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Abstract. A substantial number of models predicting the soil
moisture characteristic curve (SMC) from particle size distri-
bution (PSD) data underestimate the dry range of the SMC
especially in soils with high clay and organic matter con-
tents. In this study, we applied a continuous form of the PSD
model to predict the SMC, and subsequently we developed
a physically based scaling approach to reduce the model’s
bias at the dry range of the SMC. The soil particle packing
density was considered as a metric of soil structure and used
to define a soil particle packing scaling factor. This factor
was subsequently integrated in the conceptual SMC predic-
tion model. The model was tested on 82 soils, selected from
the UNSODA database. The results show that the scaling ap-
proach properly estimates the SMC for all soil samples. In
comparison to the original conceptual SMC model without
scaling, the scaling approach improves the model estimations
on average by 30 %. Improvements were particularly signifi-
cant for the fine- and medium-textured soils. Since the scal-
ing approach is parsimonious and does not rely on additional
empirical parameters, we conclude that this approach may be
used for estimating SMC at the larger field scale from basic
soil data.

1 Introduction

Increasing contamination of the groundwater resources has
profoundly accentuated the need for accurate predictions of
subsurface flow and chemical transport. Water flow and sub-

sequent chemical transport are largely determined by the soil
hydraulic properties, such as the soil moisture characteristic
curve (SMC) (Wang et al., 2002; Mohammadi et al., 2009).
Measuring the soil hydraulic properties is still difficult, labor-
intensive, and expensive. Therefore, many researchers have
made an attempt to develop an indirect method as an al-
ternative to the direct measurement of hydraulic properties.
For the SMC, indirect methods are classified into conceptual
methods (Nimmo et al., 2007; Mohammadi and Vanclooster,
2011), semi-physical methods (e.g., Arya and Paris, 1981;
Haverkamp and Parlange, 1982; Wu et al., 1990; Smetten
and Gregory, 1996) and empirical methods (e.g., Saxton et
al., 1986; Schaap et al., 1998).

The semi-physical methods are mainly based on shape
similarity between the SMC and the particle size distribution
(PSD) curve (Zhung et al., 2001; Schaap, 2005; Haverkamp
et al., 2005; Hwang and Choi, 2006), implying that the pore-
size distribution (PoSD) is closely related to the PSD (Arya
et al., 2008). Arya and Paris (1981) did a pioneering work
(AP model) for the development of semi-physical models.
They showed that the pore size, which is associated with a
pore volume, is determined by scaling the pore length, using
a scaling factor,α. They demonstrated that an average value
of 1.38 forα scales the pore lengths based on spherical par-
ticles to natural pore lengths properly. However, later inves-
tigations by Arya et al. (1982), Tyler and Wheatcraft (1989),
Basile and D’Urso (1997) and Vaz et al. (2005) revealed that
α value varies between 1.02 and 2.97 for fine- and coarse-
textured soils, respectively. A slight error in the estimation

Published by Copernicus Publications on behalf of the European Geosciences Union.



4054 F. Meskini-Vishkaee et al.: Predicting the soil moisture retention curve, from soil particle size distribution

of α may result in considerable error in predicting the SMC
(Schuh et al., 1988). Schuh et al. (1988) found that the value
of α varies with soil texture and suction head, especially in
the wet range of sandy soils. Using three formulations ofα,
Arya et al. (1999) modeled the parameterα as a function
of particle sizes and showed thatα was not constant. It de-
creased with increasing particle size, especially for the coarse
fractions. Tyler and Wheatcraft (1989) showed that the pa-
rameterα is equivalent to the fractal dimension of a tortuous
fractal pore.

Although the empirical methods have been developed ex-
tensively (e.g., Puhlmann and von Wilpert, 2012), the perfor-
mance of an empirical method will depend on the databases
being used for the model calibration and testing (Tietje and
Tapkenhinrichs, 1993; Kern, 1995; Schaap and Leij, 1998;
Schaap et al., 2004; Haverkamp et al., 2005; Hwang and
Choi, 2006; Weynants et al., 2009). Moreover, direct mea-
surements of SMC are often integrated as predictor vari-
ables of the continuous SMC function. Many attempts have
been made to reduce the sensitivity of the indirect meth-
ods to empirical and database-dependent parameters. For in-
stance, Mohammadi and Vanclooster (2011) proposed a con-
ceptual robust model (MV) that does not include an empirical
parameter and is independent of the databases that are be-
ing used. The disadvantages of semi-physical or conceptual
models such as the AP and MV models are the use of “bun-
dle of cylindrical capillaries” (BCC) concept to represent the
pore space geometry and the lack of consideration of surface
forces (Or and Tuller, 1999; Tuller et al., 1999; Mohammadi
and Meskini-Vishkaee, 2012). These conceptual problems
often lead to the underestimation of the dry range of the SMC
(Arya et al., 1999; Hwang and Choi, 2006; Mohammadi and
Vanclooster, 2011). Such underestimations would result in
large modeling errors of hydraulic dependent soil functions
such as mechanical resistance functions (Gras et al., 2010),
plant water uptake functions (Ryel et al., 2002), and micro-
bial activity functions (Jamieson et al., 2002; Santamarí a and
Toranzos, 2003), in particular in arid environments.

To predict continuous SMC, Naveed et al. (2012) pa-
rameterized the van Genuchten model based on the SMC
data points predicted from organic matter, clay, silt, fine
sand and coarse sand content. Mohammadi and Meskini-
Vishkaee (2013) integrated the MV model with the van
Genuchten (VG) model (van Genuchten, 1980) to predict
the continuous SMC curve (MV–VG model) from PSD data.
They found that ignoring the residual moisture content (θr) is
the main source of systematic error in the MV model. They
further tested and compared four approaches to predict the
θr, and showed that the incorporation of predictedθr will
improve the MV–VG prediction results considerably. How-
ever, the estimation ofθr has some limitations, due to the
lack of a conceptual underpinning and the poor predictabil-
ity of θr (Leij et al., 2002). Tuller and Or (2005) suggested
that the introduction ofθr as a fitting parameter in most SMC
models often makes the physical representation of key pro-

cesses in the dry soils vague. Moreover, they pointed out that
the dry range of the SMC shows remarkable scaling behav-
ior. Arya et al. (2008) developed a procedure to scale nat-
ural pore lengths, directly from straight pore lengths. They
showed that the scaling approach is less sensitive to uncer-
tainties in model parameters and provides better predictions
of the SMC, compared with the original AP model.

Kosugi (1996) showed that the SMC can be expressed
by a lognormal pore-size distribution function, while Ko-
sugi and Hopmans (1998) found that the set of scaling fac-
tors is lognormally distributed when PoSD curve is lognor-
mal. Havayashi et al. (2007) used the Kosugi model (Kosugi,
1996) to evaluate the effectiveness of three kinds of scal-
ing factors obtained by the microscopic characteristic length,
standard deviation of pore-size distribution and the porosity.
They indicated that, in the natural forested hillslope soils, the
variability in the SMC is characterized by variability in the
effective soil pore volume. Nasta et al. (2009) concluded that
the scaling of the PSD curves provides for adequate charac-
terization of the mean and variance of SMCs, which allows
for characterization of the soil spatial variability.

Many researchers developed empirical models for express-
ing the SMC since the parameters of these models do not
address the physical significance of the medium. Hence the
spatial variability in the pore structure of soils is not fully
understood (Havayashi et al., 2007). Likewise, the conven-
tional scaling approaches are based on empirical curve fit-
ting, without considering the physical meaning of the scaling
factor (Perfect, 2005; Millán and González-Posada, 2005).
To apply these models, one needs to determine the scaling
factor, where the complexity of measurements of the pore-
size and pore-volume distributions easily nullifies the esti-
mation of the scaling factors. Nevertheless, some efforts have
been made to relate the scaling factor to the soil texture (Tuli
et al., 2001; Millán et al., 2003).

From this brief review we conclude that the scaling ap-
proaches improve the modeling and prediction of the SMC.
Yet, most scaling approaches imply empirical parameters,
and a robust fully conceptual approach for the estimation of
the SMC from easily measurable properties is still lacking.

The MV model underestimates the moisture content in the
dry range of the SMC because of the simplified conceptual-
ization of the pore geometry. In particular the packing param-
eter does not effectively reflect the pore geometry. The gen-
eral aim of this study is to improve the accuracy of the model
proposed by Mohammadi and Meskini-Vishkaee (2013) us-
ing a scaling approach.

Therefore the objectives of this study are (i) to formulate
a robust and physically based model to scale the SMC from
the PSD and porosity, and (ii) to compare the model perfor-
mance with the results from the existing MV–VG model, us-
ing soils documented in the UNSODA database (Nemes et
al., 2000). We also evaluate the overall model performance
with the results from the full empirically SMC prediction
software ROSETTA (Schaap et al., 2001).
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2 Theory

Because of the close similarity between the shapes of the
PSD and SMC curves, many researchers expressed an SMC
model in terms of a PSD model (Haverkamp and Parlange,
1982; Fredlund et al., 2000; Zhuang et al., 2001). The SMC
model developed by van Genuchten (1980) is very flexible,
widely used and given by

Se =

[
1

1+ (αh)n

]m

(1)

Se =
θ − θr

θs− θr
, (2)

whereθ (L3 L−3) is the soil moisture content,Se (−) is effec-
tive saturation degree andθs (L3 L−3) andθr (L3 L−3) are sat-
urated and residual soil moisture contents, respectively. The
parametersn, m, θr andα (L−1) are fitting coefficients, and
h (L) is the suction head.

The suction head,hi (L), corresponding to the particle ra-
dius of theith fractionRi (L) is given by (Mohammadi and
Vanclooster, 2011)

hi =
0.543× 10−4

Ri

ζ, (3)

whereζ (−) is a coefficient depending on the state of soil
particles packing and is defined as

ζ =
1.9099

1+ e
, (4)

wheree (−) is the void ratio given by

e =
ρs− ρb

ρs
, (5)

where theρs (ML−3) andρb (ML−3) are soil particle and
bulk densities respectively.

Arya and Paris (1981) suggested that the moisture content,
θi (L3 L−3), can be obtained from PSD andθs (L3 L−3), as

θi = θs

j=i∑
j=

wj ; i = 1, 2, 3, . . . , k, (6)

wherewj is the mass fraction of particles (−) in thej th par-
ticle size fraction. Consider that

Pi =

j=i∑
j=1

wj (7)

would result in

θi/θs = S, (8)

whereS (−) is the saturation degree andPi (−) is the cu-
mulative mass fraction of soil particles. It is obvious that

if θr = 0, thenSe= S and subsequentlyS = Pi . Arya and
Paris (1981), however, ignored the residual moisture content,
while it may be a considerable value for many types of soil
and clayey soils in particular. Combining Eqs. (1) and (3)
with Eq. (7) yields

Pi =

 1

1+

(
α 0.543×10−4

Ri
ζ
)n


m

. (9)

In Eq. (9), the cumulative mass fraction,Pi , is substituted
with theSe in Eq. (1). Hence, fitting Eq. (9) to the PSD data
enables one to directly predict the SMC parameters (n, m and
α). Moreover, these coefficients allow expression of the con-
tinuous form of predicted SMC. Since assuming thatθr = 0
would result in model underestimation in dry range of the
SMC (Mohammadi and Meskini-Vishkaee, 2013), we devel-
oped a conceptual scaling approach to reduce the model bias.

Scaling approach

Following Havayashi et al. (2007), we suggest that the poros-
ity is an appropriate property for inferring a characteristic
scaling factor. Since the soil porosity is linked to the packing
parameter,ζ , in the MV model (Eq. 4), we hypothesize that
ζ is the characteristic scale of the soil.

We assume that the reference soil is the one that consists of
uniform-size spherical particles that are arranged in random
close packing state, leading to minimum porosity (known as
the Kepler conjecture in literature of crystallography). Liter-
ature suggests that the porosity of this packing state is 0.259
(Hopkins and Stillinger, 2009). Subsequently, the maximum
value of packing parameter,ζmax, would equal 1.41432 for
reference soil. Hence the scaling factor,λ, for each soil sam-
ple can be suggested by

λ =
ζ

ζmax
. (10)

In general, the values of the pore-size distribution index,n

(Eqs. 1 and 9), andζ are large for the coarse-textured soils
and small for the fine-textured soils. We suggest that theλ

can scale the parametern, obtained from fitting Eq. (9) to
the PSD data, to then parameter in the SMC model (Eq. 1)
(hereaftern∗) as follows:

n∗
= λ · n, (11)

wheren∗ is scaled to the PoSD index in VG model. Hence,
the modified model is

θ

θs
=

[
1

1+ (αh)n
∗

]m

. (12)

In summary, given a knownθs we can calculateζ and sub-
sequentlyλ using Eq. (10). The soil parametersα andm are
obtained from fitting Eq. (9) to the PSD data, andn∗ is es-
timated by Eq. (11), and consequently the SMC is predicted
directly by Eq. (12).
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Table 1.Textural classes and UNSODA codes for soils used for testing and evaluating the approach.

Textural Clay Clay Loam Silt Silty Silty Loamy Sand Sandy Sandy
class loam loam clay clay sand clay loam

loam loam

UNSODA 1400 3033 3221 2000, 3090 3030 3100 1160 1050, 1240, 1460 3202 1130
codes 2340 1211 3213, 3261 1360 3101 2102 1464, 1466, 2100 3180

2361 1260 4042, 4070 1371 2103 3133, 3134, 3140 3200
2362 1261 4180, 4181 3130 3141, 3144, 3155 3290
4120 2530 2464, 1341 3150 3162, 3163, 3164
4680 3190 1342, 1350 3152 3165, 3172, 3340
4681 3191 1351, 1352 3160 4051, 4152, 4263
2360 3222 2001, 2002 3161 4272, 4282, 4441

2010, 2011 3170 4520, 4650, 4000
2012 3171

4251

3 Material and methods

A total of 82 soil samples, with a wide range of physical
properties that contained at least five PSD data, were selected
from the UNSODA hydraulic properties database (Nemes
et al., 2000). UNSODA is a database of basic soil and hy-
draulic properties from 790 samples, gathered from all over
the world, and compiled by the US Department of Agricul-
ture. All soils are summarized in Table 1.

In this procedure, volumetric moisture contents corre-
sponding to theith fraction were computed using Eq. (6),
and suction heads were predicted using Eq. (3), in which the
parameterζ was calculated with Eq. (4). In this study, we
assumed that the porosity is equivalent toθs. For soils that
neither provide a porosity nor aθs, the first point of the SMC
data that corresponds to the lowest suction head was used as
θs (Chan and Govindaraju, 2004).

We fitted Eq. (9) to the PSD data. We used nonlinear
regression analysis to fit Eq. (9) to the PSD, using Mat-
lab 7.1 software (Matlab 7.1, The Mathworks Inc., Natick,
MA, USA) and the Marquardt–Levenberg algorithm (Mar-
quardt, 1963). We calculated for each soil the scaling factor,
using either the bulk density or the available saturated soil
moisture content, and predicted the SMC.

For each prediction, the agreement between the predicted
moisture contentθi(p) and measured moisture contentθi(m)

was expressed in terms of the root mean square errors (RM-
SEs), given by

RMSE=

√√√√ 1

N

n∑
i=1

(
θi(p) − θi(m)

)
, (13)

in which N is the number of observed data points. The rel-
ative improvement (RI) resulting from the scaling approach
rather than MV–VG model was calculated as follows (Mi-
nasny and McBartney, 2002):

RI(%) =
RMSEM − RMSES

RMSEM
· 100, (14)

where RI is the relative improvement, RMSEM and RMSEs
are RMSE values of the MV–VG model and the current
scaled model, respectively. Obviously, a negative RI value
indicates that the scaling approach would diminish the accu-
racy level of the prediction of the SMC in comparison with
the MV–VG model.

We also fitted a cubic polynomial function to the over-
all predicted data and calculated the area between the fitted
polynomial and the 1 : 1 line from the difference of the nu-
merical integrals of these two functions (do Carmo, 1976).

Moreover, to consider and compare the reliability of the
scaled MV–VG model with a fully empirical SMC predic-
tion model, we compared the estimations of scaled MV–VG
model with the estimations of the ROSETTA software. In
this software, we used the SSCBD model option; that is, we
used textural (sand, silt, clay) percentages and bulk density
as model predictors (Schaap et al., 2001).

4 Results and discussion

Table 2 gives the comparison between the MV–VG model,
the ROSETTA model and the scaled MV–VG model in terms
of RMSE,R2 and RI. Table 2 demonstrates the significantly
improved accuracy of the scaled MV–VG approach as com-
pared to the original MV–VG model and ROSETTA. The
RMSEs of the predicted and measured moisture contents
ranged from 0.0223 to 0.1502 for the original MV–VG model
(average 0.086), from 0.0169 to 0.1122 (average 0.0601)
for the scaled approach and from 0.0188 to 0.2453 (aver-
age 0.745) for the ROSETTA software. In terms of RM-
SEs, the scaled approach performed better than Schaap et
al. (1998) and the Schaap and Leij (1998) models with simi-
lar predictor variables. The results showed that there is a sig-
nificant difference between performance of scaled MV–VG
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approach and ROSETTA (p = 0.05). Despite the pure statis-
tical and empirical nature of the ROSETTA approach, it pro-
vides worse results than the approach based on the current
scaling technique. The improvement of the scaled approach
is also reflected by RI in Table 2. Except for soils no. 3033
(clay loam) and 3090 (silt loam), the scaling approach re-
sulted in more accurate predictions for all soils. Table 2 also
indicates that the scaling approach can improve the model
estimations of the original MV–VG model by 30 %.

For the fine- and medium-textured soils, the values of RI
are larger than for the coarse-textured soil. This result was
expected, because the MV and MV–VG models underes-
timate the dry range moisture content for the fine-texture
soils (Mohammadi and Vanclooster, 2011; Mohammadi and
Meskini-Vishkaee, 2013), and subsequently the scaling ap-
proach was more effective for these soils.

We examined the possible relations between the RI and
soil physical properties. Among all parameters, the satu-
rated moisture content and scaling factor show strong rela-
tions with the RI. Figure 1a shows that the RI values in-
crease significantly with the saturated moisture content of the
soils; that is, the scaling approach would more effectively
improve the model accuracy for the fine-texture soils with
higherθs. This result can be confirmed with Fig. 1b, which
shows that the scaling factor is inversely correlated with the
IR factor (Fig. 1b). Indeed, the soils with high porosity com-
monly have an abundant amount of clay materials and or-
ganic matter, characterized with high surface energy. These
attributes are the main sources of errors of the MV and MV–
VG models.

Typical examples of measured vs. predicted SMCs with
the MV–VG model, the scaling approach and ROSETTA for
clay, sandy loam, loam, and silt loam textures are presented
in Fig. 2a–f. For the clay (codes: 2340 and 4681), sandy
loam (code: 3180 and 3200), loam (code: 3191) and silt loam
(code: 3090) soils, the scaling approach fits the data well and
performs better than the MV–VG model in the entire range
of the SMC. For the silt loam soil (code: 3090), the scaling
approach slightly overestimates the moisture content through
the entire range of suction heads and the MV–VG model un-
derestimates the moisture content at low suction heads. Fig-
ure 2a–f show that the ROSETTA software performs worse
in the wet part of SMC. Overall, the scaling approach per-
forms better than MV–VG model and ROSETTA software
for all soil samples (Table 2), but the performance of scal-
ing approach did not suitably respond for two soil samples
(codes: 3033, 3090). The residual model error may be related
to the simplified representation of the total porosity which is
considered equal to the saturated volumetric moisture con-
tent. The swelling properties and high organic carbon content
of these soils (> 4 %, 3.85 %, respectively) may partially be a
source of these errors. We further suspect that the complexity
of the relationship between PSD, PoSD and pore connectiv-
ity can be effective in the model performance (Zhuang et al.,

Figure 1. The efficiency of scaling approach, % RI, defined with
RMSE (Eq. 14) as function of(a) the saturated moisture content and
(b) scaling factor for all soil samples.∗∗: significant atP = 0.01.

2001). The assumption of the similarity between PSD and
PoSD does not perform equally well to all soils.

We tentatively conclude that the scaling of the PSD curves
using the parameterζ generally performs better in predicting
the SMC as compared to the original MV–VG model. The
unscaled MV–VG model underestimates the moisture con-
tent at high suction heads.

The most semi-physical based methods for predicting
SMC rely on the use of empirical parameters to improve the
SMC estimates from PSD (Lilly and Lin, 2004). Hydraulic
properties are indeed affected by both the soil texture and the
soil structure (Haverkamp et al., 2002). The MV–VG model
uses the packing parameter,ζ , derived from soil bulk density
as a metric of soil structure. Moreover, the scaling param-
eter that is inferred from the packing state is integrated in
the scaled MV–VG model. Hence the soil structural features
are integrated in the MV–VG model at two levels: first at the
MV–VG model to convert moisture into pressure head and,
second, to correct the SMC model prediction. The good per-
formance of scaling approach in the wet range and dry range
of SMC suggests a convenient of soil structural features in
the SMC prediction.

Figure 3 compares all estimated moisture contents, using
MV–VG model and scaling approach, respectively, with the
measured soil moisture content for all the 82 soil samples.
The overall predictability of the two methods is evaluated by
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Figure 2. Examples of measured vs. predicted soil moisture characteristic curve (SMC) for each texture using the integrated MV–VG model
(Eq. 9), scaling approach (Eq. 12) and ROSETTA: for(a) clay soil,(b) sandy loam soil,(c) loam soil,(d) sandy loam soil,(e) clay soil and
(f) silt loam soil.

comparing the experimental data and the predicted soil mois-
ture content on a 1 : 1 plot. Linear regression of the measured
and estimated moisture contents, using the two methods for
all the soil samples, showed that the slope values were 0.7675
and 0.8484, and the coefficients of determination (R2) be-
tween the estimated results and measured data for all soils
were 0.765 and 0.8565 for MV–VG model and scaling ap-

proach, respectively. Hence, the MV–VG model and the scal-
ing approach underestimate the moisture content by about
23 and 15 %, respectively, while the bias of the scaling ap-
proach is smaller than the MV–VG model. Since it has been
reported that usual measurement method of SMC (pressure
plate apparatus) is susceptible to some errors at high soil
suction heads (Campbell, 1988; Gee et al., 2002; Cresswell
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Figure 3. Comparisons of the measured and estimated moisture
contents for 82 selected soils using the MV–VG model (Eq. 9) and
scaling approach (Eq. 12). Dashed lines: the 1 : 1 line. Solid lines:
linear-regression line. Solid green line: nonlinear-regression line.

et al., 2008). We suggest that a part of the underestimation
in the dry range of SMC of our method is partially related
to limitation of this method for measuring the SMC (Solone
et al., 2012). Regarding theR2, the scaling method still re-
mains the most preferable method. Comparing the overall
predictability of the two methods, the correlation coefficient
of linear regression should not replace the visual examination
of the data. We, therefore, use the cubic polynomial function
to adequately express the data variations. The fitted polyno-
mial functions are drawn as shadowed green curves in Fig. 3.
We further suggest that the area between the fitted curve and
the 1 : 1 line (AE) is an expression of the systematic error.
The values of AE were 0.0369 and 0.0250 for the MV–VG
model and the scaling approach respectively. It confirms that
the level of systematic errors of the scaling approach is about
33 % less than that of MV–VG model. This result can be con-
firmed by the comparison of theR2 values obtained when
predicting the SMC for each soil with two methods (Table 2
columns 5 and 6). We conclude that the scaled PSD curve
will result in a more accurate prediction of the SMC as com-
pared to the unscaled PSD data.

To scale the SMC, Tuller and Or (2005) used the soil spe-
cific surface area (SA) and the thickness of water film to ex-
press the moisture content in dry range of the SMC. Despite
their reasonable model performance, the application of their
procedure was limited due to difficulty in the measurement
or the estimation of SA.

Havayashi et al. (2007) found that, in natural forested hill-
slope soils, the variability in the SMC is scaled and charac-
terized by the variability in effective porosity. Nevertheless,
the determination of the effective porosity is also difficult.

The scaling factor proposed in the current study is defined
by using the index of packing state which can be determined
easily from the bulk density of soil and particle density. As
compared to prediction models that rely on the measured at-
tributes as suggested above, or prediction models that rely
on measured SMC data, our approach is based on a robust
metric of the soil structure: the packing density. It does not
rely on any other additional empirical parameter. The scaled
MV–VG model is therefore very parsimonious and robust.
We therefore conclude that the scaled MV–VG model may
be appropriate for predicting SMC from basic soil data.

5 Conclusions

Using a new scaling approach, the current study showed that
the continuous form of SMC curve can be predicted from
knowledge of PSD, as modeled by the van Genuchten (1980)
model and particle packing state. In this approach it was as-
sumed that the scaling factor can be defined as the ratio of
packing state of a soil sample and the packing state of a ref-
erence soil. Results showed that the proposed approach can
adequately predict the SMC of 82 soil samples selected from
the UNSODA database. It was further found that the scal-
ing approach provides better predictions of the SMC than
MV–VG model and ROSETTA software, especially in the
dry range of the SMC. For soils for which the error was im-
portant, we attributed the proposed scaling approach error to
high organic carbon content and swelling properties of the
soil. Indeed, in these soils the soil pore structure and poros-
ity is changing in time, leading to uncertainty in the scaling
factor based on the soil porosity.

In summary, we concluded that the main advantages of
the proposed scaling approach as compared to many SMC
prediction models are the following: (i) the applied scaling
factor is determined easily from soil bulk and particle den-
sities; (ii) the scaling factor has physical meaning, which
does not depend on soil database and empirical parameters;
(iii) the proposed approach predicts a continuous form of the
SMC; and (iv) this approach estimates the SMC more appro-
priately in comparison with many other models. Consider-
ing that there is no further need for empirical parameters, we
conclude that this approach may be useful in estimating the
SMC for regional-scale soil hydrological studies.
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Appendix A

Table A1. Symbols and abbreviations.

SMC soil moisture characteristic curve
PSD particle size distribution
PoSD pore-size distribution
MV Mohammadi and Vanclooster (2011) model
BCC bundle of cylindrical capillaries
VG model van Genuchten model
MV–VG model integrated the MV model with the van Genuchten model
AP Arya and Paris (1981)
PTF pedotransfer function
RMSE root mean square error
θ the soil moisture content
Se effective saturation degree
θs saturated moisture contents
θr residual moisture contents
n fitting coefficients
m fitting coefficients
α fitting coefficients
h suction head
ξ a coefficient depending on the state of soil particle packing
e the void ratio
ρs soil particle density
ρb soil bulk density
wj the mass fraction of particles in thej th particle size fraction
S saturation degree
Pi cumulative mass fraction of soil particles
Ri particle radius of theith fraction
β scaling factor
γ microscopic characteristic lengths of the reference
γ microscopic characteristic lengths of the subjected soil
ξmax maximum value of packing parameter
n pore-size distribution index
λ scaling factor
n∗ scaled the PoSD index in VG model
θi(p) predicted moisture content
θi(m) measured moisture content
RI relative improvement
RMSEM RMSE values of MV–VG model
RMSEs RMSE values of scaling approach
AE area between the fitted curve and 1 : 1 line
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