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Abstract. We systematically investigated the Sr isotopic
characteristics of a small silicate watershed, the Xishui River
a tributary of the Yangtze River, and a small carbonate wa-
tershed, the Guijiang River a tributary of the Pearl River.
The results show that the two rivers have uncommon Sr iso-
topic characteristics compared with most small watersheds.
Specifically, the silicate watershed (Xishui River) has rel-
atively high Sr concentrations (0.468 to 1.70 µmol L−1 in
summer and 1.30 to 3.17 µmol L−1 in winter, respectively)
and low87Sr/86Sr ratios (0.708686 to 0.709148 in summer
and 0.708515 to 0.709305 in winter). The carbonate wa-
tershed (Guijiang River) has low Sr concentrations (0.124
to 1.098 µmol L−1) and high87Sr/86Sr ratios (0.710558 to
0.724605).

As the87Sr/86Sr ratios in the Xishui River are lower than
those in seawater, the87Sr/86Sr ratio of seawater will de-
crease after the river water is transported to the oceans. Pre-
vious studies have also shown that some basaltic watersheds
with extremely high chemical weathering rates reduced the
seawater Sr isotope ratios. In other words, river catchments
with high silicate weathering rates do not certainly transport
highly radiogenic Sr into oceans. Therefore, the use of the
variations in the seawater87Sr/86Sr ratio to indicate the con-
tinental silicate weathering intensity may be questionable.

In the Guijiang River catchment, the87Sr/86Sr ratios of
carbonate rocks and other sources (rainwater, domestic and
industrial waste water, and agricultural fertilizer) are lower

than 0.71. In comparison, some non-carbonate components,
such as sand rocks, mud rocks, and shales, have relatively
high Sr isotopic compositions. Moreover, granites accounted
for only 5 % of the drainage area have extremely high
87Sr/86Sr ratios with an average of greater than 0.8. There-
fore, a few silicate components in carbonate rocks obviously
increase the Sr isotopic compositions of the river water.

1 Introduction

By analyzing the Sr isotopic compositions of marine lime-
stones and their shells, the evolution curve of the seawa-
ter 87Sr/86Sr ratio in the Phanerozoic was well established
(Veizer and Compston, 1974; Brass, 1976; Burke et al., 1982;
Elderfield and Gieskes, 1982; DePaolo and Ingram, 1985;
Palmer and Elderfield, 1985; DePaolo, 1986; Hess et al.,
1986; Richter and DePaolo, 1987, 1988; Raymo et al., 1988;
Veizer, 1989; Capo and DePaolo, 1990; Hodell et al., 1991;
Richter et al., 1992; Veizer et al., 1999; Korte et al., 2006;
Melezhik et al., 2009). The Sr isotope budget of the oceans
is dominated by its supplies via rivers, hydrothermal vent wa-
ters, and diagenesis of deep-sea sediments, and the dissolved
Sr flux to the modern oceans via rivers is far more than those
via the latter two (Palmer and Edmond, 1989). In particu-
lar, the Ganges and Brahmaputra, originating in the south-
ern Qinghai–Tibet Plateau, are characterized by both high Sr
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concentrations and high87Sr/86Sr ratios and thus have a ma-
jor influence on the increase in the Sr isotopic composition
of seawater (e.g., Krishnaswami et al., 1992; Harris, 1995;
Derry and France-Lanord, 1996; Quade et al., 1997; Singh et
al., 1998, 2006; Galy et al., 1999; English et al., 2000; Dalai
et al., 2003). Therefore, many researchers attribute the steady
increase in the87Sr/86Sr ratio in the oceans since the Ceno-
zoic mainly to the uplifting of the Qinghai–Tibet Plateau,
which caused increased silicate weathering and highly ra-
diogenic Sr flux to the oceans. As the silicate rocks in the
southern Himalayas have both high87Sr/86Sr ratios and high
Sr concentrations, the rise of the Sr isotopic composition of
seawater since the Cenozoic can be used as a proxy of in-
tensified silicate weathering (Palmer and Elderfield, 1985;
Raymo et al., 1988; Edmond, 1992; Krishnaswami et al.,
1992; Richter et al., 1992; Harris, 1995; Blum, 1997; Galy
et al., 1999; Chesley et al., 2000; English et al., 2000; Bickle
et al., 2005). However, other studies have shown that the un-
usual metamorphic evolution of the Himalayas was enriched
with carbonates, resulting in abnormally high87Sr/86Sr ra-
tios, and that the weathering of such carbonates might con-
trol the 87Sr/86Sr ratios of river water (e.g., Edmond, 1992;
Palmer and Edmond, 1992; Quade et al., 1997; Blum et al.,
1998; Harris et al., 1998; English et al., 2000; Karim and
Veizer, 2000; Jacobson and Blum, 2000; Bickle et al., 2001;
Jacobson et al., 2002a). If much of the radiogenic Sr in the
rivers is derived from carbonate weathering, then changes in
the seawater Sr isotopic composition would not be a proxy of
the continental silicate weathering intensity.

To better understand the contribution of silicate and car-
bonate weathering to the Sr isotopic composition of river
water, we selected two small watersheds: one was the Xishui
River draining silicate rocks, a tributary of the Yangtze River,
and another was the Guijiang River draining carbonate rocks,
a tributary of the Pearl River. In the two river catchments,
silicate and carbonate rocks account for approximately 95 %
of the respective drainage area. By analyzing the Sr isotopic
compositions of river waters, we will discuss the Sr isotope
characteristics and their controlling factors in small water-
sheds and investigate the relationship between silicate, car-
bonate weathering, and the Sr isotope evolution of seawater.

2 Studied areas

The Xishui River is a small tributary of the Yangtze River
located at 115◦07′–116◦05′ E and 30◦20′–31◦09′ N. This
river originates from south of the Dabie Mountain (eleva-
tion 1600 m), has a length of 157 km and a drainage area
of 2670 km2. Its headwater is composed of the Donghe
River and Xihe River, which converge in Yishan County.
The Xishui River merges into the Yangtze River at Lanxi
(Fig. 1). The Xishui River catchment belongs to a subtropi-
cal monsoon climate with a mean temperature of 29◦C in the
summer and 4◦C in the winter and an annual mean rainfall

Fig. 1. Map of the Xishui River catchment and sampling locations
(filled red circles).

of approximately 1350 mm. The Xishui River mainly flows
across the Dabie Mountain early Proterozoic metamorphic
zone, which is altered by multiphase tectonism and regional
metamorphism, forming a variety of metamorphic rocks and
complete metamorphic facies. The catchment is covered with
ultrahigh-pressure metamorphic rocks, mainly composed of
eclogite, gneiss, and some granite (Fig. 2) (Bureau of Geol-
ogy and Mineral Resources of Hubei Province, 1990; China
Geological Survey, 2004).

The Guijiang River, a tributary of the Pearl River, rises
in the Miaoershan Mountain with an elevation of 2142 m.
This river has a length of 438 km and a drainage area of
18 790 km2. The upper reaches are upstream of Rongjiang
Town, and the middle reaches are from the confluence with
the Lingqu River to Pingle County, also called “the Lijiang
River”, and then merge into the Pearl River at Wuzhou City
(Fig. 3). The annual rainfall and evaporation are approxi-
mately 2000 mm and 1100 to 1200 mm, respectively, and the
annual average temperature is∼ 20◦C in the Guijiang River
catchment. Silurian granites, Ordovician–Cambrian shales,
and mud rocks intercalate carbonate rocks and are mainly
exposed in the headwater and upper reaches. The middle
reaches are almost entirely covered with Devonian carbonate
rocks, and the lower reaches flow across Cambrian terrain
composed largely of carbonate rocks in intercalated shales
(Fig. 4) (China Geological Survey, 2004).
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Fig. 2. Geological map of the Xishui River catchment (modified
from the China Geological Survey, 2004).

3 Sampling and analysis

From the river mouths to the source areas of the Xishui
River and Guijiang River, 57 samples of river water,
1 sample of rain water, 1 sample of snow, 27 samples of
riverbed sediment, and 2 samples of soil were collected in
July 2010, December 2010, and July 2011 (Figs. 1 and 3,
Table 1). A portable water quality analyzer was used to
measure the temperature, pH, and conductivity in situ. Flow
measurement was used to measure the flow velocity in the
field and to estimate the water discharge. All of the samples
were collected from the river bank or midstream away
from towns, avoiding contamination from anthropogenic
activities, and were stored in pre-cleaned polyethylene
bottles free of air. The water samples were filtered through
a 0.45 µm mixed cellulose esters Millipore filter. An aliquot
of the filtered water was acidified to pH< 2 with ultrapure
grade 1 : 1 nitric acid. Ca2+, Mg2+, Na+, K+, Sr, and Si
were measured in the filtered and acidified water using an
inductively coupled plasma spectrometer (ICP-AES, Jarrell-
Ash1100) at the Center of Modern Analysis of Nanjing
University. The anions (F−, Cl−, NO−

3 , and SO2−

4 ) in the
filtered and un-acidified samples were measured using an ion
chromatograph (Dionex series 1100) at the Key Laboratory
of Surficial Geochemistry, Ministry of Education, School of
Earth Sciences and Engineering, Nanjing University. The
alkalinity was measured in the unfiltered water samples
using a digital titrator (Hach 16900). The measurement re-
producibility was determined by repeat analyses of samples

Fig. 3.Map of the Guijiang River catchment and sampling locations
(filled red circles).

and standards, which showed±2 % precision for the cations
and±5 % for the anions. For most of the water samples, the
total cation charge (TZ+ = Ca2+

+ Mg2+
+ Na+

+ K+

in meq L−1) balanced the total anion charge
(TZ− = HCO−

3 + Cl− + SO2−

4 in meq L−1) within the
analytical uncertainties, and the normalized inorganic charge
balance (NICB = (TZ+ − TZ−)/TZ+

× 100 %) was within
±5 % (Wu et al., 2013). For the Sr isotope ratio analysis,
the Sr was separated from the samples using standard ion
exchange techniques. The Sr isotopic compositions were
measured using a Finnigan Triton thermal ionization mass
spectrometer at the State Key Laboratory for Mineral De-
posits Research, Nanjing University. The reproducibility and
accuracy of the Sr isotope runs were periodically checked by
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Fig. 4. Geological map of the Guijiang River catchment (modi-
fied from the China Geological Survey, 2004).ε: Cambrian mixed
layer; ε1−2: limestones/dolomites intercalated shales;ε2−3: lime-
stones intercalated shales;O: Ordovician mixed layer; O1: shales,
mud rocks, limestones, and dolomites;D1: sand rocks, mud rocks,
and a few carbonate rocks;D2: carbonate rocks and detrital rocks;
D2−3: carbonate rocks, sand rocks, and mud rocks;D3: carbonate
rocks;D3–C1: detrital rocks, carbonate rocks, and mud rocks;D–
C: Devonian–Carboniferous mixed layer;C: Carboniferous mixed
layer;C1: carbonate rocks, sand rocks, and mud rocks intercalated
coals.

running the Standard Reference Material NBS 987, with a
mean87Sr/86Sr ratio of 0.710248± 20 (2σ external standard
deviation,n = 15). The Sr isotopic ratios were normalized to
86Sr/88Sr = 0.1194. The analytical blank was< 1 ng for Sr.

Only the < 63µm fine-grained fractions of the riverbed
sediment and soil samples were used. The calcite in the
samples was selectively dissolved with purified acetic acid
(0.5 mol L−1) at room temperature for up to 8 h, and only
the silicate fractions were investigated. All of the pre-
treated samples were cleaned in pure water, powdered
in an agate mill, and then digested with a mixture of
HCl + HNO3 + HClO4 + HF. The analysis of Sr concentra-
tions and isotopic compositions is the same as for the water
samples.

4 Results

The Sr concentrations and87Sr/86Sr ratios of the water
samples in the Xishui and Guijiang rivers are listed in Ta-
ble 2. The Sr concentrations of the Xishui River are 0.468 to
1.70 µmol L−1 in the summer and 1.30 to 3.17 µmol L−1

in the winter, reflecting a dilution effect from high runoff
in the summer. The87Sr/86Sr ratios range from 0.708686
to 0.709148 in the summer and from 0.708515 to 0.709305
in the winter, and do not exhibit obvious seasonal varia-
tions. A snow sample from Lanxi has a Sr concentration of
0.879 µmol L−1 and a87Sr/86Sr ratio of 0.709495. The Sr
concentrations are 0.124 to 1.098 µmol L−1 and 87Sr/86Sr
ratios are 0.710558 to 0.724605 in the Guijiang River. The
rainwater sample from Zhaoping has a Sr concentration of
0.11 µmol L−1 and a87Sr/86Sr ratio of 0.710416. Compared
with the Xishui River, the Guijiang River has lower Sr con-
centrations but higher87Sr/86Sr ratios. A plot of87Sr/86Sr
vs. 1/Sr shows that the silicate watershed Xishui River is
characterized by carbonate weathering with low87Sr/86Sr
ratios and high Sr concentrations, and the carbonate water-
shed Guijiang River is closer to the silicate endmember with
high 87Sr/86Sr ratios and low Sr concentrations (Fig. 5). It is
surprising that each of the rivers exhibits entirely opposite Sr
isotope characteristics than those of classic silicate and car-
bonate weathering. These reasons will be analyzed in Sect. 5.

Table 2 also contains some major ion concentrations in the
Xishui River (Wu et al., 2013). For the Guijiang River, we did
not analyze major ions, and some data from other researchers
are listed in Table 2 for reference.

The Sr characteristics of the riverbed sediments and
soils are given in Table 3. The87Sr/86Sr ratios of the
Xishui riverbed sediments are 0.707058 to 0.712616. The
Guijiang riverbed sediments have87Sr/86Sr ratios ranging
from 0.735172 to 0.775952, and two soil samples GJ15
and GJ19, have87Sr/86Sr ratios of 0.744095 and 0.749902,
respectively. The87Sr/86Sr ratios in the Guijiang River
catchment are much higher than those in the Xishui River,
reflecting obvious differences in the Sr isotopic compositions
of the underlying bedrock in the two catchments.
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Table 1.The sampling information of the Xishui River and Guijiang River.

Num. River basins Locations Date Longitude Latitude Ele. Temp. pH EC
(m) (◦C) (µs cm−1)

The Xishui River

Winter
XS-01a Xishui R. Lanxi 25 Dec 2010 115◦08′40′′ 30◦21′25′′ 15 9 7.7 183
XS-02a Xishui R. Guankou 25 Dec 2010 115◦20′13′′ 30◦32′24′′ 43 10.3 7.9 125
XS-03a Shenjia R. Bailianhe 25 Dec 2010 115◦25′29′′ 30◦37′11′′ 60 9.1 8 183
XS-04a Xishui R. Bailianhe 25 Dec 2010 115◦26′20′′ 30◦35′42′′ 61 10.7 7.8 122
XS-05a Xihe R. Yinshan 25 Dec 2010 115◦38′31′′ 30◦43′38′′ 101 8.2 7.9 109
XS-06a Donghe R. Yangliuwang 26 Dec 2010 115◦44′52′′ 30◦47′13′′ 131 9.2 7.8 155
XS-07a Xihe R. Jinjiapu 26 Dec 2010 115◦37′53′′ 30◦52′05′′ 126 6.2 7.86 93.1
XS-08a Xihe R. Shitouzui 26 Dec 2010 115◦47′10′′ 31◦01′05′′ 198 4.5 7.8 99.1
XS-09a Xihe R. Wujiashan 26 Dec 2010 115◦49′35′′ 31◦04′28′′ 277

Snow Lanxi 25 Dec 2010 115◦08′40′′ 31◦04′28′′ 22

Summer
XS-01 Xishui R. Lanxi 9 Jul 2011 115◦08′40′′ 30◦21′25′′ 15 28 126
XS-02 Xishui R. Guankou 9 Jul 2011 115◦20′13′′ 30◦32′24′′ 43 23 142
XS-03 Shenjia R. Bailianhe 9 Jul 2011 115◦25′29′′ 30◦37′11′′ 60 21 131
XS-04 Xishui R. Bailianhe 9 Jul 2011 115◦26′20′′ 30◦35′42′′ 61 22 140
XS-05 Xihe R. Yinshan 9 Jul 2011 115◦38′31′′ 30◦43′38′′ 101 28 140
XS-06 Donghe R. Yangliuwang 9 Jul 2011 115◦44′52′′ 30◦47′13′′ 131 24 160
XS-07 Xihe R. Jinjiapu 9 Jul 2011 115◦37′53′′ 30◦52′05′′ 126 22 133
XS-08 Xihe R. Shitouzui 9 Jul 2011 115◦47′10′′ 31◦01′05′′ 198 20 109

The Guijiang River

GJ-01a Lin R. Rongjiang 26 Jul 2010 110◦28′36′′ 25◦33′48′′ 184 28 7.99 236
GJ-02a Darong R. Rongjiang 26 Jul 2010 110◦28′18′′ 25◦33′52′′ 186 27.6 7.37 71
GJ-03a Li R. Rongjiang 26 Jul 2010 110◦27′26′′ 25◦33′14′′ 179 27.3 7.39 74
GJ-04 Gantang R. Tanxia 27 Jul 2010 110◦17′28′′ 25◦27′25′′ 168 25 7.58 152
GJ-05 Li R. Guilin 27 Jul 2010 110◦19′38′′ 25◦21′19′′ 154 28.2 7.62 170
GJ-06 Taohua R. Guilin 27 Jul 2010 110◦17′02′′ 25◦16′32′′ 153 28.5 7.27 229
GJ-07 Li R. Guilin 27 Jul 2010 110◦18′58′′ 25◦13′53′′ 148 28.1 7.3 172
GJ-08 Li R. Zhemu 27 Jul 2010 110◦20′58′′ 25◦12′13′′ 146 28.7 7.31 166
GJ-09a Liangfeng R. Zhemu 27 Jul 2010 110◦21′04′′ 25◦11′59′′ 147 29.8 7.41 316
GJ-10a Li R. Majiafang 27 Jul 2010 110◦23′13′′ 25◦10′44′′ 141 29.3 7.41 177
GJ-11a Chaotian R. Daxu 27 Jul 2010 110◦25′45′′ 25◦10′38′′ 136 30.6 8.56 207
GJ-12 Li R. Guanyan 27 Jul 2010 110◦26′52′′ 25◦03′16′′ 128 30.5 8.38 182
GJ-13 Underground R. Guanyan 27 Jul 2010 110◦27′25′′ 25◦02′57′′ 129 22.3 8.13 258
GJ-14 Li R. Guanyan 27 Jul 2010 110◦27′14′′ 25◦02′38′′ 128 30.5 8.31 182
GJ-15b Li R. Xinping 27 Jul 2010 110◦31′07′′ 24◦55′20′′ 118 29.8 7.73 185
GJ-16 Longjin R. Xinping 28 Jul 2010 110◦31′35′′ 24◦55′04′′ 119 28.6 7.77 228
GJ-17 Li R. Xinping 28 Jul 2010 110◦31′05′′ 24◦54′45′′ 118 29.8 7.78 186
GJ-18 Li R. Yangshuo 28 Jul 2010 110◦30′00′′ 24◦46′10′′ 112 30.5 8.14 189
GJ-19b Yulong R. Yangshuo 28 Jul 2010 110◦30′40′′ 24◦46′05′′ 112 31.2 8.1 238
GJ-20a Li R. Yangshuo 28 Jul 2010 110◦31′02′′ 24◦46′42′′ 112 30.6 8.2 193
GJ-21 Li R. Pingle 28 Jul 2010 110◦36′44′′ 24◦38′28′′ 104 30.5 7.98 191
GJ-22a Lipu R. Pingle 28 Jul 2010 110◦36′43′′ 24◦37′57′′ 103 30.2 7.72 159
GJ-23a Li R. Pingle 28 Jul 2010 110◦37′40′′ 24◦37′48′′ 103.5 30.3 7.96 175
GJ-24a Gongcheng R. Pingle 28 Jul 2010 110◦38′15′′ 24◦37′58′′ 104 30.4 8.01 201
GJ-25a Gui R. Pingle 28 Jul 2010 110◦40′10′′ 24◦37′00′′ 102 30.1 7.93 192
GJ-26 Gui R. Guihua 29 Jul 2010 110◦46′06′′ 24◦15′31′′ 76 30.4 7.71 190
GJ-27 Guihua R. Guihua 29 Jul 2010 110◦45′46′′ 24◦15′06′′ 76 30.7 8.12 164
GJ-28 Gui R. Guihua 29 Jul 2010 110◦47′44′′ 24◦14′46′′ 75 30.3 7.78 184
GJ-29 Gui R. Zhaoping 29 Jul 2010 110◦50′20′′ 24◦11′47′′ 55 30.3 7.81 176
GJ-30a Siqin R. Zhaoping 29 Jul 2010 110◦50′34′′ 24◦11′30′′ 55 30 8.01 142

www.hydrol-earth-syst-sci.net/18/559/2014/ Hydrol. Earth Syst. Sci., 18, 559–573, 2014



564 W. H. Wu et al.: Sr isotopic characteristics in two small watersheds draining silicate and carbonate rocks

Table 1.Continued.

Num. River basins Locations Date Longitude Latitude Ele. Temp. pH EC
(m) (◦C) (µs cm−1)

GJ-31a Gui R. Zhaoping 29 Jul 2010 110◦49′57′′ 24◦10′48′′ 53 28 7.76 178
GJ-32 Gui R. Majiang 29 Jul 2010 111◦02′12′′ 23◦53′44′′ 33 30.3 7.73 152
GJ-33a Fuqin R. Majiang 30 Jul 2010 111◦02′16′′ 23◦52′38′′ 34 29.4 7.64 132
GJ-34a Gui R. Majiang 30 Jul 2010 111◦01′29′′ 23◦52′07′′ 32.5 30.4 7.8 152
GJ-35 Gui R. Changfa 30 Jul 2010 111◦05′58′′ 23◦43′01′′ 23.5 30.3 7.76 145
GJ-36 Longjiang R. Changfa 30 Jul 2010 111◦06′09′′ 23◦41′51′′ 23 26.9 7.11 36
GJ-37 Gui R. Changfa 30 Jul 2010 110◦07′47′′ 23◦38′35′′ 21 30.1 7.8 143
GJ-38 Gui R. Hekou 30 Jul 2010 111◦18′17′′ 23◦32′29′′ 11 29.8 7.69 138
GJ-39 Siliang R. Hekou 31 Jul 2010 111◦18′32′′ 23◦32′04′′ 11 28.5 6.78 89
GJ-40a Gui R. Hekou 31 Jul 2010 111◦18′37′′ 23◦31′30′′ 10 30.5 7.67 138

Rain Zhaoping 29 Jul 2010 110◦49′57′′ 24◦10′48′′ 53

a Riverbed sediments were also collected.b Riverbed sediments and soils were also collected.
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the Xishui River in the winter and summer, respectively.

5 Discussion

5.1 Sr isotope characteristics and controlling factors in
the Xishui River

Silicate rocks in the Xishui River catchment account for
approximately 95 % of the drainage area. Among them,
gneisses are dominant and granites are mainly distributed in
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Fig. 6. Temporal and spatial variations of the Sr concentrations(a)
and the87Sr/86Sr ratios(b) in the Xishui River. The filled and open
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the source area and in the Bailianhe Reservoir. Moreover, ba-
sic and ultrabasic rocks are exposed in a scattered manner.
However, as a silicate watershed, the Xishui River has low
87Sr/86Sr ratios (< 0.71). The87Sr/86Sr ratios of samples in
the summer decrease gradually going downwards from the
source area and reach the lowest value at Yinshan County
(Fig. 6). After flowing across granites, which are widely dis-
tributed across the Bailianhe Reservoir, the87Sr/86Sr ratios
increase and then gradually decrease from XS3 to XS1. The
varying trend of87Sr/86Sr ratios in the winter is very sim-
ilar to that of the summer with the exception of XS3–XS1,
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Table 2.The Sr isotopic compositions and parts of major ion concentrations in the Xishui River and Guijiang River.

Num. River Ca Mg K Na Cl HCO3 SO4 NO3 Si Sr 87Sr/86Sr 2σ NICB
basins µmol L−1 %

The Xishui Rivera

Winter
XS-01 Xishui R. 427 201 79.2 384 149 1320 119 112 220 2.59 0.708900 3 0.3
XS-02 Xishui R. 274 125 41.1 261 92.8 872 100 46.3 197 2.10 0.708850 4−2.9
XS-03 Shengjiahe R. 491 233 49.0 361 113 1537 122 28.9 278 3.17 0.708773 6−1.0
XS-04 Xishui R. 289 131 44.8 285 86.9 918 95.4 47.3 220 2.23 0.708873 3−1.1
XS-05 Xihe R. 252 120 35.1 268 87.9 684 119 35.7 206 2.02 0.708515 4 1.8
XS-06 Donghe R. 345 153 39.4 425 126 930 155 34.2 307 2.32 0.708718 5 3.3
XS-07 Xihe R. 211 93.4 29.8 230 50.2 621 114 51.1 164 1.62 0.709305 3−1.7
XS-08 Xihe R. 231 109 28.5 218 57.0 690 118 39.8 199 1.73 0.709302 2−2.9
XS-09 Xihe R. 130 54.0 18.6 149 31.8 394 70.9 16.7 224 1.30 0.709104 2−2.9

Snow 66.4 13.1 21.1 38.4 38.9 105 32.4 93.3 4.04 0.308 0.709495 4−38.4
Summer
XS-01 Xishui R. 268 151 46.2 291 168 730 133 66.8 130 1.52 0.708778 3−2.1
XS-02 Xishui R. 324 151 47.0 366 155 905 127 51.6 200 1.70 0.708790 5 1.8
XS-03 Shengjiahe R. 287 138 45.4 324 140 801 116 51.1 132 1.51 0.708969 7 2.0
XS-04 Xishui R. 341 146 50.4 351 135 883 124 53.7 179 1.14 0.708999 3 2.2
XS-05 Xihe R. 313 139 43.5 361 153 847 162 55.6 194 0.468 0.708686 5 0.1
XS-06 Donghe R. 371 150 44.6 432 170 1011 146 51.6 281 0.890 0.708739 4−1.8
XS-07 Xihe R. 258 128 37.7 396 130 765 153 38.7 154 1.48 0.709043 5−1.3
XS-08 Xihe R. 250 120 33.5 263 109 603 150 32.3 153 1.39 0.709148 8−0.3

The Guijiang Riverb

GJ-01 Lin R. 0.851 0.711293 6
GJ-02 Darong R. 286 62.6 20 60.9 48.8 370 88.5 131 0.371 0.715849 6
GJ-03 Li R. 0.389 0.715973 3
GJ-04 Gantang R. 335 21.0 8.97 21.7 27.9 630 47.3 43.4 0.576 0.712037 4
GJ-05 Li R. 797 73.3 31.8 141 134 1600 117 129 1.098 0.710558 5
GJ-06 Taohua R. 0.743 0.712451 5
GJ-07 Li R. 0.786 0.711876 6
GJ-08 Li R. 0.737 0.712369 12
GJ-09 Liangfeng R. 0.899 0.711612 4
GJ-10 Li R. 0.741 0.712728 50
GJ-11 Chaotian R. 967 128 17.7 34.4 58.4 2099 79.8 93.1 0.811 0.713659 3
GJ-12 Li R. 0.754 0.712393 35
GJ-13 Underground R. 0.743 0.712359 4
GJ-14 Li R. 0.749 0.712077 3
GJ-15 Li R. 0.745 0.712084 4
GJ–16 Longjin R. 0.764 0.714377 3
GJ-17 Li R. 0.738 0.712204 4
GJ-18 Li R. 0.750 0.712039 4
GJ-19 Yulong R. 1327 346 20.3 57.8 97.6 3130 135 133 0.694 0.712706 5
GJ-20 Li R. 893 95.9 31.3 111 107 1754 130 73.7 0.743 0.712200 8
GJ-21 Li R. 0.746 0.712078 7
GJ-22 Lipu R. 700 189 50.8 127 121 1250 249 67.1 0.829 0.711712 6
GJ-23 Li R. 0.792 0.711911 4
GJ-24 Gongcheng R. 705 174 25.9 53.5 63.8 1320 96.1 107 0.702 0.712568 6
GJ-25 Gui R. 0.727 0.712372 3
GJ-26 Gui R. 0.711 0.712402 4
GJ-27 Guihua R. 0.615 0.712943 6
GJ-28 Gui R. 0.689 0.712483 3
GJ-29 Gui R. 0.647 0.712709 6
GJ-30 Siqin R. 743 163 46.7 118 114 1688 114 62.4 0.607 0.713242 3
GJ-31 Gui R. 816 134 35.1 99.1 98.4 1655 137 58.7 0.646 0.712750 7
GJ-32 Gui R. 0.567 0.713365 4
GJ-33 Fuqin R. 478 145 45.6 82.2 88.6 1100 90.6 60.2 0.697 0.712798 4
GJ-34 Gui R. 0.576 0.713128 5
GJ-35 Gui R. 690 138 31.3 87.4 84.9 1450 116 51.0 0.555 0.714357 8
GJ-36 Longjiang R. 78.5 74.1 33.8 106 47.4 270 48.6 56.5 0.124 0.724605 5
GJ-37 Gui R. 0.554 0.714018 5
GJ-38 Gui R. 0.516 0.714343 3
GJ-39 Siliang R. 0.361 0.720095 3
GJ-40 Gui R. 0.534 0.716453 4
Rain Rain 0.110 0.710416 3

a Major ion concentrations in the Xishui River were from a companion paper (Wu et al., 2013).b Major ion concentrations in the Guijiang River were cited from H. B. Zhang et
al. (2012). Compared with our samples, they were collected at a different time (April 2012), and therefore can only be a reference.
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Table 3.Sr isotopic compositions of the Xishui River and Guijiang
River riverbed sediments and soils.

Num. Sr (µg g−1) 87Sr/86Sr 2σ

The Xishui River sediments

XS-01 249 0.710139 2
XS-02 354 0.709188 3
XS-03 255 0.712616 3
XS-04 232 0.711184 4
XS-05 396 0.707058 3
XS-06 423 0.708789 4
XS-07 362 0.709222 3
XS-08 378 0.709050 4
XS-09 448 0.708784 3

The Guijiang River sediments

GJ-01 41.6 0.743134 3
GJ-02 43.9 0.757536 4
GJ-03 56.6 0.738083 4
GJ-09 61.6 0.739180 3
GJ-10 54.6 0.742779 2
GJ-11 58.1 0.742161 4
GJ-15 49.1 0.744003 3
GJ-19 63.6 0.737776 3
GJ-20 47.8 0.758427 3
GJ-22 87.0 0.737306 4
GJ-23 77.3 0.737048 4
GJ-24 85.1 0.735172 3
GJ-25 93.8 0.735274 3
GJ-30 55.1 0.748129 4
GJ-31 59.6 0.740296 5
GJ-33 38.3 0.775952 4
GJ-34 52.2 0.761448 4
GJ-40 58.3 0.750115 4

The Guijiang River soils

GJ-15 55.4 0.744095 5
GJ-19 48.3 0.749902 3

which have a slightly increasing trend. Variations in the
87Sr/86Sr ratios may be attributed to differences in the under-
lying bedrock. In the Xishui River catchment, the87Sr/86Sr
ratios of Cretaceous granites are commonly higher than those
of metamorphic rocks (Zheng et al., 2000; Ge et al., 2001a,
b; Chen et al., 2002). The Sr concentrations in the Xishui
River are relatively high and the lower reaches have higher
values than do the headwaters. The samples XS8–XS4 in
the summer and winter have similar trends of increasing Sr
concentrations. However, the varying trend of samples XS3–
XS1 between the summer and winter is remarkably differ-
ent, as reflected in the very high Sr concentrations of sam-
ples XS3 and XS1 in the winter. Moreover, the concentra-
tions of the major ions Ca2+, Mg2+, and HCO−

3 of samples
XS3 and XS1 were also rather high. This result may reflect
hydrological control at the basin scale. The river water is

Table 4. Sr isotopic compositions of underlying bedrocks in the
Xishui River and Guijiang River catchments.

Lithologies 87Sr/86Sr Data Source

The Xishui River catchment

Granitoids 0.708229–0.716990 Ge et al. (2001a)
Granitoids 0.707934–0.713695 Chen et al. (2002)
Granitoids 0.707040–0.712890 Zhang et al. (2002)
Gray Gneisses 0.707482–0.719772 Zheng et al. (2000)
Pyroxenite/gabbro 0.706839–0.708556 Jahn et al. (1999)
Mafic-ultramafic Rocks 0.706071–0.703955 Li et al. (1998)
Eclogites 0.705388–0.710926 Liu et al. (2000)
Complex 0.707109–0.707611 Wawrzenitz et al. (2006)
Mafic igneous 0.707791–0.709900 Wang et al. (2005)

The Guijiang River catchment

Granitoids 0.72261–0.99180 Zhu et al. (1989)
Granitoids 0.733000–1.025912 Gu et al. (2006)
Granitoids 0.738–1.003 Xu and Zhang (1993)
Granitoids 0.77007–0.89397 Xu et al. (1994)
Granitoids 0.720065–0.787221 F. F. Zhang et al. (2012)
Carbonate rocksa 0.70589–0.70882 Huang (1997)
Carbonate rocksa 0.708223–0.708907 Zeng et al. (2007)
Dolomitic limestoneb 0.70775

Liu et al. (2011)
Soilb 0.71049–0.72266
Soilb 0.727317–0.727417 Zhu et al. (2011)

a Paleozoic carbonate rocks in the Yangtze Platform.
b Karst area in the neighboring Guizhou Province.

mainly provided by surface flow during the monsoon period,
whereas the proportion of water contributed by the aquifer
is higher during the dry period. The 1 : 200 000 geological
map (Bureau of Geology and Mineral Resources of Hubei
Province, data not published) shows that Archean marbles
are distributed in a stratified manner in the tributary Shenji-
ahe River and in the Xishui mainstream from Lanxi Town to
Xishui County. Therefore, the high concentrations of Ca2+,
Mg2+, HCO−

3 , and Sr in the two samples may be caused
by increasing carbonate dissolution in the shallow aquifer,
whereas the river water is typically derived from the upper
reaches in the summer (Wu et al., 2013).

Seasonally, the Sr concentrations in the summer are ob-
viously lower than those in winter, reflecting a dilution ef-
fect resulting from increasing discharge. Variations in the
87Sr/86Sr ratios are slight and do not exhibit notable regular-
ity. As the Xishui River only has a length of 157 km, the cli-
mate effect (temperature, rainfall, evaporation, etc.) among
different samples can be negligible. In field reconnaissance,
we found that the vegetation type and coverage were similar
in the catchment. Studies on the major ions showed that the
water residence time in the Xishui River was far shorter than
the typical seasonal variation and therefore did not evidently
affect the chemical composition of river water, but that the
hydrological properties might affect the seasonal differences
(e.g., the influence of an aquifer) (Wu et al., 2013). Due to the
lack of data on the Sr isotope in the aquifer, the influence of
the aquifer on the seasonal variations of the87Sr/86Sr ratios
in the Xishui River is unknown. In Table 4, we compile some
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Table 5.Sr isotopic compositions of fertilizer, wastewater, groundwater, and plant in different land use patterns in karst area.

Sr (µg g−1) 87Sr/86Sr Data sources

Irrigation water 0.039 0.71234
Hosono et al. (2007)Basal fertilizer 0.017–0.057 0.70827–0.70967

Supplemental fertilizer 0.044–0.084 0.70894–0.71020
fertilizer 0.7083 Négrel and Deschamps (1996)
Liquid fertilizer∗ 0.948 0.708078

Brenot et al. (2008)Solid fertilizer 202 0.703313
Winter sewage∗ 6.28–10.3 0.70804

Lang et al. (2006)Summer sewage∗ 4.91–8.90 0.70800
Industrial wastewater∗ 10.3 0.70766

Li et al. (2010)
Domestic wastewater∗ 4.57–5.02 0.70762–0.70820
Farmland spring∗ 0.92–6.62 0.70794–0.70848
Residential area spring∗ 1.26–4.45 0.70818–0.70835
Cultivated land groundwater∗ 2.97–5.63 0.70814–0.71097

Jiang et al. (2009)
Grassland groundwater∗ 1.93–2.42 0.70758–0.70962
Construction land groundwater∗ 3.71–7.63 0.70994–0.71089
Forested land groundwater∗ 0.82–2.05 0.70778–0.70942
Plants 4.9–222 0.70856–0.71145 Zheng et al. (2008)

∗ The unit of Sr concentrations is µmol L−1.

Sr isotopic data of bedrocks in the Xishui River catchment.
The87Sr/86Sr ratios of these silicate rocks are low and rela-
tively homogeneous with a small variation range. Therefore,
the 87Sr/86Sr ratios of the underlying bedrock are certainly
important factors controlling the Sr isotope characteristics in
the Xishui River.

Moreover, different land use (agricultural, industrial, and
residential use) introduces new sources of weatherable Sr
into rivers. Jiang et al. (2009) and Li et al. (2010) investi-
gated the groundwater in cultivated land, grassland, construc-
tion land, and forest land, and the industrial and domestic
waste in southwestern China and resulted in87Sr/86Sr ratios
of 0.70762 to 0.71273. The87Sr/86Sr ratios of 24 fertiliz-
ers that are commonly used in Spain range from 0.703350
to 0.715216 with an average of 0.70823 (Vitòria et al., 2004).
Brenot et al. (2008) measured the87Sr/86Sr ratios of liquid
and solid fertilizers (0.708078 and 0.703313, respectively)
in their studies on a small catchment in the Paris Basin. The
87Sr/86Sr ratios of 12 plants range from 0.70856 to 0.71145
in Guizhou Province (Zheng et al., 2008) (Table 5). As the
87Sr/86Sr ratios of these potential sources are close to those
of the Xishui River water, it is difficult to separate their re-
spective contributions. Studies on the major ions have shown
that samples in the summer have higher Na+, K+, Cl−, NO−

3 ,
and SO2−

4 concentrations than those in the winter, reflecting
the influence of agricultural activities and acid rain (Wu et al.,
2013). In the next section, we will use an inversion model to
identify the influence of anthropogenic activities.

5.2 Source of Sr in the Xishui River

The Sr in river water is mainly from atmospheric input
(Sratm), anthropogenic activities – urban sewage (Srurb) and
agricultural activities (Sragr) – silicate weathering (Srsil), car-
bonate weathering (Srcarb), and evaporite dissolution (Srev)
(Galy and France-Lanord, 1999). To quantify the relative
contributions of the six endmembers, an inversion model is
used (Négrel et al., 1993; Gaillardet et al., 1999; Millot et
al., 2003; Wu et al., 2005; Chetelat et al., 2008). The set of
mass balance equations is as follows (Negrél et al., 1993;
Gaillardet et al., 1999):(
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river

=

∑
i

(
X

Na

)
i

αi,Na (1)(87Sr
86Sr

)
river

(
Sr

Na

)
river

=

∑
i

(87Sr
86Sr

)
i

(
Sr

Na

)
i

αi,Na, (2)

whereX represents Ca, Mg, K, Cl, NO3, and Sr;i represents
the six endmembers; andαi,Na represents the respective mass
fractions of Na from different sources. The closure equation
is as follows:∑

i

αi,Na = 1. (3)

Although the Xishui River is a silicate watershed, the litholo-
gies in the catchment are complex, and carbonate rocks are
distributed in a stratified and lenticular manner in metamor-
phic rocks. Therefore, the Na-normalized ratios analyzed in
the Xishui River are not suitable for representing the silicate
endmember. For the Na-normalized ratios of the silicate end-
member, the data of some “truly small watersheds draining
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Table 6.The estimated end member values in the Xishui River.

Ca/Na Mg/Na K/Na Cl/Na 1000× Sr/Na NO3/Na 87Sr/86Sr

Rain 2.0–8.0 0.35–0.85 0.3–0.7 1.7–3.9 10–50 0.1–0.9 0.708–0.709
Urban 0.6–1 0.1–0.3 0.09–0.23 0.45–0.75 1.5–2.7 0 0.7101–0.7102
Agriculture 0 0 1–1.8 4.0–6.0 0 3.0–5.0 0.707–0.709
Evaporite 0.15–5 0.01–0.5 0 1 0.5–5.0 0 0.708–0.709
Carbonate 30–70 10.0–28.0 0 0 6.0–12.0 0 0.708–0.709
Silicate 0.2–1 0.15–0.5 0.1–0.3 0 2.0–4.0 0 0.72–0.73

Table 7.The contributions of different sources to Sr in the Xishui River solved by an inversion model.

Atmospheric Urban Agriculture Evaporite Carbonate Silicate

Winter (10.9± 2.9)– (0.1± 0.1)– (0.2± 0.01)– (7.5± 1.9)– (30.8± 2.5)–
(57.1± 4.2) (0.5± 0.3) 0 (18.7± 2.0) (25.3± 6.5) (53.5± 2.9)

Summer (1.1± 0.4)– (0.1± 0.05)– (7.3± 2.2)– (13.2± 2.4)– (41.5± 3.8)–
(22.0± 4.1) (1.3± 0.4) 0 (17.0± 4.1) (22.3± 4.5) (65.6± 5.4)

silicate rocks” (with a drainage area< 10 km2) are refer-
enced (Edmond et al., 1994; White and Blum, 1995; Oliva
et al., 2003). The ratios are 0.2 to 1.0 for Ca/Na, 0.15 to
0.5 for Mg/Na, 0.1 to 0.3 for K/Na, 0.002 to 0.004 for
Sr/Na, and 0 for Cl/Na and NO3/Na (Wu et al., 2013; Ta-
ble 6). For the other five endmembers, the Na-normalized ra-
tios in the Yangtze River from other authors are used (Chete-
lat et al., 2008 and references therein; Table 6). Starting from
an a priori set of end-member compositions, (X/Na)i , we
iteratively solved for the proportion of those six endmem-
bers in each sample (αi,Na) and the endmember compositions
themselves, (X/Na)i . The global optimization process within
the optimization software package identifies the solution that
best predicts the measured compositions in the least-squares
sense and propagates the errors (Wu et al., 2013). The stan-
dard deviation of the a posteriori values from the a priori ones
(relative to the a priori errors) is systematically computed
and checked for consistency. The results show that the rel-
ative standard deviation of the differentαi,Na is < ±5 % for
the silicate source and< ±20 % for the evaporite and car-
bonate sources, whereas for the atmospheric source, it can
reach 30 %. Due to the low contribution from urban sewage
(αurban,Na< 1 %), the uncertainties can reach up to 100 %.
The calculated contributions of the different sources of Sr
in the river are listed in Table 7.

As shown in Table 7, the Sr in the Xishui River results
mainly from silicate weathering, atmospheric input, and car-
bonate weathering, followed by evaporite dissolution. The
influence of anthropogenic activities is negligible. Although
the distributed area of carbonate rocks is only< 5 % of the
drainage area, it has a disproportionately important contri-
bution to the Sr in the Xishui River (average 19 %), which is
consistent with the conclusion of the studies of the major ions
(Wu et al., 2013). Previous studies have indicated that trace

calcite in small watersheds draining silicate rocks could con-
tribute a large proportion of the major ions in the river (Blum
et al., 1998; Jacobson et al., 2002b; Oliva et al., 2004). As the
87Sr/86Sr ratios of silicate rocks in the Xishui River catch-
ment are very close to those of Paleozoic carbonate rocks in
the Yangtze Platform (Table 4), even if the contribution to Sr
from carbonate weathering far exceeds its distributed area,
it still has no obvious decreasing influence on the87Sr/86Sr
ratios of the river water.

5.3 Sr isotope characteristics and controlling factors in
the Guijiang River

The Guijiang River flows across the karst region interca-
lated by detrital rocks, sand rocks, mud rocks, and shales in
southern China; granites are only exposed in the source area
Miaoershan Mountain and in the upper reaches of the tribu-
tary Siqin River. The87Sr/86Sr ratios range from 0.719558
to 0.724605, and the Sr concentrations range from 0.124 to
1.098 µmol L−1 in the Guijiang River. There is a strong
positive correlation between the87Sr/86Sr ratios and 1/Sr
(r2 = 0.81), indicating two-component mixing between sil-
icate and carbonate weathering. Studies from other re-
searchers have shown that granites in the Guijiang River
catchment are characterized by extremely high87Sr/86Sr ra-
tios with an average of approximately 0.8 (Table 4). More-
over, the 87Sr/86Sr ratios of the silicate fraction of the
riverbed sediments and soils in the Guijiang River catch-
ment range from 0.735172 to 0.775952 with an average
of 0.745891, indicating that these silicate components have
high Sr isotope values. The87Sr/86Sr ratios of the soils in
the karst cave and in the profiles of the neighboring Guizhou
Province range from 0.727317 to 0.727417 and 0.71049
to 0.72266, respectively (Liu et al., 2011; Zhu et al., 2011).
As the groundwater in different land use areas, industrial and
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domestic waste, fertilizers, and plants has low87Sr/86Sr ra-
tios (almost entirely< 0.71, Table 5), it is not the source
of the high Sr isotopic compositions of the Guijiang River
water. Therefore, those silicate components in the karst area
should be the most important endmembers controlling the
Sr isotopic characteristics of the river water. As we lack Sr
isotope data of the carbonate rocks in the Guijiang River
catchment, the87Sr/86Sr ratios of the Late Paleozoic ma-
rine carbonate rocks in the Yangtze Platform and karst area
of the neighboring province are used as other endmembers
(0.705890 to 0.708907, Huang, 1997; Zeng et al., 2007; Liu
et al., 2011, Table 4). These carbonate rocks are very close
in age to those in the Guijiang River catchment, and their
87Sr/86Sr ratios are therefore used in many studies in the
karst area in southwestern China (e.g., Han et al., 2010; Han
and Liu, 2004; Jiang et al., 2009). Moreover, these carbonate
rocks in the stable Yangtze Craton did not undergo intense
tectonism, and thus have no influence on the radiogenic Sr
from the local exchange with silicate rocks.

In the following, we discuss only the spatial variations
of the 87Sr/86Sr ratios due to the strong positive corre-
lation between the87Sr/86Sr ratio and 1/Sr in the Gui-
jiang River. The87Sr/86Sr ratios in the mainstream range
from 0.710558 to 0.716453 and exhibit an obvious varia-
tion trend (Fig. 7). The high values of the headwater sam-
ples S1 and S3 (0.715849 and 0.715973, respectively) can be
attributed to granites in the Miaoershan Mountain with ex-
tremely high87Sr/86Sr ratios (Table 4). With an abundant ex-
posure of carbonate rocks, import of fertilizers, urban runoff,
and municipal water with low Sr isotope values (Tables 4
and 5), the87Sr/86Sr ratios obviously decrease downwards
from the source area. The sample S5 has the lowest87Sr/86Sr
ratio in the Guijiang River because the Sr isotopic composi-
tions of the Carboniferous carbonate rocks are the lowest in
the Late Paleozoic (Huang, 1997). The mainstream87Sr/86Sr
ratios rise remarkably from samples S5 to S10, gradually de-
crease from S12 to S15, and then fluctuate from S17 to S22.
The variation trend is inconsistent with the87Sr/86Sr ra-
tios of the tributaries and therefore does not result from
the confluence of these tributaries. Previous studies on karst
water showed that the water draining sand rocks had the
highest87Sr/86Sr ratios, followed by dolomites and lime-
stones (Wang and Wang, 2005). Therefore, the variation in
the87Sr/86Sr ratios in these reaches may be attributed to the
subtle differences of the underlying bedrock and/or to anthro-
pogenic influence. After flowing through Pingle County, the
87Sr/86Sr ratios progressively increase and reach the high-
est value near the river mouth. The Guijiang River catchment
downwards from Pingle flows across Cambrian strata con-
sisting of carbonate rocks intercalated by sand rocks, mud
rocks, and shales, which have higher87Sr/86Sr ratios than
those of the Devonian and Carboniferous rocks (Burke et
al., 1982; Huang, 1997). Considering the low87Sr/86Sr ra-
tios of carbonate rocks, vegetation, fertilizers, and industrial
and domestic wastewater, the high Sr isotopic values of the
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Fig. 7. Spatial variations of the Sr concentrations(a) and the
87Sr/86Sr ratios (b) in the Guijiang River. The filled and open
circles represent the samples in the mainstreams and tributaries,
respectively.

Guijiang River water should be caused by silicate weather-
ing, which is consistent with the high87Sr/86Sr ratios of the
silicate fraction of the riverbed sediment and soil in the catch-
ment. The tributaries Longjiang River and Siliang River have
the highest87Sr/86Sr ratios in the entire Guijiang River. As
the two tributaries are small enough, the silicate components
exposed in a scattered manner can significantly influence the
87Sr/86Sr ratios of the river water.

Generally, the87Sr/86Sr ratios of the Guijiang River are
much higher than those of the upper and middle Pearl River
(the Nanpan River of 0.70740 to 0.70856, Xu and Liu, 2007;
the Xijiang River of 0.70837 to 0.71049, Wang et al., 2009
and 0.708487 to 0.710336, Wei et al., 2013). These ratios
are also higher than those of the tributaries Wujiang River
(0.707722 to 0.711037) and Yuanjiang River in the karst re-
gion (0.708711 to 0.714479) of the Yangtze River (Han and
Liu, 2004). This result suggests that although the Guijiang
River is a karst river, a few silicate components, such as gran-
ites, sand rocks, mud rocks, and shales, with high Sr isotopic
compositions contribute significantly to the87Sr/86Sr ratios
of the river water.
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5.4 Implication for studies of the Sr isotope evolution of
seawater

The significance of the rivers for variations in the seawa-
ter 87Sr/86Sr ratios mainly depends on both the Sr fluxes
and their87Sr/86Sr ratios. This significance can be assessed
by calculating an “excess87Sr flux” (87Srex) (Bickle et al.,
2003):

87Srex =

(
87Sr/86Sr − 0.70916

)
× Srflux, (4)

where Srflux indicates Sr fluxes transported by rivers
and 0.70916 represents the87Sr/86Sr ratio in modern sea-
water (Hodell et al., 1990). The87Srex of the Xishui River
at Lanxi is−0.29× 103 mol yr−1 and−1.6× 103 mol yr−1

in the winter and summer, respectively. The negative values
indicate that the Xishui River will decrease the Sr isotopic
compositions of seawater as a silicate watershed. Certainly,
only the Xishui River has no visible influence on the Sr iso-
tope evolution of seawater as a small watershed. However,
many rivers draining young basalts also have low87Sr/86Sr
ratios and cannot contribute to noticeable increases in the
Sr isotopic composition of seawater. For example, Yale and
Carpenter (1996) observed a correlation between the forma-
tion of large basalt provinces and decreases in the Sr iso-
tope ratio of the ocean. Taylor and Lasaga (1999) studied the
contribution of chemical weathering of the young Columbia
basalts to the Sr isotope evolution of seawater. These authors
concluded that sharp decreases in the marine87Sr/86Sr ra-
tios reflected periods of increased global weathering rates,
and young and old lithological variations could be among
the major controlling factors of the marine Sr isotope record.
Allègre et al. (2010) proposed that intensive weathering on
volcanic islands, island arcs, and oceanic islands was the
missing source of the mantle-derived87Sr/86Sr ratio (0.703)
in the seawater Sr isotope balance and represented approx-
imately 60 % of the actual mantle-like input of Sr to the
oceans. Therefore, considering that many rivers draining
basalt province globally, this type of silicate watershed with
low 87Sr/86Sr ratios may significantly influence the Sr iso-
tope evolution of seawater. Additionally, many recent stud-
ies have shown that the global flux of CO2 consumed by the
chemical weathering of basalts represented 30 to 35 % of the
consumption flux of the continental silicate (e.g., Gaillardet
et al., 1999; Dessert et al., 2003; Dupré et al., 2003). In this
case, river catchments with high silicate weathering rates do
not transport highly radiogenic Sr into the oceans. There-
fore, the use of the Sr isotope ratio variations of seawater
to deduce the continental silicate weathering intensity may
be questionable

6 Conclusions

As a small silicate watershed, the Xishui River has relatively
high Sr concentrations and low87Sr/86Sr ratios. An impor-
tant reason for these characteristics is that the gneisses and
granites that are widely distributed in the catchment have
rather low Sr isotope ratios. The87Srex of the Xishui River
at Lanxi is−0.29× 103 mol yr−1 and−1.6 × 103 mol yr−1

in the winter and summer, respectively, indicating that the
Xishui River decreases the Sr isotope values of seawater.
Considering the low87Sr/86Sr ratios of young basalts, these
rocks may also reduce the seawater Sr isotope ratios. How-
ever, silicate weathering rates in these river catchments are
very high and thus significantly affect the atmospheric CO2
consumption and the global climate change. In this sense,
there is no direct relationship between the silicate weather-
ing intensity and the sea water Sr isotope evolution. In con-
trast, the Guijiang River has low Sr concentrations and high
87Sr/86Sr ratios as a small carbonate watershed, which is
mainly attributed to the weathering of the exposed silicate
components in the catchment.
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