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Abstract. The spatial distribution and scale dependence of

the very short-term predictability of precipitation by La-

grangian persistence of composite radar images is studied

under different flow regimes in connection with the presence

of orographic features. Data from the weather radar compos-

ite of eastern Victoria, Australia, a 500× 500 km2 domain at

10 min temporal and 2× 2 km2 spatial resolutions, covering

the period from February 2011 to October 2012, were used

for the analyses. The scale dependence of the predictability

of precipitation is considered by decomposing the radar rain-

fall field into an eight-level multiplicative cascade using a

fast Fourier transform. The rate of temporal development of

precipitation in Lagrangian coordinates is estimated at each

level of the cascade under different flow regimes, which are

stratified by applying a k-means clustering algorithm on the

diagnosed velocity fields. The predictability of precipitation

is measured by its lifetime, which is derived by integrating

the Lagrangian auto-correlation function. The lifetimes were

found to depend on the scale of the feature as a power law,

which is known as dynamic scaling, and to vary as a function

of flow regime. The lifetimes also exhibit significant spatial

variability and are approximately a factor of 2 longer on the

upwind compared with the downwind slopes of terrain fea-

tures. The scaling exponent of the spatial power spectrum

also shows interesting geographical differences. These find-

ings provide opportunities to perform spatially inhomoge-

neous stochastic simulations of space–time precipitation to

account for the presence of orography, which may be inte-

grated into design storm simulations and stochastic precipi-

tation nowcasting systems.

1 Introduction

The scale dependence of the predictability of the atmospheric

flow was already studied by Lorenz (1969), who found that

there is an intrinsic predictability limit associated to each

scale of motion. Similar conclusions can also be extended to

the predictability of precipitation, in particular if considering

rainfall fields as emerging from multiplicative cascade pro-

cesses (Schertzer and Lovejoy, 1987; Marsan et al., 1996).

The intuition that large-scale precipitation features are

more predictable than small-scale features can be easily veri-

fied empirically using both Lagrangian persistence of radar

precipitation patterns and outputs from numerical weather

prediction (NWP) models. Zawadzki et al. (1994) found that

the decorrelation time of radar precipitation patterns by La-

grangian persistence is dependent on the degree of spatial

smoothing. Grecu and Krajewski (2000) also detected that

the predictability depends on precipitation intensity, the most

intense rain rates being less predictable. Seed (2003) stud-

ied the scale dependence of the predictability of precipita-

tion by Lagrangian persistence using a fast Fourier trans-

form (FFT) to decompose the radar rainfall field into a mul-

tiplicative cascade. Turner et al. (2004) employed a wavelet-

based decomposition to filter out the unpredictable scales of

a radar-based extrapolation technique. Wavelet decomposi-

tions were also exploited for the scale-dependent verification

of NWP precipitation forecasts to account for the loss of pre-

dictability at small scales (e.g., Casati et al., 2004; Bous-

quet et al., 2006). Sinclair and Pegram (2005) applied an

Empirical Mode Decomposition to iteratively decompose the
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precipitation field into meaningful physical structures from

the high to the low frequencies. Surcel et al. (2014) used a

Discrete Cosine Transform to study the filtering properties of

ensemble averaging and discovered that the ensemble mem-

bers are completely decorrelated below a certain cutoff scale.

The multifractal and scale-dependent nature of rainfall not

only complicates the study of its predictability and the ver-

ification of forecasts, but also demands more sophisticated

forecasting and downscaling techniques. The Short-Term En-

semble Prediction System (STEPS; Seed, 2003; Bowler et

al., 2006) is a stochastic precipitation nowcasting scheme

that exploits the multifractal principle by decomposing the

radar rainfall field into an eight-level multiplicative cascade

with an FFT. The cascade is advected with optical flow in

Lagrangian coordinates and stochastically evolves in time

according to a hierarchy of auto-regressive processes of or-

der 1 – AR(1) – or 2 – AR(2). This allows accounting for

the empirical observation that the rate of temporal evolution

of precipitation features is a power law of the scale of the

feature, which is known as dynamic scaling (see, e.g., Venu-

gopal et al., 1999; Mandapaka et al., 2009). STEPS estimates

the rate of Lagrangian development of the cascade levels in

real time, which allows adapting to the predictability of the

observed sequence of radar images. This is necessary since

the predictability of precipitation exhibits a strong temporal

variability as shown by Seed (2003), Germann et al. (2006),

and Seed et al. (2013).

Germann et al. (2006) also analyzed the geographical dis-

tribution of the predictability of precipitation over the con-

terminous United States and found a region of longer life-

times extending from eastern Nebraska to Lake Michigan

through Iowa, Wisconsin, and northern Illinois. Berenguer

and Sempere-Torres (2013) performed a similar analysis us-

ing the European radar composite and discovered the pre-

dictability to be seasonally dependent, with higher values

over the central part of the UK, central continental Eu-

rope, and the Baltic regions. However, such geographical dif-

ferences are strongly affected by the inhomogeneous qual-

ity of the European radar composite between the different

countries, which use different hardware, operating wave-

length, scanning strategy, and signal processing (Huusko-

nen et al., 2014). The spatial heterogeneity of the statisti-

cal properties of rainfall also poses issues for its multifractal

simulation, which traditionally assumes spatial homogene-

ity of the stochastic process. One way to avoid construct-

ing complicated, spatially heterogeneous models is to sep-

arately add a spatial trend to correct a homogeneous multi-

fractal model. This trend should account for the spatial in-

homogeneity of the long-term climatological distribution of

precipitation, which is often controlled by the presence of

orographic features (see, e.g., Pathirana and Herath, 2002;

Badas et al., 2006).

The climatology of precipitation over complex orogra-

phy is strongly controlled by flow direction and air stability

(Panziera and Germann, 2010), which can also be exploited

to design analogue-based nowcasting techniques (Foresti et

al., 2013). The contribution of orography to the precipitation

enhancement also seems to be a scale-dependent process.

This can be observed by extracting features from a digital

elevation model (DEM) at different spatial scales and look-

ing at the spatial distribution of persistent precipitation cells.

It appears that orographic features need a certain character-

istic size (scale) in order to control the spatial distribution of

precipitation patterns (e.g., Foresti et al., 2012).

The goal of this study is to analyze the spatial distri-

bution of the scale-dependent predictability of precipitation

by Lagrangian persistence of composite radar images under

different flow regimes in connection with the presence of

orographic features. Data from the weather radar compos-

ite of eastern Victoria, Australia, a 500× 500 km2 domain at

10 min temporal and 2× 2 km2 spatial resolutions, covering

the period from February 2011 to October 2012, are used for

the analyses. A k-means clustering algorithm is employed to

classify the velocity fields into six main flow regimes and to

stratify the evaluation of statistics.

This research is an extension of the study of Foresti and

Seed (2014), who analyzed the geographical distribution of

the STEPS nowcasting biases using the same radar data set

in order to detect regions of systematic precipitation growth

and decay. The typical areas of rainfall growth and decay due

to orographic forcing should be observed also in the spatial

distribution of the predictability of rainfall. The orographic

forcing is expected to control the spatial distribution of the

predictability of precipitation at the meso-gamma (2–20 km)

and partly the meso-beta (20–200 km) scales, which are

smaller than the continental scales analyzed in the litera-

ture (e.g., Germann et al., 2006; Radhakrishna et al., 2012;

Berenguer and Sempere-Torres, 2013).

The dependence of the dynamic scaling relationship on

flow regimes is also studied to test whether there are weather

regimes that are more predictable than others. On the other

hand, the geographical distribution of the spatial power spec-

trum is analyzed to explore the degree of spatial scaling

of precipitation over the forecast domain. The findings of

this study should increase our understanding of the pre-

dictability of precipitation by Lagrangian persistence of radar

images, which is essential to improve its very short-term

forecasting, space–time stochastic simulation, and statistical

downscaling.

The paper is structured as follows. Section 2 describes the

radar rainfall data set. Section 3 details the methodology.

Section 4 illustrates the obtained results and interpretations,

while Sect. 5 concludes the paper, and discusses potential

improvements and future research perspectives.

2 Radar rainfall data set

Data from the weather radar composite of Eastern Victo-

ria, Australia were used for the analyses (see Fig. 1 for the
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domain and the radar locations). The composite merges data

from four weather radars located at Melbourne (operating

at S-band), Yarrawonga (C-band), Gippsland (C-band) and

Canberra–Captains Flat (S-band). The period under analysis

is from 15 February 2011 to 31 October 2012.

The operational radar data processing chain for quantita-

tive precipitation estimation (QPE) at the Australian Bureau

of Meteorology consists of the following steps:

– Ground clutter removal with Doppler filtering at the

radar site.

– Additional ground clutter filtering based on a static clut-

ter map and on the gradients of the vertical profile of

reflectivity.

– Beam blockage correction using a DEM to correct for

the lost power due to the interception of the radar beam

with orography.

– Estimation of the vertical profile of reflectivity using

data within a range of 50 km from the radar.

– Interpolation of the volumetric data into constant

altitude plan position indicators (CAPPIs). CAPPIs

are computed at a height of 1000 m using the 3-

dimensional anisotropic Kriging technique of Seed and

Pegram (2001).

– Application of a different climatological Z–R relation-

ship for stratiform and convective rain based on the

Steiner classification (Chumchean et al., 2008).

– Compositing operation involving a linear combination

of the radar measurements in the overlapping regions as

a function of distance from the radar.

– Mean field bias correction with respect to rain gauge

measurements using a Kalman filtering approach for its

temporal update (Chumchean et al., 2006b).

The final product is a 256× 256 grid with a spatial resolution

of 2 km2
× 2 km2 and a temporal resolution of 10 min in a

Gnomonic projection. More details on the operational QPE

chain at the Australian Bureau of Meteorology are given in

Chumchean et al. (2006a, b, 2008) and Seed et al. (2007).

These pre-processing steps are not sufficient to completely

remove the radar measurement errors, especially over moun-

tainous regions. The two sources of errors that are the most

critical for the analysis of the precipitation predictability are

the range dependence of estimated rainfall rates and the re-

duced visibility in the inner Victorian Alps. In addition, the

compositing operation generates some discontinuities in the

regions of overlapping radar measurements. Rainfall could

also be slightly underestimated in a radius of ∼ 20–30 km

around the radar due to the excessive filtering of ground

clutter, which also eliminates some precipitation measure-

ments. Precipitation is also underestimated at ranges exceed-

ing 90–100 km due to the increasing beam width (sampling
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Figure 1. Radar composite of Eastern Victoria, Australia, overlaid

on the DEM. Triangles denote the locations of the three radars at

Melbourne, Yarrawonga, and Gippsland. In the top-right corner of

the domain there is some contribution from the Canberra radar.

White tones represent the ocean.

volume), attenuation by rainfall and blockage by orographic

features. Hence, precipitation accumulations are strongly un-

derestimated in the inner part of the Victorian Alps where

the correction for the vertical profile of reflectivity is evi-

dently not sufficient to extrapolate the higher elevation mea-

surements to the elevation of the CAPPI.

3 Methodology

Section 3.1 explains the cascade decomposition framework

for the analysis of the scale dependence of the predictabil-

ity of precipitation. Section 3.2 details the method for esti-

mating the Lagrangian temporal auto-correlation of precipi-

tation, which is needed to evaluate its lifetime (Sect. 3.3). The

simultaneous calculation of the Lagrangian auto-correlation

at each point of the radar grid using rules for the online

computation of the covariance is presented in Sect. 3.4. Sec-

tion 3.5 presents a simplified approach to estimate the slope

of the power spectrum from the variance of the cascade lev-

els under the scaling hypothesis. Finally, Sect. 3.6 provides

a brief summary of the k-means stratification of optical flow

fields.

3.1 Cascade decomposition framework

The radar rainfall field is decomposed using an FFT into a

multiplicative cascade of the form (Seed, 2003; Bowler et

www.hydrol-earth-syst-sci.net/18/4671/2014/ Hydrol. Earth Syst. Sci., 18, 4671–4686, 2014
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al., 2006):

dBRij =

K−1∑
k=0

Xkij for i = 1, . . ., L and j = 1, . . ., L, (1)

whereL= 384 is the size of the squared domain andK = 8 is

the number of cascade levels. A buffer of 64 pixels is added

at each side of the original 256× 256 grid in an attempt to

reduce the edge effects arising from the FFT transformation,

thus giving a larger domain of 384× 384 pixels. The cas-

cade is multiplicative when rewritten in terms of original rain

rates R instead of the multiplicative decibel scale dBR. The

cascade decomposition is achieved by applying a Gaussian

band-pass filter to isolate a given set of spatial scales in the

frequency domain (Seed, 2003; see Fig. 2). Xk will be re-

ferred to as cascade level and is obtained by applying an in-

verse FFT to the filtered data in order to return the Fourier

components back into the spatial domain. Thus, Xk repre-

sents the variability of the original radar field with spatial fre-

quencies [km−1] in the range qk−1/L<ωk <q
k+1/L, where

ωk is the central frequency of the Gaussian filter and q = 2.12

is the branching number (inverse of the scale reduction fac-

tor). Each level of the cascade is normalized to zero mean

and unit variance for convenience and the normalization is

kept constant in space and during the forecast period.

Figure 2 illustrates the Gaussian band-pass filters that are

used to isolate the spatial scales composing the set of cas-

cade levels. Given the size of the extended radar domain, an

eight-level multiplicative cascade with the following spatial

scales is obtained (see Fig. 2): 768–362, 362-171-81, 171-81-

38, 81-38-18, 38-18-8, 18-8-4, 8-4-2 and 4-2 km. The non-

integer scales resulting from the non-integer branching num-

ber of 2.12 were rounded. The scales on which the Gaussian

filters are centered are marked in italic. The first and last lev-

els of the cascade will not be considered in the analyses be-

cause of not having a regular Gaussian shape. In addition,

the largest scale is not able to capture the appropriate scales

since the radar composite only covers a certain fraction of the

512× 512 km2 domain. This would lead to the underestima-

tion of the precipitation lifetime at that scale (see Sect. 3.3).

3.2 Lagrangian temporal auto-correlation

The Lagrangian temporal auto-correlation is a measure for

the rate of development of precipitation in storm coordinates

and consequently of its predictability (Zawadzki, 1973). An

efficient way to follow the rainfall evolution in storm coor-

dinates is to estimate a velocity field using a sequence of

radar rainfall fields. STEPS uses an optical flow algorithm

(Bowler et al., 2004) for the estimation of the velocity field

and a semi-Lagrangian backward-in-time scheme for its ad-

vection, which keeps the velocity field fixed and retrieves the

rainfall values upstream by following the lines of the velocity

field (e.g., Germann and Zawadzki, 2002).
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Figure 2. The set of eight Gaussian band-pass filters used to iso-

late the spatial frequencies composing the cascade levels. The total

magnitude for a given spatial frequency is normalized to one.

The Lagrangian lag 1 temporal auto-correlations at each

level of the cascade are estimated as follows (Bowler

et al., 2006):

1. Estimate the velocity field with optical flow using rain-

fall fields at time t − 1 and t .

2. Decompose the radar rainfall field at time t − 1 using

FFT into a multiplicative cascade.

3. Decompose the radar rainfall field at time t using FFT

into a multiplicative cascade.

4. Advect the cascade from time t − 1 to time t . Note that

each level of the cascade is advected with the same ve-

locity field computed on the original rainfall fields.

5. The lag 1 Lagrangian temporal auto-correlation is sim-

ply obtained by computing the correlation coefficient

between each cascade level k advected from time t − 1

to t and the corresponding cascade level at time t :

ρ1(k)=

1
L·L

L∑
i=1

L∑
j=1

(
Xkij −Xk

)
·

(
Xadv
kij
−X

adv
k

)
√√√√ 1
L·L

L∑
i=1

L∑
j=1

(
Xkij −Xk

)√√√√ 1
L·L

L∑
i=1

L∑
j=1

(
Xadv
kij
−X

adv
k

)
for k = 1, . . ., K − 1, (2)

where L= 256 is the size of the radar domain and “adv”

refers to the previous value advected forward to the cur-

rent time. The smaller the correlation coefficients, the

higher are the growth and decay of rainfall processes oc-

curring in Lagrangian frame of reference. The lag 2 La-

grangian temporal auto-correlation could be estimated
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as well by advecting a cascade at time t − 2 to time t ,

but is not presented in this paper.

Equation (2) is the ordinary Pearson’s correlation coef-

ficient, which involves the subtraction of the field mean.

On the other hand, Zawadzki (1973) and Germann and Za-

wadzki (2002) employed a correlation estimation without

subtraction of the mean for estimating the decorrelation time

of precipitation fields. The difference between the two ap-

proaches is not very important over continental scales, where

the forecast and observed fields have similar mean values, but

it may become an issue over smaller domains, where the ob-

served mean field precipitation can be significantly different

than the forecast one (see, e.g., Foresti et al., 2012). In such a

case, Eq. (2) would give lower but more realistic correlation

coefficients compared with Germann and Zawadzki (2002).

The Lagrangian auto-correlation estimations are also af-

fected by the presence of different scales of motion. A mul-

tiscale optical flow estimation at each level of the cascade

may be foreseen but could cause algorithm convergence is-

sues when one is trying to correlate the small-scale features.

Also, it is not yet clear how to avoid the appearance of arti-

facts in the final reconstructed rainfall field when advecting

the cascade levels with different velocity fields over several

time steps.

Note that the correlation function of Eq. (2) is obtained

by integrating over space, i.e., over the total number of pix-

els L ·L within a radar image. This allows the Lagrangian

auto-correlation to be estimated in real time and to adapt to

the predictability of the sequence of radar images. This ap-

proach, however, assumes the predictability to be homoge-

neous over the forecast domain. Section 3.4 will explain how

to obtain estimates of the Lagrangian auto-correlation by per-

forming the summations through time, which is a necessary

step for analyzing its spatial distribution.

The hierarchy of Lagrangian temporal auto-correlations

defines a hierarchy of auto-regressive processes of order 1 –

AR(1). This is exploited by STEPS to stochastically simulate

the rainfall growth and decay processes that occur in storm

coordinates at different spatial scales to reproduce the dy-

namic scaling of the field (Seed, 2003; Bowler et al., 2006).

The procedure consists of blending the radar cascade with

a cascade of spatially and temporally correlated stochastic

noise. The spatially correlated noise field is generated us-

ing a power law filter while temporal correlations are main-

tained by a hierarchy of auto-regressive processes. The power

law filter ensures that the noise cascade has the same power

spectrum of the observed radar rainfall fields. This technique

was already employed to generate continuous multifractals

(Schertzer and Lovejoy, 1987) and also appeared in the now-

casting system SBMcast (Berenguer et al., 2011), based on

the “String of Beads” model of Pegram and Clothier (2001a).

The stochastic simulations are stationary and no attempt is

made to actually forecast temporal trends in growth and de-

cay of precipitation. Indeed, trying to predict growth and de-

cay processes using as predictor the past evolution of radar

precipitation does not seem to significantly improve the fore-

cast accuracy, except for the regions characterized by sys-

tematic orographic forcing (see a review in Foresti and Seed,

2014). In addition, Radhakrishna et al. (2012) showed that

the predictability of growth and decay patterns is 10 times

shorter than that of precipitation fields and is limited to spa-

tial scales of the order of 250× 250 km2, which would re-

quire continental-scale radar images to be studied properly.

The stochastic simulations are not presented in this paper but

only explained for completeness since they are based on the

Lagrangian auto-correlation coefficients.

3.3 Estimation of the precipitation lifetime

By knowing the lag 1 auto-correlation coefficient, the AR(1)

auto-correlation function (ACF) can be recursively derived

as follows:

ρ(t)= ρt1 for t = 1, . . ., T , (3)

where ρ1 is the lag 1 Lagrangian auto-correlation coeffi-

cient computed with Eq. (2). Note that this simplification in-

directly assumes that the diagnosed velocity field does not

change during the forecast period. In fact, it extrapolates the

whole ACF knowing only the lag 1 auto-correlation. This as-

sumption is reasonable up to 2–3 h (Germann et al., 2005)

and 3–4 h lead times (Bowler et al., 2006), since using the

correct velocity does not reduce the forecast errors much. A

complete study of the Lagrangian predictability of precip-

itation including the non-stationarity of the velocity field,

would involve the direct calculation of the correlation co-

efficients at each forecast lead time by comparing the fore-

casts to the observations (see Germann and Zawadzki, 2002).

The basic principle of STEPS is to actually estimate the La-

grangian ACF in real time and allow it to adapt to the pre-

dictability of the situation. It would be computationally in-

tensive to estimate the complete ACF using a few hours of

radar fields before the analysis time. Eventually, the pre-

dictability of the field would be representative of the previ-

ous hours and not of the last two or three rainfall fields. The

adaptability of the system is particularly important, for ex-

ample, when the field is rapidly evolving from a convective

to a stratiform situation or in the early stages of a new rainfall

event.

Finally, the lifetime of precipitation (decorrelation time)

can be evaluated by integrating the ACF over time

(Zawadzki, 1973; Germann and Zawadzki, 2002):

LT =

∞∫
0

ρ(t)dt. (4)

For an exponentially decaying ACF the lifetime is defined as

the time at which the ACF falls below the value 1/e= 0.37

(Zawadzki, 1973). Note that with an exponentially decaying

www.hydrol-earth-syst-sci.net/18/4671/2014/ Hydrol. Earth Syst. Sci., 18, 4671–4686, 2014
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function, the integral of Eq. (4) can be analytically derived

and is equal to − 1
ln(ρ0)

.

In order to generalize the methodology to different ACFs

and for the comparison of observed and forecast field at all

lead times, Eq. (4) was numerically integrated using the ex-

tended Simpson’s rule (Press et al., 2007).

3.4 Online collection of rainfall statistics

Instead of analyzing the temporal distribution of the La-

grangian auto-correlation by integrating the data over space,

we want to analyze its spatial distribution by integrating over

time. More precisely, the summations of Eq. (2) need to be

done over the number of radar images in the archive, not the

number of pixels within a radar image. A joint evaluation of

the summations at each pixel in a radar field is intractable as

it would require loading the whole archive of rainfall fields

into the computer memory to compute the correlations in a

single pass. An efficient way to overcome this issue is to ex-

ploit rules for the online computation of the mean, the vari-

ance and the covariance (Knuth, 1998). The online estima-

tion of the mean is obtained as follows:

xt+1 = xt + δ/N, (5)

where t is the iteration, xt+1 is the new mean, δ= xt+1− xt
is the residual contribution of the new sample xt+1 to the old

mean xt and N is the number of samples.

The online estimation of the variance is obtained similarly

as follows:

qt+1 = qt + δ (xt+1− xt+1) , (6)

where q is the squared sum of the differences of x from its

mean and δ= xt+1− xt . The variance is obtained offline by

dividing q by the number of samples N .

The online computation of the AR(1) Lagrangian temporal

auto-correlation is evaluated by keeping track of the sum of

squared residuals:

st+1 = st +
(
xadv
t+1− x

adv
t

)
·

(
xt+1− xt+1

)
. (7)

The Lagrangian auto-correlation is obtained offline as:

ρ
(
x,xadv

)
=

s

N

√
Var(x) ·Var

(
xadv

) . (8)

The online computation of statistics using these rules gradu-

ally converges towards a stable value as the time progresses.

In order to admit temporal fluctuations of the statistics and

local smoothing, one can introduce a weight in the recursive

equations similarly to the technique of recursive least squares

computation.

The technical implementation of the online update of the

field statistics is performed by keeping binary files contain-

ing the arrays of interim statistics. For each new radar field,

the old file is read, updated and rewritten with the new statis-

tics. The statistics are only updated when the rainfall frac-

tion exceeds 5 % over the radar composite and when the

four radars are jointly operating. With this criterion we ob-

tained 9578 valid rainfall fields, which roughly correspond to

1600 h of precipitation over the period spanning from Febru-

ary 2011 to October 2012.

3.5 Offline spectral slope estimation

A precipitation field that is scale-invariant (also referred to as

scaling) typically exhibits a power spectrum of the form:

P(f )∝ f−β , (9)

where f is the spatial frequency (km−1) and β is the scaling

exponent (the slope of the power spectrum). The power law

behavior of rainfall fields usually appears as a straight line

on a graph of the logarithm of the power against the loga-

rithm of the spatial frequency. The slope of the line measures

the degree of scaling of the field and is equal to 0 for an

unstructured white noise field. The scaling exponent of a 2-

dimensional rainfall field is often greater than 2, which com-

plicates its multifractal simulation (see, e.g., Schertzer and

Lovejoy, 1987). One possibility to simulate stochastic rain-

fall fields to obtain β > 2 is to apply a power law filter to a

field of white noise as briefly mentioned in Sect. 3.2.

Radar rainfall fields often deviate from the theoretical

framework of perfect scale-invariance and typically show a

scaling break at frequencies of 15–20 km−1 (see, e.g., Gires

et al., 2011; Seed et al., 2013). On the other hand, precipi-

tation fields computed by NWP models have a break around

40–50 km (e.g., Gires et al., 2011). The scaling break is ob-

served as an increase in the spectral slope at the smaller con-

vective scales. This seems to have a physical origin and could

be attributed to different scaling regimes of the large-scale

stratiform rainfall and the smaller convective scales. How-

ever, recent analyses explain this phase transition with the

presence of zeros in the field, which also affects the estima-

tion of universal multifractal parameters (Gires et al., 2012).

The presence of a scaling break requires using two spectral

slopes β1 and β2 for the study and parameterization of the

power spectrum. β1 accounts for wavelengths that are larger

than 15–40 km and β2 for wavelengths that are lower than

15–40 km.

In this research we analyze the spatial distribution of the

spectral slopes β1 and β2. A complete analysis would require

visiting each radar pixel and performing a local spatial FFT

decomposition in its neighborhood, which is very computa-

tionally demanding if one wants to repeat the analysis over a

long period of time. Instead, the two spectral slopes are de-

rived offline from the spatial distribution of the variance at

each level of the cascade. This can be achieved by assuming

scaling of the variance of the cascade levels (see Menabde et

al., 1997). It consists of evaluating the average slope incre-

ments between successive levels of the cascade level standard
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Table 1. Characteristics of the six flow cluster centers that are used to stratify the statistics. Wm and Ws refer to moderate and strong westerly

flows respectively. The detailed average velocity maps can be found in Foresti and Seed (2014).

Cluster label 0-SE 1-Wm 2-N 3-SW 4-NW 5-Ws

Average flow direction Southeast West North Southwest Northwest West

Average flow magnitude (km h−1) 8.2 17.2 21.3 21.9 40.0 37.5

deviations:

H =−
1

K − 1

K−1∑
k=1

log10

(
sd(Xkij )

sd(X(k+1)ij )

)
log10(q)

and β = 2H +E, (10)

where sd(Xkij ) is the standard deviation of cascade level k at

pixel ij and E= 2 is the dimension of the space. β1 is esti-

mated using levels 1 to 3 (scales of 171, 81 and 38 km,K = 3

in Eq. 10) while β2 using levels 3 to 6 (scales of 38, 18, 8 and

4 km; K = 4 in Eq. 10). A scaling break of 40 km instead of

20 km was chosen to obtain smoother fields of the spectral

exponent β2, which is consequently slightly underestimated.

Note that this approach is different than estimating power

spectra on rainfall time series and analyzing the spatial distri-

bution of the spectral exponents. The approach proposed in

this paper should give insights into the spatial heterogeneity

of the degree of spatial scaling of rainfall fields.

3.6 K-means stratification of optical flow fields

To analyze the dependence of rainfall statistics on flow

regimes, the optical flow fields were stratified using the k-

means clustering algorithm. The details on the preparation of

the archive of optical flow fields and the clustering algorithm

can be found in Foresti and Seed (2014).

Table 1 summarizes the statistics of the six cluster centers

obtained after running the k-means algorithm on the archive

of flow fields. The cluster centers mainly differ in terms of

flow direction and magnitude, while the spatial variability

of the velocity vectors within a field is only marginal (see

Foresti and Seed, 2014). The number of clusters was empiri-

cally chosen to represent a sufficient number of flow regimes

and to have enough samples per cluster to compute signifi-

cant verification statistics. The cluster 0 is characterized by

weak southeasterly winds, the cluster 1 by moderate westerly

winds, the cluster 2 by moderate northerlies, the cluster 3 by

moderate southwesterly winds, the cluster 4 by strong north-

westerly winds, and the cluster 5 by strong westerlies. It is

understood that winds refer to the apparent motion of radar

images derived with optical flow and not to real wind fields.

The online update of the statistics (Sect. 3.4) is per-

formed by keeping a set of six binary files containing the

interim fields of the rainfall mean, variance, Lagrangian auto-

correlations and number of samples. The files are read, up-

dated and rewritten according to the cluster membership of a

given field.

4 Results

Section 4.1 illustrates the scale-dependent geographical dis-

tribution of the precipitation lifetime without stratification

into flow regimes. On the other hand, Sect. 4.2 shows the

flow dependence of the dynamic and spatial scaling relation-

ships by averaging the results over space. Finally, Sect. 4.3

analyzes the spatial distribution of the precipitation lifetime

under different flow regimes to understand the effect of oro-

graphic forcing.

4.1 Geographical distribution of precipitation

predictability and spatial scaling

Figure 3 illustrates the spatial distribution of the precipitation

lifetime for the cascade levels 2, 3, 4, and 5 without strati-

fication into flow regimes. Refer to Fig. 1 for geographical

details. The level 0 is not presented since the FFT filter does

not have a Gaussian shape (see Fig. 2). On the other hand,

the level 1 is too influenced by the edge effects that prop-

agate from the borders of the radar composite towards the

interior regions. The levels 6 and 7 are too noisy and exhibit

lifetimes that are below the temporal resolution of the radar

composite (10 min).

The cascade level 2 (171-81-38 km, Fig. 3a) has lifetimes

comprised between 5 and 10 h but still highlights the pres-

ence of some edge effects. The long lifetimes obtained may

still be a consequence of assuming the diagnosed velocity

field to be temporally stationary. An important part of the

spatial variability at this scale is affected by the shape of

the radar composite, and long lifetimes tend to be located

in its central parts. The other cascade levels (Fig. 3b–d) are

less affected by the edge effects, which remain limited to

a small region close to the borders of the radar composite.

All of them have the longest lifetimes over the flat regions

surrounding the Yarrawonga radar. In this region the life-

times are up to 3.5 h, and 70 and 30 min for the 81-38-18,

38-18-8 and 18-8-4 km scales, respectively. These long life-

times can be explained by a higher Lagrangian predictability

over flat continental areas (see for instance Germann et al.,

2006). The lifetimes around the Macedon ranges are lower

on their southeast flanks in the direction of the Melbourne

radar compared with their northwest flanks. Despite being
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Figure 3. Spatial distribution of the precipitation lifetimes for the four middle cascade levels. (a) 171-81-38 km, (b) 81-38-18 km, (c) 38-18-8

and (d) 18-8-4 km. White tones are used for regions outside the radar domain or presenting values that exceed the range of the color scale.

less pronounced, this pattern was already observed by Foresti

and Seed (2014) and is a consequence of the prevailing west-

erly flows, which cause systematic rainfall decay on the lee-

ward side of the Macedon ranges and orographic enhance-

ment on their windward side. This effect is also the origin of

the long lifetimes observed on the Dandenong ranges as they

are located upwind relative to the prevailing westerlies. The

lifetimes surrounding the Gippsland radar tend to be longer

over the ocean, which is particularly visible in Fig. 3b and c.

Finally, the shorter lifetimes on the inner parts of the Vic-

torian Alps are probably due to the reduced accuracy of the

radar measurements (see Sect. 2). In particular, the blockage

of radar beams, the rainfall attenuation and overshooting re-

duce the accuracy of the optical flow estimations, which con-

sequently affects the lifetimes derived from the Lagrangian

auto-correlation. In addition, it seems that there is a propor-

tional effect between the precipitation lifetime and the cli-

matological precipitation amount: the lifetimes are generally

lower in the places where the radar measures less precipita-

tion (see e.g., Berenguer and Sempere-Torres, 2013).

Figure 4 illustrates the spatial distribution of the spectral

slopes β1 and β2 derived from the standard deviation of the

cascade levels (see Sect. 3.5). β1 represents the degree of

scaling above the 40 km scale; β2 represents that below it

and they therefore account respectively for the large-scale

precipitation structures and convective features. Except for

the regions close to the radar domain edges, β1 is generally

larger than 2 with the highest values in the range 2.2–2.4 and

centered on the three radars. These are the regions where the

spatial scaling of rainfall can be measured more efficiently

and is the highest. At first sight, these inhomogeneities can

only be explained by the shape of the radar composite and

not by the presence of different atmospheric processes. How-

ever, the spectral slopes are higher on the southern slope of

Hydrol. Earth Syst. Sci., 18, 4671–4686, 2014 www.hydrol-earth-syst-sci.net/18/4671/2014/



L. Foresti and A. Seed: Rainfall predictability from composite radar images 4679

−200 −100 0 100 200

−
20

0
−

10
0

0
10

0
20

0

Spectral slope, beta 1

Easting [km]

N
or

th
in

g 
[k

m
]

1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

 200 

 200 

 200 

 200 

 400 

 400 

 4
00

 

 400 

 4
00

 

 600 

 6
00

 

 600 

 600 

 800 

 800 

 800 

 800 

 1000 

 1000 

 1000 

 1000 

 1
50

0 

Melbourne

Yarrawonga

Gippsland

a)

−200 −100 0 100 200

−
20

0
−

10
0

0
10

0
20

0

Spectral slope, beta 2

Easting [km]

N
or

th
in

g 
[k

m
]

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

 200 

 200 

 200 

 200 

 400 

 400 

 4
00

 

 400 

 4
00

 

 600 

 6
00

 

 600 

 600 

 800 

 800 

 800 

 800 

 1000 

 1000 

 1000 

 1000 

 1
50

0 

Melbourne

Yarrawonga

Gippsland

b)

Figure 4. Spatial distribution of the spectral slopes (a) β1 and (b) β2 derived by assuming the scaling of the standard deviation of the cascade

levels.

the Alps located northeast of the Gippsland radar. This de-

picts a region characterized by rainfall fields that are highly

organized in space with convection embedded into stratiform

rainfall, which is typical of orographic rainfall (see Fig. 6a).

It would be interesting to perform a similar analysis using

outputs from NWP models to eliminate the heterogeneities

introduced by the inhomogeneous quality of radar measure-

ments. As expected, the spectral slopes at the small scales

(β2, Fig. 4b) are systematically higher than the ones at the

large scales (β1, Fig. 4a), with values in the range 2.3–2.8.

However, the spectral slope β2 is lower in the surroundings

of the Melbourne radar (S-band) compared with the other

two (C-band). Both the C- and S-band radars have a 1◦ az-

imuth and 250 m range resolution (see for instance, Ren-

nie, 2012). Notwithstanding the same resolution, the rain-

fall field exhibits more power in the last cascade level in the

surroundings of the Melbourne radar, which can explain the

lower spectral exponent β2 (Fig. 4b). The patterns observed

in Fig. 4b are hard to explain in terms of different precip-

itation regimes and seem to be more associated to the type

of radar or data processing chain. Despite these differences,

the spectral exponents β2 tend to be lower upwind than up-

stream of the mountain ranges, in particular over the Yarra

and Dandenong ranges, the southern slopes of the Alps be-

tween Avon and the Snowy River, and on the northern slopes

of the Alps located southeast of the Yarrawonga radar. This

depicts that strong convection is more likely to occur over flat

regions than over complex orography, where it is less intense

and often embedded into stratiform rainfall.

4.2 Flow dependence of the dynamic and spatial scaling

relationships

Table 2 and Fig. 5 illustrate the dynamic scaling relation-

ship between the spatial scale and the precipitation lifetime

for each flow regime. As already explained in Sect. 3.1, only

the cascade levels 1 to 6 are shown. The values are obtained

by spatial averaging of the lifetimes within the radar com-

posite. Figure 5 demonstrates the presence of dynamic scal-

ing, which is observed as a clear power law relationship be-

tween the spatial scale of precipitation features and its es-

timated lifetime (Venugopal at al., 1999; Seed, 2003). It is

worth mentioning that Venugopal at al. (1999) employed an-

other statistical quantity to account for the temporal evolu-

tion of rainfall and the obtained dynamic scaling exponents

cannot be directly compared. The figure also shows signifi-

cant variability of the lifetimes as a function of flow regime.

The clusters NW and Ws are characterized by the shortest

lifetimes, and the cluster SE by the longest. These differ-

ences are in part due to the type of rainfall, which is more

convective under northerly than southerly flows. In fact, the

organized convective activity mostly occurs when the warm

continental northwesterly flows meet the colder maritime air.

On the other hand, it is not clear whether the faster transla-

tional speed of convective rain relative to stratiform rain af-

fects the estimation of the predictability by Lagrangian per-

sistence. These lifetime estimations are a bit higher than the

original ones of Seed (2003), who used a single motion vec-

tor to advect the radar rainfall field. Similar issues were en-

countered by Pegram and Clothier (2001b) because of using

a single displacement vector and as a consequence of the high

level of noise at the pixel scale. This demonstrates the added

value of the optical flow algorithm of Bowler et al. (2004),

which better defines the differential motion within a rainfall

field, as well as the analysis of the Lagrangian predictability

at larger scales using the Fourier-based scale decomposition.

The estimations also compare well with the results of Ger-

mann et al. (2006), who reported lifetimes of 0.1–0.2 h on the

4–8 km scale using a wavelet decomposition of the rainfall
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Table 2. Precipitation lifetimes for each spatial scale and flow regime averaged over the radar composite. Levels 0–3 are expressed in hours

and 4–7 in minutes. The power law extrapolation of lifetimes for smaller spatial scales is given in seconds. Ext.: estimation of the lifetimes

at smaller spatial scales by extrapolating the power law. The extrapolation uses the original non-integer scales for increased precision. The

scales on which the Gaussian filters are centered are marked in italic.

Level Spatial scales Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Weighted

[km] SE Ww N SW NW Ws average

0 768-362 27.7 25.9 28.5 25.4 19.3 20.2 24.1 h

1 362-171-81 24.9 21.4 18.6 22.5 14.6 16.0 19.2 h

2 171-81-38 13.7 8.9 7.9 9.6 5.6 6.3 8.3 h

3 81-38-18 4.6 2.8 2.5 3.1 1.8 2.0 2.7 h

4 38-18-8 79.6 53.9 48.9 56.3 34.4 38.7 49.8 min

5 18-8-4 26.4 21.0 19.2 20.5 14.0 15.7 19.0 min

6 8-4-2 10.5 9.2 8.5 8.7 6.4 7.31 8.3 min

7 4-2 5.9 5.0 5.2 5.4 4.7 5.0 5.1 min

ext. 8 1.89-0.89-0.42 78 65 62 58 43 49 58.0 s

ext. 9 0.89-0.42-0.20 28 23 23 16 16 18 20.5 s

ext. 10 0.42-0.20-0.09 10 8 8 5 6 7 7.4 s

No. of fields 1095 2390 1449 1112 2058 1474 9578

field over the continental United States. In Fig. 5 the 4–8 km

scales roughly correspond to the 8-4-2 km and 18-8-4 scales,

which exhibit lifetimes of 0.1–0.4 h.

To obtain an order of magnitude for the predictability

at smaller spatial scales, power law relationships were fit-

ted using the method of least squares per each flow cluster.

The extrapolation of the fitted power laws towards smaller

spatial scales could give an idea of the minimum tempo-

ral resolution that is required to reliably measure the La-

grangian auto-correlation of precipitation, which is very

important for stochastic precipitation nowcasting at urban

scales (e.g., Goormans and Willems, 2013; Ruzanski and

Chandrasekar, 2012). The bottom of Table 2 shows the re-

sults of such extrapolations for scales of 1.89-0.89-0.42,

0.89-0.42-0.20 and 0.42-0.20-0.09 km. Because of working

on a logarithmic scale such estimations are quite uncertain

and to a certain degree pessimistic, in particular because

the dynamic scaling relationship does not perfectly follow a

power law. The imperfect dynamic scaling could also be due

to using the lifetime instead of the temporal rainfall changes

as a measure for the rainfall evolution (see Venugopal et al.,

1999). It must also be considered that the optical flow is

representative of the scales measured by the C- and S-band

radars and cannot capture the motion at smaller scales. From

this simple extrapolation, the kilometric scale (1.89-0.89-

0.42 km) only displays a predictability of 40–80 s. It would

be interesting to study whether the temporal resolution of X-

band radars is sufficient to reliably measure the Lagrangian

auto-correlation of the very small scale precipitation features.

Using such high resolution data will also pose the computa-

tional challenge of generating the nowcasts before the pre-

dictability limits have been exceeded to avoid the forecasts

becoming obsolete. Ruzanski and Chandrasekar (2012) re-

ported a predictability of 20 min using data from a network of

X-band radars and the CASA nowcasting system. The scale

dependence was analyzed by upscaling the forecasts and the

values are not directly comparable to the ones obtained by

scale separation within STEPS. At these temporal scales, the

quality of the nowcasts is still strongly affected by the accu-

racy of the input radar observations. Therefore, it becomes

necessary to complement nowcasting systems with heuristic

models of the radar measurement uncertainty, for example to

account for stochastic sampling errors (Jordan et al., 2003).

Table 3 illustrates the spectral slopes β1 and β2 of the spa-

tial power spectrum stratified by flow regime. β1 typically

oscillates around the dimension of the field with the small-

est values occurring under the flows SE–SW (1.88–1.91) and

the largest under the flows Wm, N, and NW (2.01–2.03).

The values are slightly smaller than the ones found in the

literature (e.g., Seed et al., 2013), which is explained again

by the presence of edge effects that locally reduce the spec-

tral exponents (see Fig. 4a). This may have consequences

on the power law filtering performed by STEPS to generate

the noise cascade needed to update the hierarchy of auto-

regressive processes. In fact, the filtering uses the spatial

power spectrum of rainfall as target distribution, which does

not account for the spatial heterogeneities within the forecast

domain.

The values of β2 are significantly higher and oscillate be-

tween 2.45 and 2.8. The clusters NW and Ws have the high-

est β2 (2.68–2.79), which can be attributed to a higher con-

vective activity occurring under these flow conditions. The

cluster NW also has a high β1 and is the one having the most

organized rainfall structures from the large down to the small

convective scales.
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Table 3. Average spatial spectral exponents stratified by flow regime. The standard deviation over space is given in brackets.

Cluster label 0-SE 1-Wm 2-N 3-SW 4-NW 5-Ws

β1 1.88 (0.29) 2.02 (0.24) 2.03 (0.25) 1.91 (0.22) 2.03 (0.24) 1.96 (0.23)

β2 2.46 (0.20) 2.55 (0.15) 2.61 (0.18) 2.46 (0.19) 2.79 (0.16) 2.68 (0.18)
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Figure 5. Dynamic scaling relationship between the spatial scale and precipitation lifetime stratified by flow regime. The equations of the

power law fits are shown in the upper left corner.

4.3 Effect of orography on the predictability of

precipitation

According to the results of Berenguer and Sempere-

Torres (2013), the regions of long predictability seem to be

correlated with the regions with the highest rainfall accumu-

lations. In fact, the regions that are often affected by orga-

nized large-scale precipitation systems are more likely to ex-

hibit higher predictability than the ones with infrequent iso-

lated convection. It is therefore important to analyze the cli-

matology of precipitation to study the spatial distribution of

its predictability.

Figure 6 shows the conditional mean 10 min rainfall ac-

cumulations stratified by flow regime. It clearly illustrates

the flow dependence of the spatial distribution of precip-

itation, which is mostly located on the windward side of

mountain ranges. Most of the precipitation occurring under

southeasterly flows is located along the upwind side of the

Victorian Alps in a region going from Avon to the Snowy

River (Fig. 6a). The spatial distribution of rainfall under

moderate westerly flows presents maxima on the Dandenong

and Macedon ranges, but also on the northern side of the

Alps around Mount Buffalo (Fig. 6b). The enhancement on

the Northwest flank of the Alps is much more pronounced

with northerly and northwesterly flows, which approach the

mountain range more perpendicularly (Fig. 6c and e, respec-

tively). Southwesterly flows lead to high accumulations on

the Yarra and Dandenong ranges as well as the southern side

of the Alps around the Gippsland radar (Fig. 6d). It is inter-

esting to note that northwesterly flows also give high accu-

mulations on the leeside of the Alps (Fig. 6e), which could

be caused by the lower air stability of these conditions (refer

to Foresti and Seed, 2014, for a more detailed interpretation).

Finally, strong westerly flows lead again to high accumula-

tions on the Dandenong and Macedon ranges, but also on the

West of the Gippsland radar (Fig. 6f). A clear rainfall shadow

effect on the leeside of the Macedon ranges is noticed for the

clusters Wm, NW, and Ws.

Figure 7 shows the spatial distribution of the precipita-

tion lifetime at the convective scale (38-18-8 km) stratified
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Figure 6. Conditional mean 10 min rainfall accumulations for flow regimes (a) SE, (b) Wm, (c) N, (d) SW, (e) NW and (f) Ws.
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by flow cluster. Despite some variability arising from peri-

odic features of the Fourier transform, it is possible to notice

that lifetimes are higher on the upwind side and lower on the

downwind side of terrain features. An illustrative example

can be observed under southwesterly conditions (Fig. 7d).

The lifetime of precipitation upstream of the Dandenong

ranges is about 20–40 min; it increases to 50–70 min on the

upwind side and falls again to 20–30 min when moving into

the Alps. Similar patterns can be observed under the flow

regime Ws (Fig. 7f). On the other hand, under NW flows

short lifetimes are located on the leeward side of the Mace-

don ranges (Fig. 7e). Note that with reversed flow conditions

(SE, Fig. 7a), this region exhibits lifetimes of 80–100 min

and the shortest ones are located on top of the Macedon

ranges with values oscillating between 40 and 80 min. The

region located South and Southeast of the Yarrawonga radar

is also interesting to analyze in particular for the clusters N

and NW. In fact, the location of the longest lifetimes up-

stream of the Alps is different depending on flow direction

(Fig. 7c and e). The plains surrounding the Yarrawonga radar

also show very long lifetimes under flow conditions SE, Wm,

and SW. However, this effect could be an artefact of the

low rainfall accumulations over these regions (see Fig. 6a, b,

and d).

These findings corroborate the results of Harris et

al. (1996), who demonstrated that the precipitation intermit-

tency is higher upstream compared with the top of the moun-

tain ridge, with intermediate values on the upwind flank.

From Fig. 7 it seems that the decreased intermittency of rain-

fall upwind of orographic features has a positive impact on

its predictability by Lagrangian persistence. It is worth men-

tioning that leeside precipitation enhancement is also pos-

sible due to leeside flow convergence, flow perturbations by

mountain gravity waves, or the presence of cold air pools that

force the unstable air to rise. Such processes are not very fre-

quent and would require stratifying the statistics using more

complex criteria based on moist air stability indices among

others.

The relationship between the precipitation lifetime and

orography is less pronounced than that of nowcast biases

presented in Foresti and Seed (2014). This is mostly due

to the increased difficulty in computing higher order statis-

tics, which require many more samples than a simple lin-

ear or multiplicative bias. Also, the cascade decomposition

framework still needs some improvements to reduce the edge

effects and to better interpret the intricate statistical depen-

dencies between consecutive cascade levels (see Seed et al.,

2013).

5 Conclusions

The geographical distribution of the scale-dependent pre-

dictability of precipitation by Lagrangian extrapolation of

radar images was analyzed under different flow regimes

in connection with the presence of orographic features.

Data from the Victorian radar composite, Australia, a

500× 500 km2 domain covering the period from Febru-

ary 2011 to October 2012, were used for the analyses. The

scale dependence of the predictability of precipitation was

considered by decomposing the radar rainfall field into a

multiplicative cascade using an FFT (Bowler et al., 2006).

The lifetime of precipitation features was found to be a power

law function of the scale of the features and to depend on flow

direction, which confirms the presence of dynamic scaling

(Venugopal et al., 1999; Mandapaka et al., 2009). The pre-

cipitation lifetime was found to be up to a factor of 2 higher

on the upwind compared with the downwind slopes of oro-

graphic features and to be strongly flow-dependent. The de-

gree of spatial scaling of the rainfall field was also shown

to be spatially inhomogeneous. These spatial heterogeneities

due to orographic forcing can be exploited to locally adapt

the space–time stochastic simulation of precipitation, which

is needed for very short-term forecasting (e.g., Seed et al.,

2013), generating radar ensembles (Germann et al., 2009),

design storm studies (e.g., Paschalis et al., 2013), and precip-

itation downscaling (e.g., Pathirana and Herath, 2002).

The study raised several methodological questions, in par-

ticular because the quality of radar data is much more homo-

geneous over time than over space. This has to be accounted

for when interpreting the maps of the predictability of precip-

itation. Some patterns could be simply due to the geograph-

ical biases that affect the radar measurements, for example

due to beam blockage, signal attenuation, or increasing sam-

pling volume with range. Nevertheless, in the regions close

to the radar, it was possible to detect a clear signal in the dis-

tribution of the precipitation lifetime, which was attributed to

orographic forcing.

The predictability estimates presented in this paper are af-

fected by other sources of uncertainty. The first is related

to the assumption of the temporal stationarity of the diag-

nosed velocity field, which leads to over-optimistic estimates

of the precipitation lifetimes, especially at the large scales.

The second arises from the uncertainty in the estimation of

the velocity field with optical flow. In fact, precipitation fields

often show differential motion at different spatial scales. An

illustrative example occurs when stationary orographic rain-

fall contains fast moving cellular convection (e.g., Foresti et

al., 2013). Better estimates of the Lagrangian predictability

would require the optical flow to be estimated on each spatial

scale separately.

Finally, it is not yet clear whether the spatial variability

of precipitation lifetime is more significant than its tempo-

ral variability, and how to account for both aspects in the

real-time nowcasting of precipitation using stochastic simu-

lation approaches such as STEPS. The natural solution would

be to allow the predictability to vary through time in a first

stage and to gradually add some spatial heterogeneity when

more and more radar data are collected. This goal could be

achieved by exploiting the online computation of statistics,
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Figure 7. Spatial distribution of the precipitation lifetimes at cascade level 4 (38-18-8 km) stratified by flow regime. (a) SE, (b) Wm, (c) N,

(d) SW, (e) NW, (f) Ws.
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which would enable the nowcasting system to learn about the

spatial distribution of predictability as more and more radar

data are collected and analyzed.
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