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Abstract. Operational probabilistic forecasts of river dis-

charge are essential for effective water resources manage-

ment. Many studies have addressed this topic using dif-

ferent approaches ranging from purely statistical black-box

approaches to physically based and distributed modeling

schemes employing data assimilation techniques. However,

few studies have attempted to develop operational probabilis-

tic forecasting approaches for large and poorly gauged river

basins. The objective of this study is to develop open-source

software tools to support hydrologic forecasting and inte-

grated water resources management in Africa. We present

an operational probabilistic forecasting approach which

uses public-domain climate forcing data and a hydrologic–

hydrodynamic model which is entirely based on open-source

software. Data assimilation techniques are used to inform the

forecasts with the latest available observations. Forecasts are

produced in real time for lead times of 0–7 days. The oper-

ational probabilistic forecasts are evaluated using a selection

of performance statistics and indicators and the performance

is compared to persistence and climatology benchmarks. The

forecasting system delivers useful forecasts for the Kavango

River, which are reliable and sharp. Results indicate that the

value of the forecasts is greatest for intermediate lead times

between 4 and 7 days.

1 Introduction

Operational probabilistic hydrological modeling and river

discharge forecasting is an active research topic in water re-

sources engineering and applied hydrology (Pagano et al.,

2014). Sharp and reliable forecasts of river discharge are re-

quired over a range of forecasting horizons for flood and

drought management. A state of the art river discharge fore-

casting system consists of a weather forecast or an ensem-

ble of weather forecasts (Cloke and Pappenberger, 2009), a

hydrologic–hydrodynamic modeling system and a data as-

similation approach to inform the forecasts with all available

in situ and remote sensing observations. Alternatively, in the

absence of resources, data and computing power, simpler so-

lutions can be implemented which disregard more and more

of the physics and rely on past observations to parameterize

black-box-type models such as, for instance, artificial neural

networks (Maier et al., 2010).

Many studies have shown that operational hydrological

models can benefit from the assimilation of in situ or satellite

remote sensing observations. Different techniques and ap-

proaches have been presented (Liu et al., 2012). They differ

both in terms of the type of data that are assimilated to the

models, the assimilation algorithms used and in terms of the

assimilation strategy, i.e., which model components, states

and/or parameters are updated. Some hydrological data as-

similation studies update the internal states of rainfall–runoff

models (e.g., Clark et al., 2008; Pauwels and De Lannoy,

2009) while other approaches focus on updating the hydro-

dynamic parts of the model (Biancamaria et al., 2011; Neal

et al., 2009) or combinations of rainfall-runoff and routing

state variables (e.g., Rakovec et al., 2012). One of the most

popular algorithms used in hydrologic data assimilation is

the ensemble Kalman filter (e.g., Clark et al., 2008). Al-

ternatively, the particle filter (Moradkhani et al., 2005) can

be used, which does not require the assumption of Gaus-
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sian model errors. Variational data assimilation has also been

used in a number of hydrologic studies (e.g., Seo et al., 2003,

2009). Some studies use filtering approaches where the gain

is determined heuristically from offline simulations and then

used operationally in forecasting mode (Madsen and Skotner,

2005). As pointed out by Liu et al. (2012), despite the large

body of literature on hydrologic data assimilation, few stud-

ies evaluate the benefit of data assimilation for actual fore-

casting and practical application of data assimilation by op-

erational agencies is rare.

In many river basins the performance of operational hy-

drological modeling and forecasting is limited because in situ

observations of precipitation and river discharge are scarce or

unavailable. This is also the case for many of Africa’s large

river basins which are poorly gauged (e.g., Zambezi, Volta,

Congo). Consistent, long-term and spatially resolved in situ

observations of precipitation and river discharge are unavail-

able for large portions of Africa. Moreover, the number of

operational meteorological stations and river discharge sta-

tions has been decreasing consistently around the world since

the 1970s (Fekete and Voeroesmarty, 2007; Peterson and

Vose, 1997). Remote sensing techniques have the potential to

fill critical data gaps in the observation of the global hydro-

logical cycle. All major components of the water balance, ex-

cept river discharge, can now be estimated based on various

types of remote sensing data. However, the available tech-

niques are still limited by coarse spatial and temporal reso-

lution as well as large and/or poorly understood error char-

acteristics (Tang et al., 2009). From a management perspec-

tive one of the most important components of the hydrolog-

ical cycle is river discharge. Extremely high flows in rivers

cause flooding which can have severe consequences in terms

of fatalities and economic damage. Low flows cause con-

flicts in the allocation of scarce water resources between eco-

nomic sectors and/or the environment. Therefore, in many

river basins there is a need for hydrological models to provide

operational estimates of river discharge based on remotely

sensed observations and limited available in situ measure-

ments.

The TIGER-NET project addresses the demand for free,

up-to-date and spatially resolved water information for the

African continent. The project is funded by the European

Space Agency (ESA) and aims to support integrated water

resources management in Africa by (i) providing access to

ESA Earth observation (EO) data, (ii) developing an open-

source Water Observation and Information System (WOIS)

and (iii) implementing capacity building actions in collabora-

tion with African partner institutions (Guzinski et al., 2014).

The WOIS includes a hydrological modeling component,

which supports long-term scenario analysis (e.g., impact of

climate change and deforestation) as well as operational

probabilistic forecasting. The specific objective for the op-

erational modeling capability is to provide reliable and sharp

probabilistic forecasts of river discharge over time horizons

of up to 1 week. In addition to hydrological modeling, WOIS

includes functionality for operational flood monitoring, basin

characterization at high (∼ 30 m) and medium (∼ 1 km) spa-

tial resolutions and derivation of other products requiring EO

data processing and analysis (Guzinski et al., 2014). It was

designed for use in African organizations, where budgetary

and technical constraints often limit the use of EO data for

integrated water resources management. Therefore, WOIS is

based purely on free, open-source software components and

was created as an easy-to-use tool for both capacity building

and operational use. Among the partner institutions engaged

in the TIGER-NET project is the Namibian Ministry of Agri-

culture, Water and Forestry. The Ministry has an interest in

forecasting the discharge of the Kavango River.

Based on these requirements, this study has four specific

objectives:

1. development of a robust and simple probabilistic river

discharge forecasting system for poorly gauged river

basins, based solely on open-source software and

public-domain data;

2. informing the forecasting system with in situ discharge

observations in real time;

3. operational demonstration of the system for the Ka-

vango River case study;

4. comprehensive evaluation of the operational probabilis-

tic forecasts using a selection of performance statistics

and indicators as well as comparison with persistence

and climatology benchmarks.

The entire system has been implemented in an open-source

GIS environment (QGIS, GDAL, Python). Installation and

source code are available for download from the TIGER-

NET webpage (www.tiger-net.org).

2 Materials and methods

2.1 Study area

The Kavango River originates in the highlands of central

Angola and flows south to the border between Angola and

Namibia. The Cuito River joins the Kavango River just be-

fore the river enters into Namibia’s Caprivi Strip. It ter-

minates in the Okavango Delta, a large wetland system in

northern Botswana (Milzow et al., 2009). An overview of

the basin is provided in Fig. 1. The basin is located on

the southern fringes of the inter-tropical convergence zone.

A strong south-to-north precipitation gradient is observed.

The climate is highly seasonal and large inter-annual varia-

tions are typical, which are controlled by a number of cli-

mate timescales (McCarthy et al., 2000; Wolski et al., 2014).

The Kavango River is an important resource for all ripar-

ian countries and forms the basis of many people’s liveli-

hoods (Kgathi et al., 2006). While water scarcity and wa-

ter allocation between economic sectors and the environment
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Figure 1. Base map for the Kavango River basin with location of in

situ discharge stations. The coordinate system is UTM 33S, WGS84

datum. Inset map shows the location of the basin in southern Africa.

have been in focus for some time, flood risk has recently be-

come a major concern because the northern part of Namibia

has experienced increased magnitude and frequency of flood-

ing events since 2008 (Wolski et al., 2014). Water managers

need accurate and reliable forecasting tools to deal with both

floods and droughts.

Three hydrological modeling efforts have been reported

in the literature for the Kavango River basin. Folwell and

Farqhuarson (2006) used the Global Water Availability As-

sessment (GWAVA) model to assess climate change impacts

in the basin. Hughes et al. (2006, 2011) calibrated a Pit-

man model for the basin and were able to reproduce in situ

observations satisfactorily. Milzow et al. (2011) developed

a SWAT (Soil and Water Assessment Tool) model of the

Kavango Basin and calibrated the model with water levels

from radar altimetry, soil moisture from Envisat-ASAR (Ad-

vanced Synthetic Aperture Radar) and total water storage

change from GRACE (Gravity Recovery and Climate Exper-

iment).

Long-term in situ observations of river discharge are avail-

able from two hydrometric stations in the basin, Rundu and

Mohembo (Fig. 1). Table 1 summarizes the main characteris-

tics of the Kavango River basin and the two sub-basins con-

tributing to the stations Rundu and Mohembo.

2.2 Hydrologic and hydrodynamic modeling

The modeling approach implemented in this study consists

of a hydrologic (rainfall-runoff) model which is coupled to a

Table 1. Characteristics of the Kavango River basin and the Rundu

and Mohembo sub-basins.

Sub-basin Catchment Mean Mean annual precipitation

area elevation (bias-corrected 1-day

(km2) (m a.m.s.l.) ahead NOAA-GFS, mm)

Kavango 162 050 1320 847

Rundu 101 520 1341 843

Mohembo 60 530 1286 853

simple routing model for channel flow. A one-way coupling

between the two model compartments is implemented; i.e.,

once runoff has entered the river channel, the water cannot

move back into the land phase of the hydrological cycle.

We use the well-known SWAT hydrological model, ver-

sion 2009 (Gassman et al., 2005; Neitsch et al., 2011), for

rainfall-runoff modeling. SWAT is a semi-distributed, phys-

ically based hydrological model which operates at a daily

time step. The river basin is divided into a number of sub-

basins. Each sub-basin is in turn divided into hydrological

response units (HRUs), which are defined as portions of the

sub-basin with similar terrain slope, land use and soil type.

The Kavango SWAT model consists of 12 sub-basins with

outlets located at the confluences of major tributaries as well

as at in situ discharge station locations (Fig. 1).

The hydrodynamic model used in this study is a simple

Muskingum routing scheme, which is implemented outside

of the SWAT simulator to allow efficient updating in the data

assimilation scheme. Muskingum parameters are computed

from river widths, assumed cross-section geometry and chan-

nel Manning numbers (which are calibration parameters).

The river is divided into 12 primary individual river reaches.

The primary reaches are further subdivided if required to

meet the numerical stability criteria of the Muskingum rout-

ing scheme (Chow et al., 1988). The hydrodynamic model

state vector consists of the simulated discharges in each indi-

vidual reach. In the Muskingum routing scheme, the model

operator propagating the discharge forward in time is linear;

i.e., the simulated discharges at time step t + 1 are a linear

function of the simulated discharges at time step t and the

runoff forcings at time steps t and t + 1:

q t+1
=Aq t +Br t +Cr t+1. (1)

In this equation, q is the vector of simulated discharges

and r is the vector of runoff forcings, A, B and C are lin-

ear operators which depend on the configuration of the river

channels and network connectivity and the superscripts in-

dicate time steps. For details on the implementation of the

Muskingum routing scheme the reader is referred to Chow et

al. (1988) and Michailovsky et al. (2013).

2.3 Input data

SWAT requires the following input data sets: elevation, land

cover, soil type and climate forcings. The elevation data set is
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Table 2. Model performance for calibration and validation periods. Numbers in brackets are the percentage of mean observed flow.

In situ station NSE (–) RMSE (m3 s−1) ME (m3 s−1) Mean of No. of

observations (m3 s−1) simulated observations

Calibration period (2005–2011)

Rundu 0.73 105.6 (42.5 %) −5.4 (−2.2 %) 248.4 2440

Mohembo 0.69 97.1 (32.8 %) 6.8 (2.3 %) 295.9 1935

Validation period (2012–2014)

Rundu 0.74 94.6 (35.0 %) −55.0 (−20.6 %) 249.0 572

Mohembo 0.33 144.0 (30.7 %) −119.0 (−25.4 %) 469.1 46

used for automatic watershed and river network delineation

as well as for the determination of terrain slope. We use the

ACE2 (Altimeter Corrected Elevation, version 2; Berry et al.,

2010) global elevation data set at a resolution of 30 arcsec.

The parameterization of vegetation processes in the SWAT

model is based on the land cover input data set. We use the

USGS Global Land Cover Characterization (GLCC) data set,

version 2.0 with a spatial resolution of 1 km (USGS, 2008).

The soil data set forms the basis for parameterizing soil hy-

draulic processes in SWAT. We use the FAO-UNESCO dig-

ital soil map of the world and derived soil properties, revi-

sion 1, with a spatial resolution of 5 arcmin (FAO-UNESCO,

1974). Look-up tables translating GLCC land cover classes

and FAO-UNESCO soil types into SWAT parameters have

been developed by the WaterBase project (George and Leon,

2007).

The model is forced with daily precipitation and daily

minimum and maximum temperature from the National

Oceanic and Atmospheric Administration’s Global Fore-

cast System (NOAA-GFS) which provides up to 7 days

of forecast at a 6-hourly temporal resolution and 0.5◦

spatial resolution (NOAA, 2014). Real-time and recent

historical forecasts can be downloaded from the NO-

MADS (National Operational Model Archive and Distribu-

tion System) server (http://nomads.ncdc.noaa.gov/data.php#

hires_weather_datasets). Historical forecasts older than a

few months have to be ordered for FTP download. NOAA-

GFS data was aggregated to daily precipitation prior to its

use in the hydrological model. For historical simulation pe-

riods and model calibration, forcing time series consisting

of the 1-day ahead forecasts are used. In operational mode,

long-term forecasts are successively replaced with short-term

forecasts as time proceeds. In order to assess the performance

of the NOAA-GFS precipitation forecast for the Kavango re-

gion, the 1-day ahead forecasts were compared to FEWS-

RFE rainfall estimates (Famine Early Warning Systems; Her-

man et al., 1997). FEWS-RFE was previously found to be

one of the most accurate remote sensing precipitation prod-

ucts for Africa (Milzow et al., 2011; Stisen and Sandholt,

2010).

2.4 Calibration and validation of the

hydrologic–hydrodynamic model

Calibration and validation of the hydrologic–hydrodynamic

model were performed against observed in situ river dis-

charge using a split-sample approach. The years 2005–2011

were used for calibration, while the years 2012–2014 served

as validation period. Mean observed flows in the validation

period are higher than in the calibration period (Table 2). Af-

ter a series of dry years in the beginning of the century, the

region has experienced much higher amounts of precipitation

and river flow since 2008 (Wolski et al., 2014). In order to

ensure a balanced representation of both wet and dry years

in the calibration period, we had to use a major portion of

the entire data record for calibration and could only reserve

3 years for validation. For the station Mohembo in particular

only very few observations are available in the validation pe-

riod (Table 2). The objective function which was minimized

in the calibration was formulated as

ϕ = (1−NSE)2+RME2, (2)

RME=
1

Qobs

1

n

n∑
i=1

(
Qi −Qobs,i

)
,

where NSE is the Nash–Sutcliffe model efficiency (Nash and

Sutcliffe, 1970) and RME is the relative water balance error

(relative mean error). The symbolsQ andQobs denote simu-

lated and observed river discharge, respectively, n is the num-

ber of available discharge observations and the overbar indi-

cates temporal averaging. This formulation ensured a reason-

able trade-off between fitting the observed hydrographs and

matching the observed water balance of the catchment. A se-

quential calibration strategy was implemented: first, the sub-

catchments upstream of Rundu were calibrated using Rundu

observations and subsequently the subcatchments between

Rundu and Mohembo were calibrated using Mohembo ob-

servations.

Calibration was performed using the model-independent

parameter estimation programme PEST (Doherty et al.,

2014). Because of the strongly non-linear response of the
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SWAT rainfall-runoff model, global derivative-free search

strategies are the preferred option for calibration of SWAT

models (Arnold et al., 2012). We use the shuffled com-

plex evolution (SCE) algorithm (Duan et al., 1992) which

performs a global search over the entire allowed parameter

space. The SCE algorithm is included in the PEST package

(SCEUA_P).

The selection of calibration parameters was the result of

an iterative procedure including extensive sensitivity anal-

ysis and repeated trial model runs. The final selection was

based on the following principles: (i) spatial variation of veg-

etation and soil parameters is determined by the input data

sets and should be left unchanged during calibration. The

corresponding SWAT parameters were either not changed at

all or multiplied with a global factor. (ii) The water balance

of the rainfall-runoff model should be maintained. Therefore

the fraction of the recharge entering the deep aquifer was set

to zero. (iii) SWAT groundwater parameters are highly un-

certain a priori but at the same time very sensitive. Enough

spatial variation in groundwater parameters must be allowed

in order to reproduce the various recession timescales in the

observed hydrographs. (iv) SWAT has two threshold values

of the shallow groundwater storage, one controlling the onset

of baseflow and one controlling the onset of phreatic evap-

otranspiration. The absolute magnitudes of the two thresh-

old values are less important because they mainly control the

length of the required model warm-up period. However, the

difference between these two threshold values has significant

control over the water balance of the catchment: if the base-

flow threshold is below the phreatic ET threshold, more wa-

ter will leave the catchment as baseflow and less as actual ET

and vice versa. In order to reduce parameter correlation and

non-uniqueness, the baseflow threshold was generally fixed

at 100 mm in the Kavango SWAT model.

Table 3 provides an overview of the calibration parame-

ters and their allowed ranges. For the groundwater param-

eters, spatial variation was allowed between the Rundu and

Mohembo regions, the upstream and downstream catchments

within each region and the high-slope and low-slope portions

of the land surface. This resulted in a total number of 19 cal-

ibration parameters for the Rundu region and 20 calibration

parameters for the Mohembo region. We chose eight com-

plexes in the SCE calibration run and the number of com-

plexes remained the same throughout the run. Both the num-

ber of parameter sets in each complex and the number of

evolution steps before complex shuffling were set to 39 and

41 for the Rundu and Mohembo regions, respectively. The

convergence criterion was set to a relative improvement of

the best objective function of 1 % over 10 shuffling loops. A

total of 50 000 model runs were allowed; however, the cal-

ibration converged after 14 711 and 18 373 model runs for

the Rundu and Mohembo regions, respectively. After com-

pletion of the SCE run, the evolution of the parameter values

over the course of the shuffling loops was evaluated. All pa-

rameter values converged to a stable solution away from the

a priori parameter bounds.

2.5 Assimilation strategy

The objective of data assimilation is to combine, at each point

in time, the model-based estimate of the state of the system

as well as the most recent observations of the state, in order

to produce the best possible estimate of the current and fu-

ture states, taking into account the respective uncertainties of

simulated states and observations. The assimilation strategy

chosen in this study consists of updating the simulated dis-

charge in the Muskingum routing model only, because the

objective was to generate probabilistic river discharge fore-

casts with lead times of up to 7 days. Updates of the rainfall-

runoff model states would probably improve long-term fore-

casts significantly but may have limited effect on forecasts

with short lead times in large basins such as the Kavango

Basin. Moreover, updating the rainfall-runoff model would

require ensemble-based assimilation approaches. For the in-

tended user group of the TIGER-NET products, simplicity

and efficiency are key criteria.

Observed in situ discharge at the station Rundu was as-

similated to the model in the operational runs. Because the

Muskingum routing operator is linear and the measurement

operator is linear too, we could use the standard Kalman fil-

ter for state updating, since it is the optimal sequential as-

similation method for linear dynamics (Kalman, 1960). The

Kalman filter simultaneously updates discharge at all basin

outlets. If instead of river discharge, water level measure-

ments from spaceborne or ground-based instruments are as-

similated, the measurement operator becomes non-linear and

the extended Kalman filter can be used (Michailovsky et al.,

2013). The reader is referred to the literature (e.g., Jazwinski,

1970) for a detailed discussion of the Kalman filter equations

and to Michailovsky et al. (2013) for a detailed description

of the assimilation approach.

2.6 Description of the model error

Runoff is assumed to be the dominant source of error in the

routing model. While the routing model parameters, which

depend on reach geometries and Manning’s friction factors,

are uncertain, runoff uncertainty can be expected to be much

more significant due to the error in the NOAA-GFS rainfall

forcing as well as structural deficiencies and/or parameteri-

zation errors in the SWAT model. In order to find a reason-

able representation of the model error, the magnitude, auto-

correlation and spatial cross-correlation of the runoff error

had to be assessed. No direct measurements of runoff are

available within the river basin. To derive an operational er-

ror model, we assume, in the baseline experiment, that mag-

nitude and autocorrelation of the relative runoff error are the

same as magnitude and autocorrelation of the relative model

www.hydrol-earth-syst-sci.net/19/1469/2015/ Hydrol. Earth Syst. Sci., 19, 1469–1485, 2015
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Table 3. Model calibration parameters. Subcatchment IDs for the various regions: r= 2+ 3+ 5+ 6+ 7+ 9+ 10; m= 1+ 4+ 8+ 11+ 12;

ru= 2+3; rd= 5+6+7+9+10; mu= 1; md= 4+8+11+12; ruh: HRUs in region ru with terrain slope above 2 %; rul: HRUs in region

ru with terrain slope below 2 %; rdh: HRUs in region rd with terrain slope above 2 %; rdl: HRUs in region rd with terrain slope below 2 %;

muh: HRUs in region mu with terrain slope above 2 %; mul: HRUs in region mu with terrain slope below 2 %; mdh: HRUs in region md with

terrain slope above 2%; mdl: HRUs in region md with terrain slope below 2 %.

Parameter Description and unit Lower bound Region Calibrated value Upper bound

Multiplier on the SCS curve number for r 0.63

CN2_m moisture condition II (dimensionless) 0.6 m 0.65 1.2

ESCO Soil evaporative compensation factor 0.5 r 0.95 1

(dimensionless) m 0.80

EPCO Plant uptake compensation factor (dimensionless) 0.5 r 0.89 1

m 0.92

CH_N1 Manning’s n for tributary channels (sm−1/3) 0.02 r 0.185 0.2

m 0.023

CH_N2 Manning’s n for main reaches (sm−1/3) 0.02 r 0.023 0.2

m 0.104

ru 81.3

GW_DELAY Groundwater delay (days) 30 rd 43.4 120

mu 101.6

md 112.8

ruh 0.676

rul 0.177

rdh 0.221

ALPHA_BF Base flow recession constant (dimensionless) 0.05 rdl 0.730 1

muh 0.846

mul 0.264

mdh 0.161

mdl 0.080

ruh 0.81

rul 0.90

rdh 0.68

GW_REVAP Groundwater re-evaporation 0 rdl 0.53 1

coefficient (dimensionless) muh 0.75

mul 0.86

mdh 0.90

mdl 0.26

ruh 103

rul 29

rdh 75

REVAPMN Threshold depth of water in shallow 0 rdl 31 200

aquifer for re-evaporation to occur (mm) muh 15

mul 100

mdh 97

mdl 26

Fractional loss from the Kavango River

LOSS_11 between Rundu and Mohembo, due to evaporation, 0 0.011 0.2

infiltration and abstraction (dimensionless)

Hydrol. Earth Syst. Sci., 19, 1469–1485, 2015 www.hydrol-earth-syst-sci.net/19/1469/2015/
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Table 4. Overview of the different forecasting experiments.

Experiment Autocorrelation of relative Relative Spatial correlation of relative Relative

runoff error runoff error runoff error observation error

Baseline Same as autocorrelation of model error 4.38 % Same as spatial correlation 10 %

at Rundu (0.9942) of runoff

Experiment 1 Same as autocorrelation of 4.38 % Same as spatial correlation 10 %

total runoff (0.9934) of runoff

Experiment 2 Same as autocorrelation of model error 4.38 % Zero 10 %

at Rundu (0.9942)

Experiment 3 Same as autocorrelation of model error 4.38 % Same as spatial correlation 20 %

at Rundu (0.9942) of runoff

Experiment 4 Same as autocorrelation of model error 6 % Same as spatial correlation 10 %

at Rundu (0.9942) of runoff

residuals at the available in situ discharge stations:

wt =
Qsim,t −Qobs,t

Qobs,t

, (3)

wherewt is the relative model residual (–),Qsim,t is the mod-

eled discharge at the in situ discharge station at time step t

and Qobs,t is the in situ discharge as time step t . The auto-

correlation of the residuals was assumed to be represented by

a first-order autoregressive (AR1) model:

wt = δwt−1+ εt , (4)

where δ is the AR1 parameter and ε is a sequence of white

Gaussian noise with a spatial covariance Q′. Due to the cor-

related meteorological inputs the runoff forcing error was

assumed to be spatially correlated between the various sub-

catchments of the model. In the baseline experiment, we as-

sume that the spatial correlation of the runoff forcing error

is equivalent to the spatial correlation of the runoff forcing

itself. The correlation matrix of the runoff inputs was com-

puted and Q′ was set to

Q′ = Cσ(ε)2, (5)

where C is the runoff correlation matrix and σ(ε)2 is the

variance of the white noise component of the AR1 model.

The auto-correlated runoff error state was integrated in the

Kalman filter updating scheme by augmenting the model

state vector with the correlated noise term (Jazwinski, 1970;

Michailovsky et al., 2013). This ensures persistence of as-

similation benefits in time.

The major source of error in in situ discharge observations

is the rating curve, which is used to transform readings of

river stage into river discharge. Rating curves are particularly

unreliable for extreme flow rates and, depending on the chan-

nel characteristics, the rating curve changes over time and

requires frequent updating. In the absence of detailed infor-

mation on the in situ measurement procedure, we assumed

the measurement error to be uncorrelated in time and propor-

tional to the discharge. In the baseline experiment, the rela-

tive error was assumed to be 10 %, which is a typical value

for in situ discharge derived from rating curves (Di Baldas-

sarre and Montanari, 2009) and comparable to other hydro-

logic data assimilation studies (e.g., Clark et al., 2008; Geor-

gakakos, 1986; Weerts and El Serafy, 2006).

In order to evaluate the impact of model error and obser-

vation error specifications on the performance of the prob-

abilistic discharge forecasts, four additional forecasting ex-

periments were conducted. Table 4 presents an overview of

the experiments. In the baseline experiment, the autocorre-

lation of the relative runoff error was set equal to the auto-

correlation of the relative model error at Rundu (0.9942), as

described above. The magnitude of the relative runoff error

was set to 4.38 %, which is the same as the relative model er-

ror at Rundu. The spatial correlation of relative runoff error

was set equal to the spatial correlation of runoff and the rel-

ative observation error was set to 10 %. In experiment 1, the

autocorrelation of the runoff error was set equal to the auto-

correlation of the spatially aggregated runoff (0.9934) while

the other specifications are the same as in the baseline run. In

experiment 2, the spatial correlation of the runoff error was

set to zero and all other specifications are as in the baseline

run. In experiment 3, the runoff error specifications are the

same as in the baseline and the relative observation error was

set to 20 %. Finally, in experiment 4, the white noise compo-

nent of the relative runoff error was increased from 4.38 to

6 % and all other specifications are as in the baseline run.

2.7 Operational forecasting and performance

evaluation

Operational forecasts have been issued on a daily basis for

the validation period and supplied to Namibia’s Ministry of

Agriculture Water and Forestry for web-based dissemination.

A set of criteria were used to assess the performance of the

probabilistic river discharge forecasts. Performance assess-

ment was done separately for the open loop model and the

0–7-day forecasting horizons. The criteria assess the perfor-

mance of the central model forecast as well as the reliabil-

ity and sharpness of the probabilistic forecasts. The follow-
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ing criteria were used to assess the performance of the cen-

tral model forecast: Nash–Sutcliffe model efficiency (NSE),

root-mean-square error (RMSE), mean error (ME) and per-

sistence index (PI). The PI (Bennett et al., 2013) is defined

analogous to the NSE:

PI=

1
n

n∑
i=1

(
Qi −Qobs,i

)2
−

1
n

n∑
i=1

(Qi −Qlast)
2

−
1
n

n∑
i=1

(Qi −Qlast)
2

, (6)

where n is the number of forecasted observations, Q are

the forecasts, Qobs are the observations and Qlast is the lat-

est available observation before the forecasted observation.

While the NSE uses the average of the observations as the

benchmark (i.e., a forecast that performs as good as the long-

term average of the available observations scores an NSE of

0), the PI uses the last available observation as the benchmark

(i.e., a forecast that performs as good as the latest available

observation scores a PI of 0).

Reliability and sharpness of the probabilistic forecasts

were assessed with the coverage of the 95 % confidence inter-

val (i.e., percentage of observations that fall within the pre-

dicted nominal 95 % confidence interval), the sharpness of

the 95 % confidence interval (width of predicted 95 % con-

fidence interval), the interval skill score (ISS) of the 95 %

confidence interval and the continuous ranked probability

score (CRPS). The ISS is defined according to Gneiting and

Raftery (2007) as

ISSα =

n∑
i=1

issα
(
li,ui,Qobs,i

)
,

issα (l,u,Qobs)=

{
(u− l) if l < Qobs < u
(u− l)+ 2/α(l− x) if Qobs < l
(u− l)+ 2/α(x− u) if Qobs > u

, (7)

where α is the level of the confidence interval (0.05 in our

case), l is the lower and u the upper bound of the confidence

interval.

The CRPS is a verification tool for probabilistic forecasts

and can be interpreted as the area between the cumulative

distribution function of the forecast and the cumulative dis-

tribution function of the observation, which is a Heaviside

step function. The CRPS thus compares the full distribution

function of the forecast with the observation and not only

selected confidence intervals. For normally distributed fore-

casts, a closed-form expression for the CRPS exists (Gneiting

et al., 2004):

CRPS=
1

n

n∑
i=1

crps
(
Qobs,i,Qi,σi

)
, (8)

crps(Qobs,Q,σ)= σ

[
Qobs−Q

σ

(
28

(
Qobs−Q

σ

)
− 1

)
+ 2φ

(
Qobs−Q

σ

)
−

1
√
π

]
,

where σ is the standard deviation of the probabilistic fore-

cast,8 is the cumulative distribution function and φ the prob-

ability density function of the standard normal distribution.

For a deterministic forecast, the CRPS is equivalent to the

mean absolute error (Boucher et al., 2011; Schellekens et al.,

2011). This allows for a systematic and objective comparison

between deterministic and probabilistic forecasts.

The performance of operational forecasts was compared to

two benchmark forecasts which can be produced with mini-

mal effort: persistence and climatology. Persistence forecasts

the flow as equal to the last available observation, while cli-

matology forecasts the flow as equal to the historical average

flow for this day of the year.

3 Results

3.1 Comparison of precipitation products

Comparison of the FEWS-RFE and NOAA-GFS precipi-

tation products showed large deviations between the two

products. Figure 2 shows a double mass plot for the aver-

age precipitation over the entire Kavango River catchment

for the period 2005–2012. Obviously, there is a significant

bias and the timing of precipitation events is inconsistent

too, as evidenced by the wiggles in the double mass curve.

The FEWS-RFE product is based on both satellite observa-

tions and in situ gauging stations, while NOAA-GFS is de-

rived from a global weather model. Moreover, FEWS-RFE

has been shown to perform well in previous studies on the

African continent (Milzow et al., 2011; Stisen and Sand-

holt, 2010). We therefore assume that the FEWS-RFE prod-

uct is closer to the unknown true precipitation than NOAA-

GFS and bias corrects the NOAA-GFS data to match the

long-term average precipitation for both products. A spa-

tially and temporally constant precipitation correction factor

of 0.67 was therefore used throughout the study. Figure 2

also presents a quantitative comparison of the NOAA-GFS

precipitation forecasts for various forecasting horizons. As

a general trend, the longer the forecasting horizon, the lower

the predicted precipitation compared to the 1-day ahead fore-

casts. These effects are particularly pronounced for the rainy

seasons 2008/2009 and 2011/2012. However, for the most re-

cent years, the double mass plots show slopes close to unity.

We therefore did not implement variable bias correction for

the different forecasting horizons. Because the NOAA-GFS
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system is continuously updated and modified (process pa-

rameterization, spatial resolution, etc.), performance of pre-

cipitation forecasts should be regularly checked during op-

erational application of the hydrologic forecasting system.

Changes in the quantitative precipitation forecasts may re-

quire adjustments in the bias correction and/or recalibration

of the hydrological model.

Clearly, the quality of the precipitation forcing is a critical

issue which has significant control over the performance of

the forecasting system. Within the TIGER-NET framework,

we are dependent on public domain data sets and NOAA-

GFS was the only free source of operational weather fore-

casts for the African continent available to the project. Po-

tentially, model performance could be improved if NOAA-

GFS data was corrected dynamically, for instance, by con-

tinuously benchmarking it against real-time or near real-time

precipitation products such as FEWS-RFE or TRMM-3B42

(Huffman et al., 2007) for the recent past and estimating a

time-variable bias correction. An even better solution would

be to merge NOAA-GFS data with in situ precipitation data.

However, no operational data set of in situ precipitation ob-

servations is available for this part of Africa.

3.2 Performance of the calibrated model

Table 3 provides an overview of the calibrated parameter

values. All parameter values are physically reasonable and

calibrated parameter values do not stick to the bounds of a-

priori parameter intervals. Figures 3 and 4 show model per-

formance in the calibration and validation periods.

Model residuals were analyzed and tested for normality

and autocorrelation. Figure 5 summarizes the results of the

model error analysis for the station Rundu. Figure 5a plots

the relative error of the hydrologic–hydrodynamic model ver-

sus the observed discharge. Obviously, the relative error is

not independent of discharge; it is higher for low discharge

than for high discharge. The Q–Q (quantile–quantile) plot in

Fig. 5b shows that the empirical distribution of model errors

significantly deviates from a normal distribution. The empir-

ical distribution of the model errors is narrower than the nor-

mal distribution and a larger portion of the data are clustered

around the mean. The correlogram in Fig. 5c shows highly

significant auto-correlation of the model errors. Figure 5d

shows the residual model errors (ε) after application of the

AR1 model (Eq. 4), plotted against the observed discharge.

This distribution looks more even than the distribution of the

primary model residuals in Fig. 5a. A test for normality us-

ing the Q–Q plot shows significant deviations and again a

narrower distribution than the normal distribution (Fig. 5e).

Temporal correlations have been effectively removed from

the model errors and no significant correlations remain as

shown in Fig. 5f. We conclude from this analysis that the

relative error of the hydrologic–hydrodynamic model can be

reasonably represented with an AR1 model. The time corre-

lation of the AR1 model is δ = 0.9942 on the daily time step.

The random error contribution is ε = 0.0438. As explained

in the methods section, we assume, in the baseline experi-

ment, that the same AR1 model parameters can represent the

relative error of the runoff forcing and we use this result to

parameterize the model error in the Kalman filter assimila-

tion scheme.

3.3 Discharge forecasting and data assimilation

Table 5 reports the performance statistics for the probabilistic

model runs. We report results for the open-loop run without

assimilation, the assimilation run (“nowcasting”) as well as

the 1–7-day ahead forecasts. The various forecasting hori-

zons use different precipitation forcings (forecasts available

at the simulated issue date) and in situ data are assimilated

up to simulated issue date. We only assimilate data from the

station Rundu because (i) no real-time observations are avail-

able for Mohembo and (ii) this enables us to assess the effect

of upstream assimilation on a downstream station. The indi-

cators are reported for both in situ stations and for the cali-

bration and the validation periods. We are well aware that the

observations in the calibration period have been used already

for model calibration and are now used again for assimila-

tion. Still, we feel that it is useful to present the statistics for

information. Figure 6 shows the open-loop and assimilation

run for the station Rundu during calibration and validation

periods. We first assess the performance of the probabilistic

open-loop run. Generally, the chosen error model seems to

be appropriate. The forecasts produced by the open-loop run

are reliable; the coverage of the nominal 95 % confidence in-

terval does not fall below 84 % at any of the stations during

any of the periods. However, the open-loop forecasts are not

very sharp, as evidenced by the wide confidence intervals in

Fig. 6. This results in a relatively high ISS score.

The assimilation run is much sharper for all stations and

periods but we observe a significant loss of reliability in the

validation period. This can again be explained by the rela-

tively low number of observations, particularly at the sta-

tion Mohembo during the validation period as well as rela-

tive over-sampling of the high-flow period. ISS scores of the

forecasting runs are much lower than for the open-loop run,

which indicates massive improvement. The 1–7-day ahead

forecast runs show degrading performance for increasing

lead times. However, even the 7-day ahead forecast generally

has a lower ISS than the open-loop run, except for Rundu

during the validation period. Clearly, the central forecast is

better for all lead times than the central run in the open-

loop simulation. All three indicators (NSE, RMSE and ME)

show significant improvement. Coverage decreases rapidly

with increasing lead time for the station Rundu but is more or

less independent of lead time for the station Mohembo. This

can be explained by the routing time lag between the two

stations. Improvements due to assimilation of Rundu data

travel down to Mohembo and are still visible at this station

after many days. For the station Rundu, increased sharpness
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Figure 2. Left: double mass plot of the FEWS-RFE and NOAA-GFS precipitation products averaged over the entire Kavango River basin.

Right: double mass plots of the 1-day ahead forecasted NOAA-GFS precipitation and the 2–7-day ahead forecasted NOAA-GFS precipitation

averaged over the entire Kavango River basin.

Figure 3. Observed (red dots) and simulated (black lines) hydro-

graphs for the calibration period for Rundu (top) and Mohembo

(bottom).

is over-compensated by loss of reliability, which leads to in-

creasing ISS scores with increasing lead time. For the valida-

tion period, only the 0–3 ahead forecasts are better than the

open-loop run, if evaluated with the ISS score.

Table 6 summarizes the performance of the operational

forecasts produced in the different forecasting experiments

for the validation period and the station Rundu. Results are

reported for the baseline and experiments 1, 3 and 4. Exper-

iment 2 produced results that are very similar to the baseline

results and those are therefore not separately reported. Ta-

ble 6 also includes the performance indicators for the persis-

tence and climatology benchmarks.

Experiment 4 generally shows the best performance. Ac-

cording to the CRPS score, the forecasts are superior to the

open-loop run for all forecasting horizons. Forecasts are also

better than the persistence benchmarks for forecasting hori-

Figure 4. Observed (red dots) and simulated (black lines) hydro-

graphs for the validation period for Rundu (top) and Mohembo (bot-

tom).

zons between 4 and 7 days. For forecasting horizons be-

tween 1 and 6 days, the model outperforms the climatology

benchmark. The persistence index indicates that the forecast-

ing system performs worse than the persistence benchmark.

However, it is important to note that the PI does not assess

the quality of probabilistic forecasts in terms of sharpness

and reliability but only takes the central forecast into account

and compares two deterministic predictions.

Figure 7 graphically presents the forecasts produced in ex-

periment 4 for the station Rundu during the validation period

and Fig. 8 shows predictive quantile–quantile plots for these

forecasts.
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Figure 5. (a) Relative error of the hydrologic–hydrodynamic model vs. observed discharge. (b) Q–Q plot of the relative errors shown

in (a). (c) Correlogram of the relative errors shown in (a). (d) Relative errors of hydrologic–hydrodynamic model after removal of the time-

correlated part plotted vs. observed discharge. (e) Q–Q plot of the relative errors shown in (d). (f) Correlogram of the relative errors shown

in (d).

Figure 6. Probabilistic simulation of river discharge in the open-

loop and assimilated run for the calibration and the validation peri-

ods for the station Rundu.

4 Discussion

The presented approach for the generation of probabilistic

river discharge forecasts is simple and robust and designed

to work in data-sparse and poorly gauged basins. A key fac-

tor for the performance of the system is the rainfall forcing.

While the NOAA-GFS rainfall can produce reasonably reli-

able and sharp forecasts for the Kavango River, the product

should be further compared against other operational precip-

itation products. Promising avenues for future research may

be dynamic bias correction using other precipitation or soil

moisture products and/or the extension of the forecast lead

time beyond 7 days. NOAA-GFS does provide forecasts up

to 16 days into the future. However, the spatial resolution

is reduced by a factor of 2 for forecasting horizons beyond

1 week. To further improve the reliability and sharpness of

the forecasts, an ensemble of weather forecasts should be

used to drive the forecasting system (Cloke and Pappen-

berger, 2009). One potential source of free ensemble weather

forecasts for the African continent is the Global Ensemble

Forecasting System (GEFS; http://www.emc.ncep.noaa.gov/

?branch=GEFS).

As in other hydrologic data assimilation studies (e.g.,

Clark et al., 2008), parameterization of the model error is

a fundamental issue for the performance of the assimilation

scheme. Generally, model error terms can be added to the

forcings, the states, and the parameters of a model. Here, we

assign all model error to the runoff forcing and quantify mag-

nitude and auto-correlation of the error based on the compar-

ison of simulated and observed river discharge. Unlike other

authors, we do not apply error terms to the states and pa-
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Table 5. Performance of the operational model in the calibration and validation periods.

Period In situ Run NSE RMSE ME Coverage Sharpness Interval Mean of No. of

station (–) (m3 s−1) (m3 s−1) (%) (m3 s−1) Skill Score predicted predicted

(m3 s−1) observations observations

(m3 s−1)

C
al

ib
ra

ti
o

n
p

er
io

d
(2

0
0

5
–

2
0

1
1

)

R
u

n
d

u

Open-Loop 0.73 105.6 −5.4 90.0 423.5 654.9 248.4 2440

Assimilation 0.99 22.9 −0.9 88.6 54.1 147.1 248.4 2440

1-day ahead 0.98 29.2 −0.3 86.7 64.4 196.3 248.5 2440

2-day ahead 0.97 36.5 0.5 85.8 75.6 250.8 248.7 2439

3-day ahead 0.95 44.0 1.3 84.5 86.7 307.5 248.9 2438

4-day ahead 0.94 51.2 2.2 83.6 97.2 362.0 249.1 2437

5-day ahead 0.92 57.9 3.1 83.3 106.9 415.2 249.3 2436

6-day ahead 0.90 64.1 4.0 82.6 115.8 465.5 249.4 2435

7-day ahead 0.88 69.9 4.9 81.9 124.0 511.5 249.6 2434

M
o

h
em

b
o

Open-Loop 0.69 97.1 6.8 93.3 478.2 638.1 295.9 1935

Assimilation 0.93 45.1 −11.3 93.3 154.5 251.2 295.9 1935

1-day ahead 0.93 45.2 −11.2 93.3 154.5 251.7 295.9 1935

2-day ahead 0.93 45.1 −11.1 93.4 154.6 249.3 296.0 1934

3-day ahead 0.93 45.0 −11.0 93.4 154.7 246.9 296.0 1933

4-day ahead 0.93 44.9 −10.9 93.5 154.8 244.7 296.1 1932

5-day ahead 0.93 44.8 −10.8 93.5 154.9 242.4 296.2 1931

6-day ahead 0.93 44.8 −10.6 93.4 155.2 240.2 296.3 1930

7-day ahead 0.93 45.0 −10.4 93.3 155.5 238.4 296.4 1929

V
al

id
at

io
n

p
er

io
d

(2
0

1
2

–
2

0
1

4
)

R
u

n
d

u

Open-Loop 0.74 94.6 −55.0 83.9 224.6 515.9 249.0 572

Assimilation 0.97 31.7 −0.5 81.8 43.6 265.7 249.0 572

1-day ahead 0.96 39.3 0.5 78.8 49.3 351.4 252.5 556

2-day ahead 0.94 47.3 1.5 75.9 54.9 442.4 254.1 547

3-day ahead 0.92 54.8 2.3 74.6 60.1 527.4 254.0 544

4-day ahead 0.89 61.6 3.1 72.4 65.1 609.9 254.2 540

5-day ahead 0.87 67.5 3.7 70.8 69.9 687.6 254.9 534

6-day ahead 0.86 72.3 4.2 69.5 74.2 750.4 254.8 531

7-day ahead 0.84 76.0 4.4 69.0 78.2 799.6 254.4 529

M
o

h
em

b
o

Open-Loop 0.33 144.0 −119 93.5 498.4 686.7 469.1 46

Assimilation 0.92 48.4 −9.0 80.4 176.3 206.5 469.1 46

1-day ahead 0.92 48.7 −7.6 81.8 178.3 209.5 478.9 44

2-day ahead 0.92 49.0 −8.0 82.2 177.3 208.2 473.4 45

3-day ahead 0.92 49.9 −7.4 81.8 178.5 210.6 480.4 44

4-day ahead 0.91 51.2 −7.5 79.5 178.6 213.6 481.4 44

5-day ahead 0.91 52.3 −6.9 79.5 178.9 218.0 481.1 44

6-day ahead 0.91 52.7 −7.8 76.6 176.4 233.0 464.2 47

7-day ahead 0.92 52.1 −8.4 79.2 175.2 255.7 449.0 48

rameters of the routing model, because we assume that these

error contributions are minor compared to the runoff error.

While this approach is robust and efficient, it clearly rep-

resents a strong simplification of reality. It is clear that the

simple Muskingum routing model has significant structural

error, for instance due to the fact that floodplains and surface

water/groundwater interactions are not simulated.

Comparison of the various forecasting experiments shows

that assumptions about the model and observation errors have

a large impact on the performance of the forecasting system.

The magnitude of the relative runoff error is particularly sen-

sitive, as evidenced by the improved performance of experi-

ment 4 compared to the baseline. It is reasonable to assume

a higher relative error for the runoff than the relative error

computed from the model residuals at Rundu, because the

routing model has a smoothing effect on the runoff response.

Experiment 3 and the baseline show a comparable perfor-

mance in terms of CRPS. Basically, the higher assumed ob-

servation error in experiment 3 results in predictions that are

less sharp but more reliable. Comparison of experiment 1 and

baseline results shows that even small differences in the as-

sumed autocorrelation of the runoff error result in significant

differences in the forecast performance. Higher error auto-

correlation leads to increased sharpness but lower reliability.

CRPS indicates that experiment 1 forecasts marginally out-

perform the baseline forecasts. Experiment 2 results are very
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Table 6. Performance indicators for the forecasts issued for the station Rundu in the validation period, excluding model “warm-up” periods.

Run NSE RMSE Coverage Sharpness Interval Persistence CRPS No. of

(–) (m3 s−1) (%) (m3 s−1) skill score index (–) (m3 s−1) predicted

(m3 s−1) observations

Benchmarks

Persistence, 1-day ahead 1.00 10.3 6.3 556

Persistence, 2-day ahead 0.99 18.4 12.1 547

Persistence, 3-day ahead 0.98 26.7 17.6 544

Persistence, 4-day ahead 0.97 34.7 23.2 540

Persistence, 5-day ahead 0.95 42.6 28.5 534

Persistence, 6-day ahead 0.93 50.2 33.6 531

Persistence, 7-day ahead 0.91 57.4 38.5 529

Climatology 0.82 78.5 100 346.1 346.1 28.2 580

Baseline

Open-Loop 0.74 94.6 83.9 224.6 515.9 40.0 572

Assimilation 0.97 31.7 81.8 43.6 265.7 13.1 572

1-day ahead 0.96 39.3 78.8 49.3 351.4 −13.7 16.7 556

2-day ahead 0.94 47.3 75.9 54.9 442.4 −5.6 20.3 547

3-day ahead 0.92 54.8 74.6 60.1 527.4 −3.2 23.8 544

4-day ahead 0.89 61.6 72.4 65.1 609.9 −2.1 27.1 540

5-day ahead 0.87 67.5 70.8 69.9 687.6 −1.5 30.1 534

6-day ahead 0.86 72.3 69.5 74.2 750.4 −1.1 32.7 531

7-day ahead 0.84 76.0 69.0 78.2 799.6 −0.8 34.9 529

Experiment 1

Open-Loop 0.74 94.6 89.9 295.6 473.0 38.4 572

Assimilation 0.98 25.8 87.6 49.5 189.4 10.0 572

1-day ahead 0.97 33.9 84.5 57.7 261.2 −9.9 13.4 556

2-day ahead 0.95 42.6 83.4 66.2 339.7 −4.4 16.9 547

3-day ahead 0.93 50.9 82.2 74.2 416.1 −2.7 20.4 544

4-day ahead 0.90 58.5 81.5 81.8 485.6 −1.8 23.7 540

5-day ahead 0.88 65.2 80.9 89.1 549.1 −1.3 26.8 534

6-day ahead 0.86 70.5 79.5 95.6 599.5 −1.0 29.4 531

7-day ahead 0.85 74.7 78.8 101.5 635.6 −0.7 31.6 529

Experiment 3

Open-Loop 0.74 94.6 91.3 315.5 464.8 38.1 572

Assimilation 0.96 39.2 85.8 74.9 261.1 15.6 572

1-day ahead 0.94 46.1 83.8 82.2 323.1 −19.2 18.7 556

2-day ahead 0.92 53.2 82.8 89.2 385.9 −7.3 21.8 547

3-day ahead 0.90 59.7 81.6 95.7 441.1 −4.0 24.6 544

4-day ahead 0.88 65.7 81.1 101.9 493.5 −2.6 27.2 540

5-day ahead 0.86 70.9 80.9 108.0 539.4 −1.8 29.7 534

6-day ahead 0.84 75.1 80.0 113.4 571.2 −1.2 31.7 531

7-day ahead 0.83 78.5 79.6 118.5 595.9 −0.9 33.3 529

Experiment 4

Open-Loop 0.74 94.6 95.3 432.2 525.3 38.6 572

Assimilation 0.99 20.5 91.1 55.6 141.6 7.7 572

1-day ahead 0.98 29.0 89.4 67.5 202.4 −7.0 10.8 556

2-day ahead 0.96 38.4 88.5 80.1 269.0 −3.4 14.3 547

3-day ahead 0.94 47.7 88.6 92.1 335.2 −2.2 17.8 544

4-day ahead 0.91 56.2 87.8 103.6 397.8 −1.6 21.1 540

5-day ahead 0.89 63.8 86.5 114.4 454.0 −1.2 24.2 534

6-day ahead 0.87 69.8 85.7 123.9 497.8 −0.9 26.8 531

7-day ahead 0.85 74.6 85.6 132.7 531.6 −0.7 29.0 529
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Figure 7. Performance of the 0–7-day ahead probabilistic forecasts in the validation period at Rundu station for experiment 4. The black

solid line is the central forecast. Grey shading indicates the 95 % confidence interval of the forecast and red dots are observations. Blue bars

indicate daily forecasted precipitation from NOAA-GFS.

Figure 8. Predictive Q–Q plots for the station Rundu and the validation period for experiment 4.

close to the baseline, because the spatial correlation of runoff

between the different subcatchments is low, due to the vari-

able hydrologic characteristics of the subcatchments. Predic-

tive Q–Q plots for experiment 4 (Fig. 8) indicate significant

deviations of the empirical distribution of normalized fore-

cast errors from the normal distribution.

As is common for studies dealing with probabilistic river

discharge forecasting, we find that our probabilistic forecasts

are over-reliable during low-flow periods and under-reliable

during high-flow periods. This issue can be addressed by sep-

arating the total runoff forcing generated by the SWAT model

into its components, i.e., overland flow, interflow and base-

flow, and developing separate error representations for the

various runoff components. However, given the sparse avail-

ability of in situ observations in the basins, it may be difficult

to find robust parameters for these error representations.

Hydrol. Earth Syst. Sci., 19, 1469–1485, 2015 www.hydrol-earth-syst-sci.net/19/1469/2015/
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We generally observe weaker performance of the forecast-

ing system in the beginning of the rainy season, i.e., after

the long dry season during the onset of the annual high-flow

season. This may be due to deficiencies in the precipitation

forecasts and/or due to weaknesses in the representation of

hydrological processes in the SWAT model. It appears that,

in reality, the first rains in the early rainy season already lead

to increased river flow, while in the model these precipita-

tion events are completely absorbed in the various simulated

hydrological storage compartments.

In this study, focus has been on the final output of the mod-

eling chain, i.e., river discharge. However, SWAT simulates a

multitude of intermediate states and fluxes in the land phase

of the hydrological cycle, which could be analyzed and com-

pared to observations, if such observations were available.

There is an obvious opportunity to inform the modeling sys-

tem with other types of in situ and remote sensing obser-

vations such as radar altimetry, soil moisture and total wa-

ter storage from time-variable gravity (Milzow et al., 2011).

However, if such data were to be formally assimilated to the

modeling system, an ensemble approach would have to be

chosen because of the highly non-linear responses inherent

in the SWAT model. Many studies have addressed ensemble-

based streamflow forecasting with lumped-conceptual or dis-

tributed hydrological models. Rakovec et al. (2012) found

that rainfall-runoff model states were less sensitive compared

to routing states in their hydrologic data assimilation study

with the ensemble Kalman filter and suggested time lags

between the rainfall-runoff model states and streamflow re-

sponse as the likely reason. Alternative updating strategies

that use several previous time steps instead of the last time

step only (e.g., Ensemble Kalman Smoother) can potentially

solve these problems. Other recurring issues in such studies

are high computational demand and model error parameteri-

zation (e.g., Clark et al., 2008).

5 Conclusions

We have presented an operational probabilistic river dis-

charge forecasting system for poorly gauged basins which re-

lies exclusively on public-domain, open-source software and

data. The forecasting system is specifically adapted to the

conditions prevailing in many African basins, such as weak

in situ monitoring infrastructure, budget constraints for op-

erational monitoring and management as well as weak insti-

tutional capacity. We demonstrated the performance of the

forecasting system for the Kavango River and obtained en-

couraging results. The 0–7-day ahead probabilistic forecasts

produced by the system are sharp and reliable. The system

may benefit from ingestion of other types of in situ or re-

motely sensed observations such as radar altimetry and soil

moisture. The TIGER-NET project and its Water Observa-

tion and Information System (WOIS) provide an ideal plat-

form to combine remote sensing observations and hydrolog-

ical models to generate accurate estimates of hydrological

states as well as sharp and reliable forecasts for operational

water resources management.
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