8, 5.3 and 4 % for M. O., R. S. (LST), R. S. (SWI) and

N. S., respectively. The errors on the total volume are larger

than in the case of the Orba basin.

Figure 14. Accumulated runoff volumes for the Orba basin ob-

tained with the M. O. and S. N. parameter sets for the period 2006–

2011. Time is reported on x axis and total accumulated volume on

y axis.
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Figure 15. Observed streamflow for the Casentino basin compared with simulations obtained using the M. O. and S. N. parameter sets for

the period 2005 to 2007. Time is reported on x axis and streamflow on y axis. The bottom subpanel shows the entire period with log scale

on y axis. The other subpanels show the main flood events with linear scale on y axis.

4 Discussion and conclusions

This paper shows that satellite data are useful in reducing the

uncertainty of the parameterization of a distributed hydrolog-

ical model and that they can be used in calibration strategy to

improve model representation of hydrological processes.

The uncertainty analysis (Zappa et al., 2011; Shen et al.,

2012) of the most sensitive parameters shows that the equi-

finality can be reduced using LST and SWI satellite estima-

tions. The independence of surface flow parameters seem to

be linked in a clear way to streamflow, while soil parameters

are more directly linked to LST and SWI.

Three methodologies to estimate a subset of the param-

eters of the model by exploiting remote sensing were ap-

plied. The first methodology consists in the minimization of

a multi-objective function that depends on streamflow, LST

and SWI and it is inspired by the work of Sutanudjaja et

al. (2014) and Wanders et al. (2014). The second and third

methodologies simulate the case when no streamflow data

are available and the calibration is carried out based only

on LST and SWI retrieved from satellite data and informa-

tion derived from a DEM. A multi-year period validation was

done in terms of reproduction of both streamflow time series

and total volume over the considered period. A comparison

with a fourth standard calibration strategy based on stream-

flow data was also carried out.

The skill scores on streamflow show good performances

when satellite data are involved in the calibration process

(M. O. and R. S. methods), comparable with values ob-

tained using only the streamflow in the objective function

(S. N. method); even if the observed and simulated stream-

flow are in some cases quite different, the general trend is

good and there are not large biases in terms of runoff vol-

umes over long simulation periods. The largest errors seem

to be more related to the uncertainties of the input rainfall

fields rather than on the model parameterization. Moreover,

the skill scores on LST and SWI have generally better values

in the case of parameter sets derived by the multi-objective

approach with respect to those obtained by the streamflow-

based calibration strategy.

Both the results of calibration, especially the M. O. ap-

proach, and uncertainty analysis confirm that a way to re-

duce equifinality and to augment the parameter constraints is

related to the increase of model state variables and model
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Figure 16. Observed streamflow for the Casentino basin compared with simulations obtained using M. O. and S. N. parameter sets for the

period 2008 to 2011. The bottom subpanel shows the entire period with log scale on y axis. Time is reported on x axis and streamflow on

y axis. The other subpanels show the main flood events with linear scale on y axis.

Figure 17. Accumulated runoff volumes of the Casentino basin ob-

tained with the M. O. and S. N. parameter sets for the period 2005–

2011. Time is reported on x axis and total accumulated volume on

y axis.

output variables that can be derived from both gauge and

remote-sensing data. This helps to reduce the possibility of

obtaining similar results with a large number of parameter

sets. We can thus state that the presented work explored the

direction proposed by Seibert and McDonnel (2002) and Ef-

stratiadis and KoutsoYiannis (2010), which consisted in ob-

taining a better overall performance of the model and ensure

consistency across its various aspects.

In addition, remote-sensing data (in this specific case the

LST and SSM) offer alternative ways to carry out parameter

calibration in cases where no streamflow data might be avail-

able. Satellite-derived data such as DEM, SSM and LST are

generally universally available.

The described methodologies can be adapted and applied

to other hydrological models that have characteristics similar

to Continuum and that can simulate LST and soil moisture as

state variables in a prognostic way; moreover, these methods

can be extended by referring to other remote-sensing data,

and general observed data, that can be reproduced by the

model. The more the model has the capability of reproduc-

ing observable quantities (e.g., evapotranspiration, soil hu-

midity), the more the constraints imposed on the model can

increase.
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Finally, the results of the presented work can be read from

two different points of view. On one hand, the results high-

light the advantages of using distributed hydrological mod-

els that allow for reproduction, with some degree of detail,

of the physical processes; as a matter of fact, such models

simulate a larger number of variables which can also be ob-

served. On the other hand, similar to what was demonstrated

by other authors (Corbari and Mancini, 2014; Montzka et al.,

2011; Sutanudjaja et al., 2014; Wanders et al., 2014), the re-

sults highlight the opportunities given by remote sensing and

the necessity of augmenting the number (and the quality) of

these data. Remotely sensed data can in fact be used to pa-

rameterize hydrological models and to set up constraints to

the parameters in the calibration process, while offering an

alternative way of calibrating these models where standard

observation are lacking.
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Appendix A

The snow accumulation–melting module was introduced in

order to carry out multi-year simulations in alpine climates. It

is a simple model that is derived from commonly used equa-

tions (Maidment, 1992) and it is forced by meteorological

observations.

The equations that describe the snow mass conservation

and its melting are the following:

1SWE

1t
= Sf−SM, (A1)

where SWE is the snow water equivalent, Sf is the solid pre-

cipitation and SM is the snowmelt estimated as

SM=
Rn

ρwλf

+mc · (Ta− T0) , (A2)

where Rn is the net radiation, ρw the water density, λf the la-

tent heat of melting and Ta the air temperature. T0 andmc are

two parameters that represent the temperature at which the

melting starts and the melting coefficient, respectively. These

two parameters are estimated using values from the literature

(Maidment, 1992), T0= 0 ◦C and mc= 4 mm day−1.

The mass balance is applied at cell scale for the entire do-

main of the model, so that a snow cover map can be generated

with the same resolution of the DEM. The energy balance

and, as a consequence, the evapotranspiration are inhibited

for those cells where snow cover is present.

The applied approach is very simple and neglects the heat

exchanges between the soil and the snow cover, but it is gen-

erally sufficient if the goal is the estimation of the snow con-

tribution to the runoff, especially when the regime of the

basin is not strongly influenced by snowmelt.

The precipitation is partitioned into solid or liquid if the

air temperature is below or above a fixed threshold.
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