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Abstract. One of the main challenges for global hydrologi-

cal modelling is the limited availability of observational data

for calibration and model verification. This is particularly the

case for real-time applications. This problem could poten-

tially be overcome if discharge measurements based on satel-

lite data were sufficiently accurate to substitute for ground-

based measurements. The aim of this study is to test the po-

tentials and constraints of the remote sensing signal of the

Global Flood Detection System for converting the flood de-

tection signal into river discharge values.

The study uses data for 322 river measurement locations

in Africa, Asia, Europe, North America and South Amer-

ica. Satellite discharge measurements were calibrated for

these sites and a validation analysis with in situ discharge

was performed. The locations with very good performance

will be used in a future project where satellite discharge

measurements are obtained on a daily basis to fill the gaps

where real-time ground observations are not available. These

include several international river locations in Africa: the

Niger, Volta and Zambezi rivers.

Analysis of the potential factors affecting the satellite sig-

nal was based on a classification decision tree (random for-

est) and showed that mean discharge, climatic region, land

cover and upstream catchment area are the dominant vari-

ables which determine good or poor performance of the mea-

surement sites. In general terms, higher skill scores were ob-

tained for locations with one or more of the following char-

acteristics: a river width higher than 1 km; a large floodplain

area and in flooded forest, a potential flooded area greater

than 40 %; sparse vegetation, croplands or grasslands and

closed to open and open forest; leaf area index > 2; tropi-

cal climatic area; and without hydraulic infrastructures. Also,

locations where river ice cover is seasonally present ob-

tained higher skill scores. This work provides guidance on

the best locations and limitations for estimating discharge

values from these daily satellite signals.

1 Introduction

Flooding is the most prevalent natural hazard at the global

scale, often with dire humanitarian and economic effects. Ac-

cording to the International Disaster Database (EM-DAT), an

average of 175 flood events per year occurred globally be-

tween 2002 and 2011, affecting an average of 116.5 million

people, and causing economic losses of USD 25.5 billion.

According to MunichRe (2014), the costliest natural catas-

trophe worldwide in terms of overall economic losses in 2013

was the flooding in southern and eastern Germany and neigh-

bouring states in May and June, with estimated damages of

USD 15.2 billion. In June of the same year, flooding in India

claimed 5000 lives, with a further 2 million affected (Mu-

nichRe, 2014; EM-DAT).

The Global Assessment Report (UNISDR, 2011) states

that the proportion of world population living in flood-prone

river basins increased by 114 % over four decades from 1970

to 2010. Additionally, while economic losses due to river

floods have increased over the last 50 years, the number of

casualties has decreased. The reduction in loss of life has

been associated with the integration of early warning sys-

tems with emergency preparedness and planning at local and

Published by Copernicus Publications on behalf of the European Geosciences Union.



4468 B. Revilla-Romero et al.: Evaluation of the Global Flood Detection System for measuring river discharge

national levels (Golnaraghi et al., 2009; Kundzewicz et al.,

2012).

Global early warning systems are needed to improve in-

ternational disaster management. These systems can be used

for both early forecasting (for better preparedness) and early

detection, as well as for an effective response and crisis man-

agement. Their necessity was emphasised in 2005, and since

then it has been a key element of international initiatives

such as the “Hyogo Framework for Action 2005–2015” and,

on a continental level, the European Commission Flood Ac-

tion Programme. After the 2002 flooding of the Elbe and

Danube rivers, the European Commission supported the de-

velopment of the European Flood Awareness System (EFAS)

(Bartholmes et al., 2009; Thielen et al., 2009) by the Joint

Research Centre to increase preparedness for riverine floods

across Europe. Currently, a number of organisations are in-

volved in rapid mapping activities after major (flood) disas-

ters, such as UNOSAT (2013), GDACS (2013), “Space and

Major Disasters” (Disaster Charter, 2014), the Committee on

Earth Observation Satellites (CEOS) Flood Pilot and the on-

line Dartmouth Flood Observatory (http://floodobservatory.

colorado.edu/). In Europe, Copernicus is the Earth observa-

tion programme which actively supports the use of satellite

technology in disaster management and early warning sys-

tems for improved emergency management.

Flood warning systems typically rely on forecasts from na-

tional meteorological services and in situ observations from

hydrological gauging stations. However, this capacity is not

equally developed across the globe, and is highly limited

in flood-prone, developing countries. Ground-based hydro-

meteorological observations are often either scarce or, in

cases of transboundary rivers, data sharing among the ripar-

ian nations can be limited or absent. Therefore, satellite mon-

itoring systems and global flood forecasting systems are a

needed alternative source of information for national flood

authorities not in the position to build up an adequate mea-

suring network and early warning system. In recent years,

there has been a notable development in the monitoring of

floods using satellite remote sensing and meteorological and

hydrological modelling (Schumann et al., 2009).

A variety of satellite-based monitoring systems measure

characteristics of the Earth’s surface, including terrestrial

surface water, over large areas on a regular basis (van

Westen, 2013). Such remote sensing is based on surface

electromagnetic reflectance or radiance in the optical, in-

frared and microwave bands. Some key advantages of mi-

crowave sensors is that they provide near-daily basis global

coverage and, at selected frequencies, relatively little in-

terference from cloud cover. Two presently operating mi-

crowave remote sensors with near-global coverage are the

Tropical Rainfall Measuring Mission1 (TRMM), operational

from 1998 to present, and the Advanced Microwave Scan-

1http://trmm.gsfc.nasa.gov.

ning Radiometer for Earth Observation System2 (AMSR-E)

which was active from June 2002 to October 2011, succeeded

by AMSR2, which was launched in May 2012 and is on-

board the Japanese satellite GCOM-W13, and from which

brightness temperature data are being distributed from Jan-

uary 2013 onwards. For future work, the European Space

Agency (ESA) and NASA have other missions to put simi-

lar instruments in orbit, capturing passive microwave energy

at 36.5 GHz, such as ESA’s Sentinel-3 satellites (planned

launch in 2015 and 2016) and NASA’s Global Precipita-

tion Mission (GPM) (launched in February 2014) to replace

TRMM.

Using AMSR-E data initially, De Groeve et al. (2006) im-

plemented a method for detecting major floods on a global

scale, based on the surface water extent measured using

passive microwave sensing. Also, Brakenridge et al. (2005,

2007) demonstrated that orbital remote sensing can be used

to monitor river discharge changes. However, as underlined

by Brakenridge et al. (2012, 2013), extracting the microwave

signal and converting it into discharge measurements is not

straightforward and depends on factors such as sensor cali-

bration characteristics and perturbation of the signal by land

surface changes. These changes can be found, for exam-

ple, in irrigated agricultural zones and in areas where rivers

flow along forested floodplains (Brakenridge et al., 2013). As

rivers discharge increases, river level (stage), river width, and

river flow velocity all increase as well, and the challenge is

to measure one or more of these accurately enough to pro-

vide a reliable discharge estimator, and compare against a

background of other surface changes that may affect what is

measured from orbit.

There also remains the need to convert such discharge es-

timators to actual discharge units. Using ground discharge

data or climate-driven runoff models for calibration and vali-

dation, methods to convert the remote sensing signal to river

discharge have been previously tested at particular stations

with output from the Global Flood Detection System (GFDS,

http://www.gdacs.org/flooddetection/) and by different in-

vestigators (Brakenridge et al., 2007, 2012; Khan et al., 2012;

Kugler and De Groeve, 2007; Moffitt et al., 2011; Hirpa et

al., 2013; Zhang et al., 2013). Yet the results are from dif-

ferent approaches and not easily comparable, making an as-

sessment of the potential performance on a global scale dif-

ficult. Furthermore, definite conclusions about the influence

of various environmental factors on the signal performance

have not been reached. Therefore, in this study, a rigorous

broad assessment of the method is undertaken with a sys-

tematic evaluation of the relationship between skills obtained

between ground- and satellite-based discharges and the lo-

cal characteristics of the stations. Specifically, this study ad-

dresses mean observed discharges, river widths, land cover

2http://aqua.nasa.gov/about/instrument_amsr.php.
3http://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/whats_amsr2.

html.
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types, leaf area indices, climatic regions and flood hazard

maps, as well as the presence or absence of large floodplains,

wetlands, river ice and hydraulic control infrastructure.

Our goal is to assess the potentials and limitations of the

satellite-based surface water extent signal data for river dis-

charge measurements with a large number of stations. More-

over, the relationship between ground and satellite sets of

discharge measurements and the local surface characteris-

tics is examined in order to provide guidelines for selection

of observation sites. For this purpose, river catchments lo-

cated in a range of different climatic and land cover types

were selected in Africa, Asia, Europe, North America and

South America. The remainder of the paper is structured as

follows: Sect. 2 presents the study regions and data, Sect. 3

describes the analysis methodologies, and the results are dis-

cussed in Sect. 4.

2 Study regions and data

2.1 Study regions and in situ discharge data

Figure 1 shows the study basins and in situ discharge loca-

tions. The selected stations are all located near major rivers

of the world (Global Runoff Data Centre, 2007). The con-

tinental distribution and the upstream catchment area of the

stations are summarised in Table 1. We selected the locations

to be representative of a broad variety of local conditions:

they belong to nine different main land cover classes (aggre-

gated from GlobCover, 2009) and five main types of climate

(Peel et al., 2007). The characteristics are listed in Table 2.

For Africa, Asia, Europe, North America and South Amer-

ica, daily in situ discharge values were used from the Global

Runoff Data Centre (GRDC) database. In addition, for the

South African stations, the discharge data were provided by

the South African Water Affairs (DWA, http://www.dwa.gov.

za/). The selected stations for all these continents include

daily data between 1998 and 2010; however not all stations

have continuous data during this time period. From 1998, the

length of the time series was required to be above 6 years.

The longest time series available was of 13 years, with a me-

dian value of 8.5 years. In situ discharge information may

itself be affected by large and variable uncertainty, mostly on

the measurement of the cross-sectional area of the channel

and mean flow velocity at the gauge or control site (Pelletier,

1988). Although generally unknown, these values are typi-

cally between 5 and 20 % at the 95 % confidence level as

highlighted in studies such as Hirsch and Costa (2004), Di

Baldassarre and Montanari (2009), Le Coz et al. (2014) and

Tomkins (2014). However, the uncertainty in river discharge

is even higher during floods events when the stage–discharge

relationship, the so-called rating curve, is used. As eval-

uated by Pappenberger et al. (2006), the analysis of rat-

ing curve uncertainties leads to an uncertainty of the input

of 18–25 % at peak discharge. Di Baldassarre and Mon-

Figure 1. Location of selected stations (398) and corresponding

river basins (109). TRMM and AMSR-E brightness temperature

product extents are also provided.

tanari (2009) showed that the total rating curve errors in-

crease when the river discharge increases and varies from

1.8 to 38.4 % with a mean value of 21.2 %. For the purposes

here, these data are, however, regarded as “ground truth”.

We acknowledge the possible errors, however, and note that,

for some river reaches, satellite-based methods may actually

track discharge changes more accurately than ground-based

measurements using stage; however, the extent to which this

is true needs to be fully investigated.

2.2 Satellite-derived data

The Global Flood Detection System (GFDS) produces near-

real-time maps and alerts for major floods using satellite-

based passive microwave observations of surface water ex-

tent and floodplains. It was developed and is maintained

at the European Commission Joint Research Centre (JRC)

in collaboration with the Dartmouth Flood Observatory

(DFO). The surface water extent detection methodology

using satellite-based microwave data is explained in Braken-

ridge et al. (2007) and Kugler and De Groeve (2007). Here,

only the basic principles are recalled.

At each pixel, the method uses the difference in brightness

temperature, at a frequency of 36.5 GHz, between water and

land surface to detect the proportion of within-pixel water

and land. The retrieved brightness temperature data are first

gridded into a product with a pixel size of (near the Equa-

tor) 10 km× 10 km (0.09◦× 0.09◦), and the system provides

a daily output. For our work, the merged TRMM/AMRS-

E product was used (http://www.gdacs.org/flooddetection/

download.aspx); the gridded data are provided in the GCS

WGS 1984 projection. For our period of study, 1998–2010,

the merged data product was employed for the time pe-

riod of its availability (June 2002–2010), whereas stand-

alone TRMM data was used for the remaining time period

(1998 to June 2002) and available latitudes. Note that from

2013 the system has been providing the merged product

TRMM/AMSR2; however, this period is out of our scope.
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Table 1. Number of catchments by continent and range of upstream areas for the located stations.

Number of Number of Upstream

satellite locations stations for Number of catchment areas,

Continent forextraction (n= 398) calibration (n= 322) catchmentsa (kmb) approx. range

Africa 75 51 21 46 990–850 500b

Asia 23 3 4 7150–11 000

Europe 13 7 3 9000–132 000

North America 207 183 86 5300–1 850 000

South America 80 78 38 1400–4 680 000

a Stations used for calibration and validation. b South African upstream catchment areas are not available.

Table 2. Climate and land cover type of the 322 sites selected for the calibration and validation, aggregated by continent, climate and land

cover.

Climate Africa Asia Europe North America South America Total

Arid 30 25 55

Tropical 10 75 85

Temperate 11 3 51 3 68

Cold 3 4 104 111

Polarb 3 3

Total 51 3 7 183 78 322

Land cover Africa Asia Europe North America South America Total

Open forest 4 23 27

Closed to open forest 16 1 1 16 41 75

Closed forest 33 33

Mosaic vegetation 19 2 47 24 92

predominant a

Mosaic cropland or 5 1 26 9 41

grassland predominant

Rainfed crop 4 5 4 13

Sparse vegetation 2 14 16

Sparse vegetation+ crops 5 8 13

Urban 1 10 11

Bare areasb 1 1

Total 51 3 7 183 78 322

a Vegetation means a combination of grassland, shrubland and forest. b Types of land cover and climate where the number of

locations in each type was very low (e.g. 3) were excluded for their respective variables analysis as they will not be representative

on a global scale.

In the GFDS system, the microwave signal (s) is defined

as the ratio between the measurement over wet pixel (M) and

the measurement over a 7 pixel× 7 pixel array of background

calibration (C) pixel, known as theM /C ratio (Brakenridge

et al., 2012; De Groeve, 2010). Better discharge signal values

may be achieved when the measurement pixel is centred over

a river reach and no hydraulic structures are present (Moffitt

et al., 2011). However, this is sometimes difficult to achieve

due to the desired co-location with gauging stations (Brak-

enridge et al., 2012) or because the potential measurement

pixels within the raster are fixed geographically.

2.3 Other important data sets and maps

The quality of the microwave signal detected by the satel-

lite sensors can be influenced by local ground conditions,

including extreme rainfall, snow/ice, land cover/use and to-

pography (Brakenridge et al., 2012). For example, forest is

a type of land cover which influences the microwave emis-

sion properties due to the biometric features of vegetation

such as crown water content and the shape and size of leaves

(Chukhlantsev, 2006). In this study, the effects of the local

ground conditions on the performance of the satellite signal

were analysed as a function of the following factors:

Hydrol. Earth Syst. Sci., 18, 4467–4484, 2014 www.hydrol-earth-syst-sci.net/18/4467/2014/
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1. River width: channel width from Yamazaki et al. (2014),

estimation based on SRTM Water Body Database and

the HydroSHEDS flow direction map and for which the

map was upscaled from 0.025 to 0.1◦, taking the mean

of the river grid values in the 4× 4 area.

2. Mean observed discharge: for each station, a mean dis-

charge value for the study period was calculated from

daily ground data (mainly from the GRDC data set).

3. Upstream catchment area (GRDC 2007) data: the

GRDC river network was used to visually select those

stations located close to the “main rivers” classified by

GRDC, and to use the values of the upstream catchment

area for each station. Note that upstream catchment area

values are missing from all South African stations from

DWA data provider.

4. Presence of floodplains, flooded forest and wetlands:

this was obtained from the Global Lakes and Wetlands

Database level 3, a global raster map at 30 s resolution

which comprises lakes, reservoirs, rivers and different

wetland types (Lehner and Döll, 2004).

5. Flood extent: we used the fractional coverage of poten-

tial flooding of 25 km by 25 km cells for a 100-year re-

turn period from the Global Flood Hazard Map derived

using a model grid (HTESSEL+CaMa-Flood) (Pap-

penberger et al., 2012).

6. Land cover: we used land cover data from the Global

Land Cover 2009 (Bontemps et al., 2010). The 19 labels

were aggregated into 8 types of land cover depending

on the vegetation type and density to synthesise the out-

puts (see Appendix Table A1). Further visual category

checking was performed using Google Maps display

for the sites, and, where necessary, land cover classes

changed accordingly. An additional category was added

for sparse vegetation areas where crops are grown along

or near the river channels.

7. Leaf area index: a global reprocessed leaf area in-

dex (LAI) from SPOT-VGT is available for a pe-

riod of 1999–2007 (http://wdc.dlr.de/data_products/

SURFACE/LAI/). This LAI product is a global data set

of 36 ten-day composites at a spatial resolution of the

CYCLOPES products (1 km). For our analysis, a mod-

ified version of this product was used, which was up-

scaled to a spatial resolution of 10 km.

8. Climatic areas: we used the Köppen–Geiger climate

map of the world (Peel et al., 2007) to distinguish the

main climate areas: tropical, arid, temperate, cold and

polar (see Table 2).

9. Presence of river ice: through the signal, the presence of

river ice cover can also be detected in cold land regions.

The Circum-Arctic map of permafrost and ground-ice

conditions (Brown et al., 2002) map was used here. Ex-

amples of these rivers are the Yukon and Mackenzie

rivers in North America and the Lena River in Russia.

As is the case on the ground, discharge under ice cover

is left largely unmeasured as both water area and stage

no longer are responsive to discharge variation.

10. Dam location: hydraulic structures can disrupt the nat-

ural flow of water, and therefore may alter the expected

performance of the satellite signal on that location. For

this analysis the Global Reservoir and Dam (GRanD)

(Lehner et al., 2008) data set was used.

3 Methodology

3.1 Satellite signal extraction

In total, 398 locations for satellite-based measurement were

selected which overlap spatially and temporally with avail-

able in situ stations providing daily measurements. Since

satellites never pass directly over the same track at ex-

actly the same time, the operational GFDS applies a 4-day

forward-running mean to systematically calculate the signal;

this also commonly fills between any missing days (Kugler

and De Groeve, 2007). Furthermore, for each observation

site, the signal on the GFDS system is calculated as the av-

erage signal of all measurement pixels under observation for

each location (which can be one or more pixels) (GDACS,

2013). Thus, in some cases, even a 10 km pixel is not large

enough as a measurement site, and would entirely saturate

with water during flooding. An array of measurement pixels

is instead used. In this analysis, we used the signal values

from the single pixels which contain the ground station, as

well as a multiple pixels selection. This includes, for each lo-

cation, the pixel itself and also the three nearest neighbours

of the 10 km× 10 km grid. In the case of multiple pixels, the

signal value was calculated for the spatial median, average

and maxima. Similar results were obtained globally when

comparing the extracted signals (single or multiple pixels)

with the in situ discharge observations. Therefore, we used

the temporal and spatial averaging on the multiple pixel array

as in the operational GFDS. For each site, a visual check with

Google Maps was carried out to assure that the largest river

section was included within the finalised measurement sites

(see Fig. 2).

3.2 Satellite signal calibration and validation

For those co-located ground stations and satellite measure-

ment sites where both sets of data (signal and in situ dis-

charge) were above 6 years in length, calibration and vali-

dation was performed using the ground information as ref-

erence. Several stations, mainly in North America, located

close to man-made infrastructures such as weirs and gen-

erating stations were excluded from this analysis due to
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Figure 2. Example of a measurement site: Caracarai station (Rio

Branco catchment, Brazil). The blue rectangles outline the mea-

surement pixels and the background image is from 2014 (Google;

Landsat, DigitalGlobe).

the rapidly changing behaviour of the in situ-observed dis-

charge. Also, in a satellite-based approach to measure river

discharge, the local river characteristics and floodplain chan-

nel geometry control the accuracy of rating curves, as is the

case for gauging stations on the ground (Brakenridge et al.,

2012; Khan et al., 2012; Moffitt et al., 2011). Thus we expect

some measurement sites to exhibit a more robust response

to discharge changes, and a higher signal-to-noise ratio, than

others.

It has been acknowledged that, for large rivers, using the

daily GFDS signal as a floodplain flow surface area indi-

cator of discharge might result in a few days of lag when

comparing with ground-based discharge (Brakenridge et al.,

2013). Thus, stage may immediately rise at a gauging sta-

tion as a flood wave approaches, but flow expansion out into

the floodplain requires some increment of time. This time

lag may introduce error into the scatterplots used to calculate

the rating equations and therefore lower skill scores obtained

when analysing both data sets. In addition, in previous stud-

ies (Khan et al., 2012; Zhang et al., 2013), it was observed

that, in some cases, an overestimation of satellite-measured

discharge existed during low-flow periods when using a sin-

gle rating equation for the full period to calibrate signal into

discharge units. For this reason, we decided to use a rating

equation for each month individually. In this case the time

series data for a fixed month can be treated as stationary and

the derived daily discharge values also adjusted better during

low-flow periods.

To calibrate satellite signal into discharge measurements,

the first 5 years of data were used for both satellite signal

and ground discharge for each location. Regression equations

were obtained using monthly means from daily values and

GFDS-measured discharge was derived from this.

QGFDSmeasured of X month = amonth+ bmonth · signal (1)

For the sake of simplicity, for this paper, the equations were

restricted to linear equations. However, as the relation is

purely empirical, we leave further research into a flexible

way to fit these relations as follow-on work. Note that fit-

ting straight lines to curves will reduce goodness of fit and

predictive accuracy. Power law fitting was also tested to cal-

ibrate the signal into discharge units, yielding similar results

(see open discussion author’s response no. 2).

The validation of the satellite-derived daily discharge data

was carried out with daily in situ data on a 2-year period,

and skills scores were calculated to quantify the agreement

between both satellite- and ground-measured discharge. We

are aware of the limited number of years (data) with avail-

able time series for both variables, which might influence

the robustness of the calibration. In some cases there were

longer time series available, but, in order to standardise the

analysis for all the stations, we used 5 years (1998–2002 or

2003–2008 for northern stations with AMSR-E signal) and

the following 2 years for validation purposes (2003–2004

and 2009–2010, respectively). Note that, for 36 out of the

322 stations available, data length was between 6 years and

3 months to almost 7 years. Validation was still carried

out for the same period, but the data used for calibration

were slightly reduced. As an example, Fig. 3a presents the

scatterplot for the month of March for the Senanga station

(long 23.25 degree, lat−16.116 degree) in the Zambezi River

(Africa) with mean values derived from the period 1998

to 2002. For the same location, Fig. 3b shows the in situ-

observed and the GFDS-measured discharge derived from

the GFDS signal for the period 2003–2004.

3.3 Skill scores

The initial analysis of the correlation of the remote sensing

signal to in situ discharge was assessed for each station and

site pair through the Pearson correlation coefficient (R). For

the validation, the performance of the satellite-measured dis-

charge was also assessed using the Nash–Sutcliffe efficiency

(NSE) statistic in addition to the R skill score. Spearman’s

rank correlation coefficient (ρ) was also calculated to assess

the validation performance.

One of the advantages of the R coefficient is that it is inde-

pendent of the units of measurement, which permits the com-

parison of dimensionless GFDS signal data. A small value

indicates a weak or non-linear relationship between the satel-

lite signal and discharge. For this study, we grouped the com-

puted R values into three ranges as follows:< 0.3, [0.3–0.7],

and > 0.7. While Pearson benchmarks linear relationship,

Hydrol. Earth Syst. Sci., 18, 4467–4484, 2014 www.hydrol-earth-syst-sci.net/18/4467/2014/



B. Revilla-Romero et al.: Evaluation of the Global Flood Detection System for measuring river discharge 4473

Figure 3. (a) Scatterplot for the Senanga station (long 23.25 degree, lat −16.116 degree) in the Zambezi River (Africa). Monthly mean for

March from 1998 up to 2002. (b) Validation hydrograph for 2003–2004 and skill scores for Senanga. The (monthly) rating equations were

used to calibrate the signal into discharge units. Different rating equations were used for different months.

Spearman benchmarks monotonic relationship. Spearman’s

validation scores just obtained a mean value 6 % higher than

Pearson mean score (see open discussion author’s response

no. 2). In this manuscript, results are analysed based on the

scores obtained using Pearson correlation coefficient.

Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe,

1970) is typically used to assess the predictive power of

hydrological models and was calculated here to describe

the accuracy of satellite-derived discharge in comparison

to gauge-observed discharge values. Higher values of the

Nash–Sutcliffe statistic should indicate more correlated re-

sults, without other factors taken into account, such as auto-

correlation (Brakenridge et al., 2012). However, the degree

of correlation of these variables does not verify the discharge

magnitudes (Brakenridge et al., 2013). An NSE value of 1

corresponds to a perfect match of modelled to observed data,

whereas NSE= 0 indicates that the model predictions are

as accurate as the mean of the observed data. The result-

ing scores will be classified as in Zaraj et al. (2013): < 0,

[0.2–0.5], [0.5–0.75], and > 0.75.

3.4 Factors affecting the satellite signal

Understanding the influence of local factors on the accuracy

of the satellite flood detection is critical for practical use of

the remotely sensed signal. We analysed the accuracy effects

of river width, mean daily discharge, upstream catchment

area, presence of large floodplain, flooded forest and wet-

lands, potential flood extent, land cover type, LAI, climatic

areas, presence of river ice and hydraulic structures. To as-

sess their influence, the fractional coverage over the measure-

ment site was retrieved for variables with spatial coverage.

First, we use the skill scores (R and NSE) obtained from

a simple analysis for each individual factor or variable. Sec-

ond, we seek to understand which of the surface variables

have the greatest importance in determining sites with a good

or poor performance. For this purpose, we use a decision

tree technique called random forest (RF). Among other fea-

tures, this allows for ranking of the relative importance of

each variable. The technique is described by Breiman (2001)

and implemented inR by Liaw and Wiener (2002), where the

reader is referred for a more detailed explanation. As a sum-

mary of the RF algorithm, ntree bootstrap samples are ran-

domly selected from the data set; a different subset is used for

each bootstrap; and for each sample a tree is grown, obtain-

ing ntree trees. RF is called an ensemble method because it

applies the method for a number of decision trees, in this case

500, in order to improve the classification rate. Some stations

are left out of the sample (out of bag – oob) and used to gain

an internal unbiased estimate of the generalisation error (oob

errors) and to obtain estimates of the importance of the vari-

ables (Breiman, 2001). These values are averaged over the

ntree trees. For the variables classification, the node impu-

rity is measured by the Gini index. Gini’s mean difference

was first introduced by Corrado Gini in 1912 as an alternative

measure of variability. One of the parameters derived from it,

the Gini index, is also referred to as the concentration ratio

(Yitzhaki and Schechtman, 2013). The Gini index is mostly

popular in economics; however it is also used in other areas,

such as building decision trees in statistics to measure the pu-

rity of possible child nodes, and it has been compared with

other equality measures (Gonzalez et al., 2010). The vari-

ables with larger decreases in Gini values (lower Gini) are

those with higher importance in the classification analysis.

Although the information is hidden inside the model struc-

ture for “black-box models” such as RF, the prediction power

is high (Palczewska et al., 2013). This method is relatively ro-

bust given outliers and noise because it uses randomly chosen

subsets of variables at each split of each tree (Breiman, 2001;
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Figure 4. Location of stations and R skill score between in situ-

observed discharge and satellite signal (4 days and 4 pixels aver-

age). Globally, 169 sites have R > 0.3, of which 42 have R > 0.5.

Chan and Paelinckx, 2008). To further increase robustness,

Strobl et al. (2009) state that results from the RF and condi-

tional variable importance should always be tested by doing

multiple RF runs using different seeds and sufficiently large

ntree values to obtain robust and stable results.

The quality index chosen to rank variable importance and

classify good or poor locations, in the RF analysis, was the

NSE score. A threshold of NSE= 0 splits the data into two

groups, obtaining about 50 % of the data above (true or good

predictive) and below (false or poor predictive) that value of

NSE. The results presented here are the average of 200 runs.

Furthermore, four different training sets were used by a ran-

dom 70 %/75 %/80 %/90 % of the stations and were vali-

dated with the remaining 30 %/25 %/20 %/10 % of stations,

respectively.

4 Results and discussion

As a first step we analysed the relationship between the satel-

lite signal and the in situ-observed discharge to have an initial

understanding of the performance between the two data sets

(Sect. 4.1). Then we calibrated the satellite signal with in situ

discharge data. With the regression equations obtained, we

calculated satellite discharge measurements. A 2-year vali-

dation period was carried out for each station using the skill

scores as described in Sect. 3.3 (Sect. 4.2). This was followed

by an assessment of how different variables contribute in a

positive or negative way to the overall skill (Sect. 4.3). Vari-

ables included in the analysis are daily mean river discharge,

river width, upstream catchment area, potential flood hazard

area, land cover, LAI, climatic zones, presence of large flood-

plains, flooded forest and wetlands, river ice and hydrologic

structure. Finally, the relative importance of all variables in

comparison to each other has been assessed (Sect. 4.4).

Before analysing the validation results, it is important to

highlight two possible different sources of error which might

influence the outputs. Firstly, the signal-to-noise ratio might

be low for a site or have intermittent instrument noise occa-

sionally producing positive spikes in discharge. Secondly, the

Figure 5. Nash–Sutcliffe efficiency of the validation (n= 332 sta-

tions). Globally, 154 stations have NSE> 0, of which 80 stations

have NSE> 0.50.

rating curve may be offset, which will result in a consistent

bias on the discharge values for that location even though the

time series are strongly correlated.

4.1 Correlation of raw satellite data vs. gauge

observations

The first step was to look at the “raw” correlation between

daily ground-station-measured water discharge and the satel-

lite signal and to calculate the empirical linear relation be-

tween these two variables for each site. The full time series,

including low flows, were used for the calculation and exe-

cuted for 398 stations. Figure 4 shows the R skills obtained.

Of a total of 398 sites, 169 have an R > 0.3 and 42 of them

haveR > 0.5. Correlations might have perhaps been higher if

regression had not been restricted to linear equations (Brak-

enridge et al., 2007, 2012).

4.2 Satellite signal calibration, validation and

evaluation through skill scores

For the stations with over 6 years of contemporary data for

both in situ discharge and satellite signal, we obtained re-

gression equations for each month of the year and station us-

ing the first 5 years of data. Next, using these equations, we

carry out a calibration of the daily signal into discharge units.

Afterwards, the validation of the GFDS-measured discharge

was implemented for the following 2 years. In some regions,

such as northern Asia, the lack of available recent long time

series (after 2002) meant that the number of stations available

for calibrating the satellite into discharge measurements was

reduced. Stations where the number of years matching ob-

served discharge and satellite signal was shorter than 6 years

were excluded from the validation exercise despite perform-

ing well. Finally, out of 398, a total of 332 stations remained

for calibration and validation.

For NSE score, Fig. 5 shows that 154 out of 332 stations

are larger than 0: 13 located in Africa, 77 in North Amer-

ica, 62 in South America, 1 in Asia and 1 in Europe. Nev-

ertheless, it needs to be noted that, in arid regions, results

calculated with the skill scores such as NSE are penalised by
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Figure 6. (a) Relationship between R obtained from the validation of satellite-measured discharge and the maximum river width for each

location. (b) Relationship between the same R score and the presence of significant floodplains, flooded forest and wetlands. The horizontal

dotted line shows the R = 0.3 and R = 0.7 threshold, and the vertical line is the river width equal to 1 km.

low average discharge compared to high-flow conditions. If,

instead of using all the available time series, a “dry stream”

threshold had been applied, the scores obtained for these sites

could have been higher when analysing the remaining data

set period where flow is present.

4.3 Analysis of the factors affecting the satellite signal

4.3.1 River width and presence of floodplain and

wetlands

As a first step to analyse the potential relationship between

the individual local characteristics and the performance of

the locations in global terms, we study the R score of the

validation for the 322 stations in relation with the maximum

river width value at each location (Fig. 6a). Results indicate

that locations with a river width higher than 1 km are more

likely to score an R larger than 0.3. In fact, the mean R score

is 0.60 and 26 out of 64 (∼ 41 %) have R > 0.75. However,

there are a number of stations with lower river width that also

obtained high scores. As the retrieval of the satellite signal

also depends on the floodplain geometry. As soon as the river

floods and water goes over-bank, the proportion of water in

the wet pixel greatly increases. Thus the score should also be

high for small rivers with a proportionally large floodplain.

Figure 6b shows the R scores by location, where the majority

of the area belongs to floodplain, flooded forest and wetlands

category, or their absence. In our study, higher median scores

were obtained for those located in large freshwater marsh and

floodplains, followed by those on swamps and flooded forest.

These results give a first indication on the characteristics of

the locations with better performance.

4.3.2 River discharge and potential flooding

Flooding is determined by the discharge as well as the po-

tential flood hazard. Figure 7a shows that 84 out of 95 sta-

tions with R < 0.3 also have mean discharge values lower

than 500 m3 s−1 (log10 (500)≈ 2.7), of which 55 stations

had a mean discharge lower than 200 m3 s−1. These sta-

tions are mainly located in South Africa, and in some areas

of North America. Therefore, it can be concluded that the

mean discharge can be considered a key variable that de-

termines the appropriateness of locations for which satel-

lite discharges can be derived: as 77 % of the stations with

Q< 500 m3 s−1 have R < 0.3, while 91.5 % of the stations

withQ> 500 m3 s−1 have R > 0.3, locations with discharge

of less than 500 m3 s−1 might not provide reliable results

for a global satellite-based monitoring system. Alternatively,

non-permanent rivers and streams exhibiting only seasonal

or ephemeral flow (typical for dry regions) may require a

different monitoring approach, wherein a “dry” threshold is

established for the signal data.

After excluding the global stations with low skill score

due to low flows and studying the remaining stations, we can

better understand the performance of the system in relation to

other local characteristics. Figure 7b shows for each location

the relationship between the validation R and the percent-

age of area in each pixel covered by potential flooding dur-

ing a 100-year return period flood event, obtained with the
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Figure 7. (a) Relationship between R obtained from the validation of satellite-measured discharge and the mean in situ-observed discharge

(log10 displayed) for each station. (b) Relationship between the same R score and the potential percentage of flooded area per pixel for a

100-year return period flood event (Pappenberger et al., 2012). The horizontal dotted line shows the R = 0.3 threshold, and the vertical line

is the 40 % potential flooding threshold.

model grid (HTESSEL+CaMa-Flood) (downscaled from a

25 km× 25 km pixel; Pappenberger et al., 2012). A value of

100 means completely flooded across its area, 50 means 50 %

of the area within the cells is flooded, and 0 means that the

area is not flooded. Although there is no clear trend for all

the points, results indicate that locations with a percentage of

potential flooding larger than 40 % are expected to score an

R larger than 0.3.

4.3.3 Land cover types and climatic areas

Figure 8 presents a global evaluation of the R score ob-

tained during the validation and its classification by the land

cover type of the stations. The bare land cover category was

excluded from this study as only one of the selected loca-

tions belongs to that class. Looking at the median of the box

plot (see Fig. 8), we found that some of the locations with

higher density of vegetation such as those located on “closed

forest” and “mosaic with predominant vegetation” (includ-

ing forest, scrublands and grasslands) obtained lower median

scores values. In contrast, the locations with lower vegeta-

tion density such as “sparse vegetation”, “mosaics with pre-

dominant cropland/grasslands”, “open forest” and “closed

to open forest” land cover types obtained larger median R

scores, around 0.6–0.8. Similar results can be observed when

looking at the interquartile range or spread of the box plots:

“closed to open forest” and “mosaics with predominant crop-

land/grasslands” obtained better results. At the same time,

“closed forest” and “mosaic with predominant vegetation”

had lowers scores. In addition, those sites with a combination

of sparse vegetation and crops growing near the river chan-

nel had a lower median value when comparing with those

on sparse or mosaic crop land cover. Note that the sites de-

noted “sparse with crops” are located in arid climatic areas,

whereas most of the “sparse” sites are in cold or polar regions

and are therefore run by different processes. In addition, sites

with a majority of artificial/urban land cover (not shown) ob-

tained a low median value of 0.267.

The relationship between locations by main Köp-

pen–Geiger climatic areas (Peel et al., 2007) and R score

obtained is shown in Fig. 9. Globally the tropical regions

(Africa and South America) obtained the highest median

scores (R ≈ 0.8), followed by cold regions (R ≈ 0.6). Lower

median score values (R ≈ 0.3) were obtained for arid and

temperate regions. It is important to clarify that these results

are not only due to direct climate characteristics but also, for

example, due to the characteristics of the rivers in those areas.

In the case of the arid regions, it is mainly related to reduced

daily average discharges, a characteristic of many of these

stations. Note that polar climate was excluded from this eval-

uation as only three locations belong to that class.

4.3.4 Leaf area index (LAI)

LAI values typically range from 0 for bare ground to 6

or above for a dense forest; however CYCLOPES under-

estimates over dense vegetation (forest) (Zhu et al., 2013).

Therefore, for this product LAI range is limited to [0–4], as
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Figure 8. Global evaluation of the R score obtained during the validation and its classification by the land cover type of the stations. Land

cover types were aggregated from the GlobCover (2009) and modified by means of a visual check with Google Maps. Note that artificial and

bare land cover were excluded in this figure.

Figure 9. Global evaluation of the R score obtained during the

validation and its classification −2 only main types by the Köp-

pen–Geiger climate area (Peel et al., 2007). Note that polar climate

was excluded from this analysis as only three stations fell into this

category.

seen in our analysis. Despite this, CYCLOPES is the most

similar product to LAI references map (ibid.). According to

the study carry out by Zhu et al. (2013) monthly CYCLOPES

LAI values for the period 1999 to 2007 by four main groups

of vegetation are predominantly as follows: bare ground [0],

forest [0–3.5], other woody vegetation [0–1.5], herbaceous

vegetation [0–2], and cropland/natural vegetation mosaics

[0–3].The highest annual mean LAI values are obtained by

evergreen broadleaf forest (3.16), included in our “closed to

open forest” class.

We decided to study the relationship between the mean

LAI and the skill obtained in the validation for each location,

also looking at complementary variables such as the land

cover and the geographical region which the stations belong

to. Figure 10 shows that locations with a mean [LAI> 2]

predominantly have a “closed to open forest” type in South

America (31 stations), of which 29 have an R score higher

than 0.6. For [LAI> 2], there are also 12 North American lo-

cations with “closed forest” land cover, but in general scores

are poorer for those locations. Additionally, 18 stations with

mosaic vegetation from North and South America obtained

[LAI> 2], and 16 of those obtained [R> 0.6]. For [LAI< 2],

both the land cover and geographical locations are distributed

along the scatterplots, from poor to high correlations.

4.3.5 River ice

Figure 11a shows the scores obtained for the locations with

presence or absence of river ice, including a range from

continuous to sporadic (Brown et al., 2002). It can be seen

that stations located in areas with river ice tend to have a

good correlation between in situ- and satellite-measured dis-

charge (based on 33 stations), as the system tends to cap-

ture the annual spring ice break-up and freezing well, as in-

dicated in the studies by Brakenridge et al. (2007) and Ku-

gler (2012). At these locations, once ice-covered, the sys-

tem has no sensing capability and the retrieved signal may

seem analogous to low-flow conditions. However, there is

an important difference when analysing time series of signal

between ice-covered high-latitude river and all-year-round

low-flow rivers. When an ice-melting process takes place, an
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Figure 10. Evaluation of the R score obtained during the validation and its classification by LAI according to factors of (a) land cover and

(b) geographical regions (contintent).

Figure 11. Evaluation of the R score obtained during the validation and its classification by (a) presence or absence of a river ice (Brown

et al., 2002), and (b) presence or absence of a nearby dam or hydraulic control infrastructure using the Global Reservoir and Dam (GRanD)

database (Lehner et al., 2008) and a visual check with Google Maps. For the validated locations, it is worth nothing that all stations with river

ice (33) and most of them with dams (34 out of 48) are located in North America.

increase in river runoff occurs, and for many places this is

translated into a strong change on the signal values. For the

other types of rivers, low flows are generally a characteristic

for most of the year, and if the signal-to-noise ratio is low,

the signal retrieved is very noisy, which is one motivation for

setting a “dry” threshold for such sites.

4.3.6 Hydraulic structures

The correlation between satellite and discharge data depends

on both variables. Typically it is assumed that observed dis-

charges are “ground truth”; however, when influenced by

structures and dams, the ground discharge may not be well

monitored with regard to flow area/flow width variation. For
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Figure 12. Average variable importance of 200 runs using the RF methodology. The Nash–Sutcliffe score was chosen as a quality index for

categorising the stations as true (good predictive) or false (poor predictive). With a threshold of NSE= 0, we have about 50 % of the stations

above and 50 % below that value. Results are shown for the different training and test groups. For all the test groups and runs, the average

highest variable importance was obtained for mean observed discharge, climatic region, land cover/mean LAI and upstream catchment area,

and the lowest for dam/hydraulic structure presence and river ice.

example, when there is a major increase in river discharge but

a flood is avoided by artificial levees, we cannot expect the

satellite signal to accurately capture the flood hydrograph;

moreover, downstream flooding may be attenuated by an up-

stream flood control dam and reservoir, and thus the gauge

location is critical. Figure 11b shows the influence of the

presence or absence of a nearby dam using the Global Reser-

voir and Dam (GRanD) database (Lehner et al., 2008) or vi-

sually identified hydraulic control infrastructure. Locations

where the dam or other element was present (48 stations)

obtained lower median R scores. Therefore, ideally, observa-

tion sites should be located in areas without hydraulic control

infrastructures.

4.4 Variable importance

Based on the individual analysis of the signal potential influ-

ence factors, we found that, in order to understand site per-

formances, on some occasions multiple variables need to be

analysed in a simultaneous way. For example, the generally

low scores obtained at the eastern USA stations might be due

to a number of factors: ∼ 64 % of these stations have a mean

discharge value lower than 500 m3 s−1 and∼ 88 % of the sta-

tions are located at river width lower than 1 km. In addition,

∼ 59 % of the stations are located in wetland areas. Another

example of the importance of analysing several factors can

be seen with the locations (11 stations) which obtained lowR

but their mean observed discharge is higher than 500 m3 s−1.

All of them have a potential probability of flooding lower

than 21 %, the land cover for 10 out of 11 is forest, 5 of them

are located in wetlands, and 2 of them have a nearby hy-

draulic structure. Despite exhibiting a mean discharge greater

than 500 m3 s−1, these other local characteristics may be the

cause of the poor performance. Therefore, we decided to use

a classification decision tree technique (RF), which split the

data set at each node according to the value of one variable

at a time (the best split) from a selected set of variables so as

to understand the importance of each variable. RF is called

an ensemble method because it is performed for a number of

decision trees, in this case 500 trees, in order to improve the

classification rate.

The result presented here is the rank of the importance

of variables to classify a location with a good or poor per-

formance. These values are obtained as an output of the RF

analysis and are, in addition, the average of 200 independent

runs. As explained in Sect. 3.4 the variable importance based

on the mean decrease in Gini index was calculated for the

NSE score obtained from the validation. We used NSE= 0 to

distinguish between the sites with a good (above 0) from poor

performance (below 0), and we also tested it with a threshold

NSE of 0.50.

Figure 12 presents the variable importance for the four test

groups. Features which produced large values of the “mean

decrease in Gini” are ranked as more important than fea-

tures which produced small values. For our locations and

data available, the mean daily observed discharge has the

highest importance, followed by the climatic region, land

cover/mean LAI and upstream catchment area. At the same

time, the presence of hydraulic structures (mainly dams) and

of river ice has the lowest importance to classify a location

as good or poor performance. However, this does not mean

that it has no influence. Although discharge is correlated with

upstream catchment area and to some degree also LAI with

land cover type, both were included in this case to understand

which variable might help us most to classify the sites.

Although the effect of the correlations on these measures

has been studied recently (see Archer and Kimes, 2008;

Strobl et al., 2009; Nicodemus and Malley, 2009; Nicode-

mus et al., 2010; Nicodemus, 2011; Auret and Aldrich, 2011;

Tolosi and Lengauer, 2011; Grömping, 2009; Gregorutti et
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al., 2013), there is not yet a consensus on the interpretation of

the importance measures when the predictors are correlated

and on what the effect of this correlation is on the importance

measure.

In order to test the effect on the results when corre-

lated variables were included in our analysis, an indepen-

dent RF analysis was carried out (not shown in this paper)

for the same variables but excluding the river width and the

presence of floodplains and wetlands variables. Results also

showed that the mean daily observed discharge had the high-

est importance and that the presence of hydraulic structures

(mainly dams) and river ice had the lowest importance for

classifying a location as good or poor performance.

5 Conclusions and future research

In this article we presented an evaluation of the skill of the

Global Flood Detection System to measure river discharge

from remote sensing signal. From the 322 stations validated,

the average continental R skills are as follows: Africa 0.382,

Asia 0.358, Europe 0.508, North America 0.451 and South

America 0.694. Approximately 48 % of these stations have

an NSE score higher than zero: 13 located in Africa, 77 in

North America, 62 in South America, 1 in Asia and 1 in Eu-

rope. Results showed that the low skills scores received by

stations were, for the majority of cases, due to low-flow con-

ditions. For example, 84 out of 95 stations with R < 0.3 have

mean discharge values lower than 500 m3 s−1. These are lo-

cated mainly in South Africa (25 cases) and North America

(53 cases), which penalised their average continental skills.

Note that our focus was on factors affecting the method glob-

ally, and that these skill values do not directly indicate mea-

surement accuracy at a site (which could be improved, for

example, by use of non-linear rating equations and/or accom-

modation of any phase shift or timing differences in flow-

area- versus state-based discharge monitoring).

In order to better understand the impact of the local condi-

tions on the performance of the sites, we first looked at spe-

cific factors individually. In general terms, higher skill scores

were obtained for locations with one, or more than one, of the

following characteristics: a river width higher than 1 km; a

large floodplain area; in flooded forest; a potential flooded

area per pixel greater than 40 % during a 100-year return

period flood event; a land cover type of sparse vegetation,

croplands or grasslands and closed to open and open forest;

LAI above 2; location in a tropical climatic area; and a loca-

tion where no dams or hydraulic infrastructures are present.

Also, out of our locations, high-latitude rivers with seasonal

ice cover tend to exhibit good performance.

Secondly, we performed a classification decision tree anal-

ysis, based on RF, to obtain the variable importance when

classifying a site as good or poor. The output of this analysis

showed that mean observed discharge, climatic region, land

cover and mean LAI and upstream catchment area and were

the variables with higher importance, whereas river ice and

dam obtained the lowest importance. Both the individual and

the combined classification analysis of these local character-

istics give us critical evidence of the relationship between the

ground and satellite discharge measurements and when it is

expected to perform well. Furthermore, it provides a guide-

line for future selection of measuring sites.

The locations with a very good performance will be se-

lected for a potential future project where satellite-measured

discharge could be calculated for longer periods and on a

daily basis from the remote sensing signal, analogous to the

Dartmouth Flood Observatory method. This will represent

a major step forward in developing continental and global

hydrological monitoring systems as these data can fill the

gaps where real-time ground discharge measurements are not

available (the case at many locations globally). We found that

some of the sites with good performance are located within

international river basins such as the Niger, Volta and Zam-

bezi in Africa. In addition, for the studied locations with good

signal performance but rather short contemporary time se-

ries with in situ-observed discharge (such as the Siberian sta-

tions), the calibration of the signal to obtain discharge mea-

surements could be executed at any point when additional

ground data are available. This will also be beneficial for all

stations, including those with time series longer than 7 years.

Zhang et al. (2013) recently demonstrated the potential of

integrating satellite signal provided by the Global Flood De-

tection System in improving flood forecasting. This first at-

tempt at data assimilation was carried out for a single sta-

tion (Rundu, northern Namibia – included in this study) with

the conceptually simple Hydrological MODel (HyMOD).

Hence, a prospective study with the inclusion of all these

stations for post-processing through data assimilation and

error correction of the stream-flow forecast in hydrological

models could be done. For instance, for the pre-operational

Global Flood Awareness System (GloFAS) (Alfieri et al.,

2013) and the African Flood Forecasting System (AFFS)

(Thiemig et al., 2014) in an analogous way as it is already

being done with ground-gauge-observed streamflow on the

European Flood Awareness System (Bartholmes et al., 2009;

Thielen et al., 2009). Hence, work towards the integration of

global flood detection and forecasting systems such as GFDS

and GloFAS, respectively, can provide more comprehensive

information for decision makers.
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Appendix A

Table A1. Studied land cover types from GlobCover (2009) aggregated into broader categorical classes by type and vegetation density.

Label Aggregated classes

Rainfed croplands Rainfed croplands

Sparse (< 15 %) vegetation Sparse vegetation

Closed to open (> 15 %) broadleaved evergreen or semi-deciduous forest (> 5 m) Closed to open forest

Closed to open (> 15 %) mixed broadleaved and needle-leaved forest (> 5 m) Closed to open forest

Closed to open (> 15 %) (broadleaved or needle-leaved, evergreen or deciduous)

shrubland (< 5 m)

Closed to open forest

Closed to open (> 15 %) herbaceous vegetation (grassland, savannahs or

lichens/mosses)

Closed to open forest

Closed to open (> 15 %) broadleaved forest regularly flooded (semi-permanently or

temporarily) – fresh or brackish water

Closed to open forest

Closed to open (> 15 %) grassland or woody vegetation on regularly flooded or

waterlogged soil – fresh, brackish or saline water

Closed to open forest

Open (15–40 %) broadleaved deciduous forest/woodland (> 5m) Open forest

Open (15–40 %) needle-leaved deciduous or evergreen forest (> 5m) Open forest

Mosaic cropland (50–70 %)/vegetation (grassland/shrubland/forest) (20–50 %) Mosaic cropland or grassland

Mosaic grassland (50–70 %)/forest or shrubland (20–50 %) Mosaic cropland or grassland

Mosaic vegetation (grassland/shrubland/forest) (50–70 %)/cropland (20–50 %) Mosaic vegetation predominant

Mosaic forest or shrubland (50–70 %)/grassland (20–50 %) Mosaic vegetation predominant

Closed (> 40 %) broadleaved deciduous forest (> 5m) Closed forest

Closed (> 40 %) needle-leaved evergreen forest (> 5 m) Closed forest

Closed (> 40%) broadleaved forest or shrubland permanently flooded

– saline or brackish water

Closed forest

Artificial surfaces and associated areas (urban areas > 50 %) Urban

www.hydrol-earth-syst-sci.net/18/4467/2014/ Hydrol. Earth Syst. Sci., 18, 4467–4484, 2014
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