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Abstract. Large-scale hydrological models and land surface
models are so far the only tools for assessing current and fu-
ture water resources. Those models estimate discharge with
large uncertainties, due to the complex interaction between
climate and hydrology, the limited availability and quality
of data, as well as model uncertainties. A new purely data-
driven scale-extrapolation method to estimate discharge for
a large region solely from selected small sub-basins, which
are typically 1–2 orders of magnitude smaller than the large
region, is proposed. Those small sub-basins contain suffi-
cient information, not only on climate and land surface, but
also on hydrological characteristics for the large basin. In
the Baltic Sea drainage basin, best discharge estimation for
the gauged area was achieved with sub-basins that cover 5 %
of the gauged area. There exist multiple sets of sub-basins
whose climate and hydrology resemble those of the gauged
area equally well. Those multiple sets estimate annual dis-
charge for the gauged area consistently well with 6 % av-
erage error. The scale-extrapolation method is completely
data-driven; therefore it does not force any modelling error
into the prediction. The multiple predictions are expected to
bracket the inherent variations and uncertainties of the cli-
mate and hydrology of the basin.

1 Introduction

The interests in understanding current and future water re-
sources have driven the rapid development of large-scale hy-
drological models (e.g. Arnell, 1999, 2003, 2004; Vörös-
marty et al., 1989, 2000a, 2004). Water resource projec-
tions made by those models are an important basis for socio-
economical analyses and decision-making processes (e.g.

Vörösmarty et al., 2000a). Projections of water resources are
believed to be associated with large uncertainty, especially
in ungauged basins that cover around 50 % of the global
land area. For instance, global runoff estimates from various
models differ between 29 000 km3 yr−1 and 43 000 km3 yr−1

(i.e. around 30 %), and continental estimates differ up to
70 % (Widén-Nilsson et al., 2007). Besides climate and dis-
charge data uncertainties, model uncertainties also signifi-
cantly contribute to the uncertainties of the simulated dis-
charge (Widén-Nilsson et al., 2009). A number of regional-
isation methods have been developed to extend the predic-
tion capability of hydrological models into ungauged areas.
Commonly used regionalisation methods utilise spatial prox-
imity and catchment similarity to transfer model parameters
from gauged to ungauged basins (e.g. Kokkonen et al., 2003;
Huang et al., 2003; Xu 1999, 2003; Kim and Kaluarachchi,
2008; McIntyre et al., 2005). Model averaging (i.e. using
average of model outputs from different proximity or simi-
larity approaches) was found to provide more robust results
in regionalisation (e.g. McIntyre et al., 2005). Hydrological
models inherently have limited parameter transferability over
different spatial scales; therefore large-scale regionalisation
methods use large gauged river basins as potential donors.
However, averaged basin characteristics often cannot suffi-
ciently summarise small-scale variability and nonlinearity,
which might limit the prediction accuracy of the regionali-
sation methods.

Recent advance in the prediction in ungauged basins has
identified that information such as timing of seasonal pre-
cipitation and potential evaporation, as well as higher fre-
quency variations in rainfall-runoff process, may also con-
tribute to the prediction of annual runoff in ungauged basins
(Blöschl et al., 2013). In the meantime, annual water balance
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and annual runoff variability are governed, to the first order,
by the relative availability of water and energy, while topog-
raphy, basin storage and biological processes modulate these
effects (Blöschl et al., 2013). It has long been recognised that
the interaction between climate and hydrology controls the
nonlinear partitioning of precipitation (e.g. L’vovich, 1979;
Budyko, 1974; Wagener et al., 2007). L’vovich (1979) and
Budyko (1974) were among the first to characterise climate
and hydrology using long-term average water and energy bal-
ance variables. The aridity index, as expressed by the ratio of
long-term average potential evapotranspiration to that of pre-
cipitation, has long been used as a useful index describing
the interaction between climate and hydrology of a region
(e.g. Wagener et al., 2007). Interestingly, a number of simi-
larity studies have shown that climate has a universal control
over hydrology for basins over a wide range of spatial scales,
i.e. from 10 to 10 000 km2 (Troch et al., 2009; Voepel et al.,
2011; Brooks et al., 2011). The scale independence of hy-
drological similarity indicates that small gauged basins can
potentially be used as predictors for large-scale hydrological
responses, provided that the small basins and the large region
are similar in their essential climatic and hydrological param-
eters. In contrast to regionalisation methods, this paper uses
the similarity of climate time series as the foundation for ex-
trapolation, instead of using similarity index and regression-
based methods. This paper aims at developing a systematic
methodology that allows discharge data of small basins to be
extrapolated to a much larger scale. The main purpose of the
paper is to present the methodology of scale extrapolation;
however, we also showed how the method worked in one test
basin (the Baltic Sea basin) with the preliminary results.

2 Study area and data

3 The Baltic Sea drainage basin

The extrapolation method was tested in the Baltic Sea
drainage basin (Fig. 1). The Baltic Sea is one of the largest
brackish seas in the world; the Baltic Sea drainage basin lies
between maritime temperate and continental subarctic cli-
mate zones. With a surface area of 415 000 km2, the drainage
basin spans 14 countries with 85 million inhabitants, a ma-
jority of them living in big cities. The Baltic Sea is semi-
enclosed and therefore vulnerable to pollution, and its envi-
ronmental status is one of the major concerns for the northern
European countries. The Baltic Sea is affected by pollution
from various sources including nutrient input from rivers,
pollution from industries, and direct atmospheric depositions
(Wulff et al., 2001). Many of these factors are dependent on
the climate and hydrology in the basin.
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Figure 1. Map of the Baltic Sea drainage basin as shown by 0.5 degree STN-30p global grid 3	
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Fig. 1. Map of the Baltic Sea drainage basin as shown by 0.5 de-
gree STN-30p global grid cells, with boundaries of 100 gauged sub-
basins shown by lines. Source sub-basins are marked with red and
the rest marked with blue.

4 Data sets

Monthly precipitation for the period of 1975–2001 was taken
from the 30-minute monthly Climatic Research Unit Time-
Series (CRU TS) 2.1 database (Mitchell and Jones, 2005).
The number of stations used by the CRU TS 2.1 data set has
significant temporal variations (Mitchell and Jones, 2005).
Spatial density of CRU precipitation stations in the Baltic
Sea drainage basin decreased after 1990. Monthly precipi-
tation data from 1984 SMHI (Swedish Meteorological and
Hydrological Institute) precipitation stations for the period
of 1961–2002 were interpolated to a regular 30 min grid, and
the quality of the CRU precipitation data within Sweden was
validated against the SMHI data prior to the analysis. The re-
sults (figure not shown) showed that the spatial differences
between CRU and SMHI annual average precipitation were
similar for the period of 1961–1990 and 1991–2002. Dif-
ferences between 1991–2002 and 1961–1990 mean annual
precipitation as calculated by CRU data and SMHI data also
agreed well in their general spatial pattern, although those
calculated with SMHI data showed much higher spatial vari-
ability at smaller scales.

WATCH (WATer and global CHange) forcing data (WFD,
Weedon et al., 2010) for the period between 1975 and 2001 at
30 min spatial resolution were used to derive potential evap-
oration. The WFD provides bias-corrected variables based
on the ERA-40 reanalysis product of the European Cen-
tre for Medium-Range Weather Forecasting (ECMWF) as
described by Uppala et al. (2005). Specific humidity, at-
mospheric pressure, 2 m air temperature, 10 m wind speed,

Hydrol. Earth Syst. Sci., 18, 343–352, 2014 www.hydrol-earth-syst-sci.net/18/343/2014/



L. Gong: Data-driven scale extrapolation 345

downward short-wave radiation and net long-wave radia-
tion were used to calculate reference evaporation using the
Penman–Monteith FAO-56 equation (Allen et al., 1998).
Specific humidity was first converted to relative humidity us-
ing a mixing-ratio method, and 10 m wind speed was con-
verted to 2 m wind speed using a logarithmic relationship
(Allen et al., 1998). Prior to the calculation of reference evap-
oration, the quality of the WFD air temperature, wind speed,
and WFD-derived relative humidity was tested in a compar-
ison with daily weather data (Global Surface Summary of
the Day, or GSOD) from the National Climatic Data Center
(NCDC, 2011). In the Penman–Monteith FAO-56 equation,
surface albedo is fixed at 0.23; however we found this value is
too high for the Baltic Sea basin. Therefore, the albedo values
were taken directly from the ERA-Interim data set (Simmons
et al., 2007). The daily WATCH forcing data were aggregated
to obtain yearly values (calendar year) for each 30 min grid
cell. The monthly CRU precipitation data were also aggre-
gated to yearly values.

STN-30P data set (Vörösmarty et al., 2000b) was used to
identify 1386 cells on a regular 30 min global grid that belong
to the Baltic Sea drainage basin. HYDRO1k (USGS, 1996)
was used to delineate the upstream area of the discharge sta-
tions. The discharge data were taken from the Global Runoff
Data Centre database (GRDC, 2012) and the SMHI Vatten
Web (http://vattenweb.smhi.se/). Among 425 available sub-
basins, 100 sub-basins were selected under the following cri-
teria: (1) they do not contain nested sub-basins; (2) when reg-
istered in the Hydro1k river network, the register area does
not differ by more than 20 % with the reported area from
GRDC or SMHI; and (3) they have complete daily data cov-
erage from 1975 to 2001. Figure 1a shows the location of
the 100 sub-basins. The sizes of the sub-basins vary between
5 and 109 564 km2. The area covered with the 100 gauged
sub-basins, denoted as “gauged basin area”, was used to val-
idate the scale-extrapolation method (Fig. 1). The success-
fulness of the scale extrapolation depends on the abundance
of discharge data from small river basins. For the extrapola-
tion to perform well, it is critical to select river basins within
a suitable size range. The resolution of the available global
or regional climate data set defines the lower limit for the
size of the small river basins that can be used for extrapola-
tion (i.e. the size of a river basin should be comparable with
the climate grid), so reliable climate data can be obtained for
the basin. Preliminary results showed that river basins be-
tween 500 and 5000 km2 are most useful for discharge ex-
trapolation at the global scale, considering that the resolu-
tion of most global climate data sets is 0.5 degree. Therefore,
only 51 sub-basins between 500 and 5000 km2, denoted as
“source sub-basins” (Fig. 1), were selected for discharge ex-
trapolation.

5 Self-similarity in hydrological response

In this paper, hydrological similarity refers to two or more
basins that share similar factors controlling the discharge dy-
namics. The controlling factors may include basin size, to-
pography, soil, vegetation, climate, geology, as well as fac-
tors that can be derived directly from data, for instance runoff
coefficients, and factors that can be derived with the help
of modelling or data analysis techniques, for instance topo-
graphic index, aridity index and Horton index.

What can be more similar to a basin than the basin itself?
If an ungauged basin A (Fig. 4a) is identical in every hydro-
logical controlling factor with a gauged basin B, then A shall
have the same discharge as B. But it is virtually impossible to
find such a identical gauged basin, especially if A is a large-
scale basin.

Topography and river channel networks have long been
known to be self-similar. Inside a river basin one can always
find a sub-region with similar topographic and channel net-
work features. However, if discharge is to be extrapolated
from a sub-region to the whole basin, all first-order control-
ling factors of the sub-region should be self-similar to the
basin. Therefore, there is a need to extend the self-similarity
measures to include all important factors that control the hy-
drological response.

Each hydrological controlling factor, be it climate forcing
or land surface parameters, exhibits spatial auto-correlation.
Part of the spatial information is repetitive or redundant;
there is only a limited number of unique patterns that de-
fine the hydrological dynamics of a basin. Those patterns
can be time series of climate forcing, or spatial statistics of
a land surface parameter. For instance, when a number of
cells within the gauged area of the Baltic Sea drainage basin
was selected by the criterion that they must well resemble
the temporal variation of yearly precipitation of the gauged
area, the average correlation among those cells dropped sig-
nificantly if less than 5 % of the cells were selected (Fig. 2).
If more cells were selected, there would be significant corre-
lation among the cells so that the addition of new cells may
be redundant (Fig. 2).

An important step towards finding a hydrologically self-
similar sub-set of a basin is not to restrict self-similar sub-set
to be one single enclosed area, but instead to be a collec-
tion of several spatially independent sub-regions, each rep-
resenting a unique pattern of the climate–hydrology inter-
action. The process of finding a hydrologically self-similar
sub-set is denoted as “factor matching”, i.e. finding a num-
ber of grid cells (denoted as “source cells”) inside a basin that
share similar hydrological controlling factors as the basin it-
self. Once the matching is done and source cells found, the
area-weighted discharge of the source cells can be extrap-
olated to the entire basin. Two strategies were used in this
paper to maximise the chance of finding the source cells:
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Fig. 2. Correlation coefficients (y axis) between annual precipita-
tion time series of selected cells from the source sub-basins, as a
function of the areal ratio of selected cells to the gauged area of
Baltic Sea drainage basin (x axis).

1. Use only small (in the context of global hydrology)
sub-basins. Both climate and hydrology exhibit larger
spatial and temporal variability at smaller scales. A
large spectrum of climate and land surface patterns can
be obtained by combining several small basins.

2. Allow partial selections of cells within each source
sub-basin. Therefore, a source sub-basin can con-
tribute any number of cells (from zero to its total num-
ber of cells) to the final selected source cells. This
strategy not only greatly increases the chance of a good
“factor matching”, but also opens up the possibility
of having a vast number of equally good realisations
of source cells (i.e. different groups of cells that are
hydrologically similar to each other and to the large
basin).

A simple two-step test is made to illustrate the importance
to allow the source cells to be spatially discrete. In step
one, each source sub-basin alone was selected as a candi-
date to represent the yearly discharge time series of a gauged
area. A number of hydrological controlling factors, including
yearly, monthly and average monthly (climatology) precipi-
tation and potential evaporation, and the frequency distribu-
tion of topographic index were calculated for both the source
sub-basins and the gauged area. The degree of similarity of
those factors was calculated by the standardised RMSE (root-
mean-square error) values (SRMSE) as follows:

SRMSE=
1

x̄
·

√√√√√ n∑
i=1

(
x

′

i−xi

)2

n
, (1)

wherexi stands for the time series of a controlling factor (e.g.
precipitation) of the entire gauged area, andx

′

i stands for the
time series of the same controlling factor for a single source

sub-basin. A smaller SRMSE value indicates more similarity.
Similarly, the SRMSE values of yearly discharge were also
calculated, and plotted against the SRMSE of each control-
ling factor in Fig. 3a–g as black circles. The number of black
circles corresponds to the number of source sub-basins. In
step two, the source sub-basins were allowed to be randomly
combined, and the combined area was used instead of a sin-
gle sub-basin to represent the yearly discharge of the gauged
area. A total of 10 000 such randomly combined areas were
obtained. Their similarities in terms of hydrological control-
ling factors and discharge with the entire gauged area were
also calculated by SRMSE values and are plotted by grey
dots in Fig. 3a–g.

Figure 3 shows that all controlling factors have significant
control over the similarity of the discharge dynamics. For in-
stance, if a source sub-basin or a combined area has simi-
lar precipitation dynamics as the gauged area, its discharge
is more likely to well resemble the discharge of the gauged
area. On the other hand, a large deviation in any of the con-
trolling factors is likely to mean poor discharge resemblance.
Figure 3 also shows the limited ability of individual source
sub-basins to capture the variation of any controlling factor
of the gauged area. Combined source sub-basins can achieve
much better resemblance for all controlling factors, and as
they do so, they also better resemble the discharge dynamics
of the gauged area.

Many controlling factors in Fig. 3 are correlated with
each other; therefore, a multiple regression analysis was per-
formed in order to identify the first-order controlling factors.
Firstly a regression was made with the SRMSE of discharge
as an independent variable and SRMSE of all controlling fac-
tors as dependent variables. The result showed that the best
linear combination of the dependent variables was able to
explain 84 % of the variations of the independent variable.
If only SRMSE values of yearly precipitation and potential
evaporation were used as dependent variables, they would be
able to explain 82 % of the variations of the independent vari-
able. Although the addition of topographic index as a depen-
dent variable can increase the degree of explanation (i.e. 1 %
more of the variation of the dependent variable), in this paper
only yearly precipitation and potential evaporation were used
as first-order controlling factors for yearly discharge.

6 Data-driven scale extrapolation

Scale extrapolation is defined as the extrapolation of hydro-
logical parameters (e.g. discharge) from small to large scale.
We denote the collection of hydrological controlling factors
asX, so that

X = {x1, x2, . . .xn, } , (2)

wherex1,x2, . . . ,xn are individual controlling factors. The
discharge, if not measured, can be estimated byX, such as

D̂ = f (X). (3)
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Fig. 3. The standardised root-mean-square error (SRMSE) of yearly discharge (1975–2001) calculated between sub-sets of the gauged area
and the gauged area itself (y axis), plotted against SRMSE of seven hydrological controlling factors also calculated between subsets of the
gauged area and the gauged area itself. Sub-sets were selected in two different ways: (1) by using individual source sub-basin alone (black
circles) and (2) by randomly combing source sub-basins (grey dots). The seven hydrological controlling factors are yearly precipitation(a)
and potential evaporation(b), monthly precipitation(c) and potential evaporation(d), precipitation(e), and potential evaporation climatology
(f) and the frequency distribution of topographic index(g).

Figure 4a illustrates an ungauged basin A and three of its
source sub-basins,S1, S2 andS3, which have discharge data
D1, D2 andD3, respectively. Inside each sub-basin, a group
of cells (C1, C2 andC3) is selected according to the follow-
ing two criteria:

1. Inside each source sub-basin, a group of cells is se-
lected so that it can resemble the yearly precipitation
and potential evaporation of the sub-basin, such that

XCi ≈ XSi , i = 1,2,3, (4)

whereXC andXS are the hydrological controlling fac-
tors for a cell group and for a source sub-basin, re-
spectively. Therefore, it can be assumed that the cell
group has the same discharge dynamics as the sub-
basin (Fig. 4b), such that

D̂Ci ≈ DSi , i = 1,2,3. (5)

2. The combination of all cell groups (i.e. the source
cells) shall resemble the yearly precipitation and po-
tential evaporation of the whole basin, such that

X(C1+C2+C3) ≈ XA . (6)

Therefore, the area-weighted average discharge from
the source cells can be used to estimate the discharge
of the whole basin (Fig. 4c), such that

D̂A ≈
[
D̂C1 D̂C2 D̂C3

]
×

[
aC1 aC2 aC3

]′

3∑
i=1

aCi

≈
[
DS1 DS2 DS3

]
×

[aC1 aC2 aC3 ]
′

3∑
i=1

aCi

, (7)
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Figure 4. Schematic illustration of the scale-extrapolation method.  9	
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group of cell C1, C2 and C3 respectively.  11	
  

4(b): Cell groups C1, C2 and C3 can well resemble essential climate variables of their 12	
  

respective sub-basins; therefore, C1, C2 and C3 are expected to have same discharge dynamic 13	
  

as their respective sub-basins.  14	
  

4(c): The combination of all cell groups can well resemble essential climate variables of basin 15	
  

A; therefore, area-weighted discharge from all cell groups can be used to estimate the 16	
  

discharge of basin A. 17	
  

Fig. 4. Schematic illustration of the scale-extrapolation method.
(a) An ungauged large basin A and its gauged sub-basinsS1, S2

andS3, each containing a group of cellC1, C2 andC3, respectively.
(b) Cell groupsC1, C2 andC3 can well resemble essential climate
variables of their respective sub-basins; therefore,C1, C2 andC3

are expected to have same discharge dynamics as their respective
sub-basins.(c) The combination of all cell groups can well resem-
ble essential climate variables of basin A; therefore, area-weighted
discharge from all cell groups can be used to estimate the discharge
of basin A.

whereaCi is the area of the cell groupCi . It is impor-
tant to note that basin A can have more than three source
sub-basins, and it is not necessary that all source sub-basins
should contribute to source cells. If a source cell is on the
border of a sub-basin, only the overlapping area is used
in the area weighting. In this paper, we tested the scale-
extrapolation method in the gauged basin area, formed by the
100 gauged sub-basins of the Baltic Sea drainage basin. 51
gauged sub-basins between 500 and 5000 km2 were selected
as source sub-basins. Monte Carlo method was used to select
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Figure 5. 4	
  
SRMSE values of yearly precipitation (a) and potential evaporation (b) plotted against 5	
  
SRMSE values of yearly discharge, for 196 realisations of selected source cells with 6	
  
discharge SRMSE values less than 0.1. Dashed lines indicate mean values.  7	
  

Fig. 5.SRMSE values of yearly precipitation(a) and potential evap-
oration(b) plotted against SRMSE values of yearly discharge, for
196 realisations of selected source cells with discharge SRMSE val-
ues less than 0.1. Dashed lines indicate mean values.

200 realisations of source cells (i.e. 200 different groups of
cells that fulfil the above criteria). Each realisation of source
cells was selected so that the SRMSE values for precipita-
tion and potential evaporation do not exceed threshold val-
ues 3.5 % and 1.75 % respectively. The threshold value was
selected to ensure that (1) there is a good resemblance of cli-
mate time series between selected cells and the gauged basin
area and (2) a sufficient number of different cell groups can
be found to equally well resemble the gauged basin area. The
threshold value can be region-dependent, and it should be a
function of data quality and the spatial variability of regional
climate. A total of 200 area-weighted discharge time series
from the 200 realisations of source cells were then derived,
and their similarity with the discharge of the entire gauged
area was examined by calculating the SRMSE value.

7 Result

All 200 realisations of source cells closely resemble the
yearly dynamics of precipitation and potential evaporation
of the gauged area with very small SRMSE values (Fig. 5).
The average SRMSE for precipitation is 3.1 % with a stan-
dard deviation of 0.2 %. The average SRMSE for potential
evaporation is 1.5 % with a standard deviation of 0.1 %. The
average SRMSE for the 200 extrapolated yearly discharge
time series is 6 % with a standard deviation of 1 %.

Figure 6 shows the quality of discharge extrapolations
measured by SRMSE of yearly discharge between gauged
basin area and source cells, plotted against the area ratio
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Fig. 6. Quality of discharge extrapolation measured by SRMSE of
yearly discharge between gauged basin area and selected source
cells, plotted against areal ratio of selected source cells to the en-
tire gauged basin area. Two different source-cell selection methods
are plotted: (1) randomly combining source sub-basins (black) and
(2) using the scale-extrapolation method, i.e. allowing a sub-set of
a sub-basin to be selected (red).

of source cells to the entire gauged area. For the purpose
of comparison, two different source-cell selection methods
are plotted: (1) randomly selected source sub-basins were
combined and all cells within each sub-basin were used to
form the source cells; 1000 such combinations were used,
and their SRMSE values were plotted as black dots; (2) the
scale-extrapolation method was used (i.e. allowing a sub-set
of a source sub-basin to be selected). The SRMSE values of
200 realisations of selected source cells were plotted as red
circles. Figure 6 shows that most realisations of source cells
selected by the scale-extrapolation method have the area ra-
tio between 3 % and 10 %. With such area percentages it is
most probable to find a good match of climate dynamics with
the gauged area. Figure 6 also shows that the area ratio of
the source cells to the whole gauged area plays an important
control over the extrapolation quality. It seems that when the
source cells are around 5 % of the entire gauged area, there is
the best chance for a good extrapolation. The largest extrap-
olation error occurred when the area ratio was too small.

Figure 7a and b show two examples of totally different
realisations of selected source sub-basins (blue boundaries)
and source cells (red). In the first example, the selected sub-
basins represent precipitation and potential evaporation of
the whole basin area with SRMSE values of 3.5 % and 2 %
respectively (Fig. 8a and b); the extrapolated discharge well
resembles discharge of the gauged area with SRMSE of 6 %
(Fig. 9a). In the second example, precipitation and potential
evaporation of the gauged area are represented with SRMSE
values of 3.3 % and 2.6 % respectively (Fig. 8c and d), and
the extrapolated discharge resembles discharge for the whole
basins also with an SRMSE of 6 % (Fig. 9b).
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Figure 7a,b: Map of the Baltic Sea drainage basin as shown by 0.5 degree STN-30p global 4	
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discharge extrapolation in the Baltic Sea drainage basin.  6	
  

Fig. 7. (a, b) Map of the Baltic Sea drainage basin as shown by
0.5 degree STN-30p global grid cells, with two examples of the
selected source basins and selected source cells for the discharge
extrapolation in the Baltic Sea drainage basin.

8 Discussions and conclusion

Small-scale dynamics can have a crucial impact on large-
scale hydrological responses. A fundamental problem for
large-scale hydrology is the difficulty in preserving the non-
linearity at small scales. The superposition principle, appli-
cable only for linear systems, states that the response caused
by two or more inputs equals the sum of the responses, which
would have been caused by each input individually. In terms
of hydrology, this would imply that the hydrological response
of a basin (or a grid cell), under distributed inputs, could be
perfectly reproduced with spatially averaged inputs. This is
not valid because hydrological systems are nonlinear, so that

f (X1) + f (X2) + . . . + f (Xn)

n
6= f (

X1 + X2 + . . . + Xn

n
), (8)

wheren is the number of response units (e.g. number of cells
in a basin), andf (Xi) is the distributed hydrological re-
sponse under distributed hydrological controlling factor(Xi)

as defined in Sect. 4. Equation (8) has an interesting impli-
cation: if two basins differ significantly in size, even if they
share similar average hydrological controlling factors, they
may have different discharge dynamics.

The result from this paper illustrates that it is impossible to
use a single sub-basin or a single cell to represent the average
dynamics of the gauged area of the Baltic Sea drainage basin.
It is always necessary to use spatially discrete and scattered
sub-regions to represent unique patterns of the hydrological
controlling factors, even though the area of the sub-regions
can be as small as 1.5 % of the gauged area. For the Baltic
Sea drainage basin, a fairly accurate approximation can be
achieved by relaxing Eq. (8), so that

f (X1) + f (X2) + . . . + f (Xn)

n

≈ f

(
X1 + X2 + . . . + Xm1

m1

)
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Figure 8.  5	
  

8a,b: Yearly precipitation (a) and potential evaporation from (b) of the selected source-cells 6	
  

(red) and of the entire gauged area (black) for example 1 (Figure 7a).  7	
  

8c,d: Yearly precipitation (c) and potential evaporation from (d) of the selected source-cells 8	
  

(red) and of the entire gauged area (black) for example 2 (Figure 7b).  9	
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Fig. 8. Yearly precipitation(a) and potential evaporation(b) of the
selected source cells (red) and of the entire gauged area (black) for
example 1 (Fig. 7a). Yearly precipitation(c) and potential evapora-
tion (d) of the selected source cells (red) and of the entire gauged
area (black) for example 2 (Fig. 7b).

+ f

(
Xm1+1 + Xm1+2 + . . . + Xm2

m2

)
+ . . .

+ f (
Xmk+1 + Xmk+2 + . . . + Xn

mk
). (9)

Equation (9) categorises then cells of a basin intok
groups. Cells within each group have correlated controlling
factors, and therefore may be considered quasi-linear, such
that the hydrological response from a cell group can be well
approximated by using an average input. Cell groups are,
however, mutually independent of each other, and a mini-
mal number of cell groups are needed to capture the variabil-
ity of the whole basin. Equation (9) lends theoretical sup-
port to the scale-extrapolation method. Precipitation time se-
ries among selected source cells are mutually independent
(Fig. 2), and each selected source sub-basin represents the
average hydrological controlling factors for a certain region
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Figure 9. Yearly discharge from the gauged basin area (black) and extrapolated discharge 3	
  

(red) using selected source-cells from example 1 (a) and example 2 (b). 4	
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Fig. 9.Yearly discharge from the gauged basin area (black) and ex-
trapolated discharge (red) using selected source cells from example
1 (a) and example 2(b).
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Figure 10. Sub-basins selected for inverse-extrapolation. The green-outlined small basin, with 3	
  
an area of 2250 km2, is found to have similar climate conditions as the selected cells (red, 4	
  
21228 km2 in total) of two larger sub-basins. 5	
  
  6	
  

Fig. 10. Sub-basins selected for inverse extrapolation. The green-
outlined small basin, with an area of 2250 km2, is found to have
similar climate conditions as the selected cells (red, 21 228 km2 in
total) of two larger sub-basins.

within the gauged area, which can be regarded as quasi-linear
in its hydrological dynamics.

Figure 6 showed that out of 200 realisations of the extrap-
olated discharge, only 6 had SRMSE values of discharge of
more than 10 %. Four of those relatively large extrapolation
errors occurred when the area ratio of source cells to gauged
area was too small (i.e. between 2 % and 3 %), while another
two occurred when the area ratio was around 4 % and 6 %,
respectively. This result further lends support to the fact that
nonlinearity exists at large scale and even at yearly timescale.
Although those small source-cell areas can perfectly resem-
ble the average climate of the gauged area, they are unable
to resemble the discharge dynamics in a good way, because
they do not cover the minimum number of unique patterns
required in order to preserve the nonlinearity, as shown in
Eq. (9).
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Figure 11. Values of yearly precipitation (a), potential evaporation (b) and discharge (c) of the 5	
  
small sub-basin (green outlined in Figure 10), plotted by black lined; and a larger area (red 6	
  
cells in Figure 10), plotted by red lines. 7	
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Fig. 11. Values of yearly precipitation(a), potential evaporation(b) and discharge (c) of the small sub-basin (outlined in green in Fig. 10),
plotted by black lines, and a larger area (red cells in Fig. 10), plotted by red lines.

An inverse extrapolation was made to illustrate the
existence of nonlinearity on a yearly timescale further.
The inverse extrapolation, similar to the scale-extrapolation
method, tries to match the hydrological controlling factors of
a number of sub-basins to a single small sub-basin, instead
of the large basin. A small sub-basin with a size of 2250 km2

(Fig. 10, outlined in green) was selected, and source cells
(Fig. 10, red cells) from two other sub-basins (Fig. 10, blue
outlined) with a total size of 21 228 (or 10 times bigger)
were found to resemble the yearly precipitation and poten-
tial evaporation of the small sub-basin well, with SRMSEs
of 4.7 % and 2.6 % respectively (Fig. 11a and b). However,
the discharge differs between the small basin and the larger
region by 21 % (Fig. 11c). Of course, this is only one ex-
ample, and more thorough tests should be made, preferably
with climate data sets of higher resolution. The results of this
paper showed that a minimum of 5 % of the basin area is
needed to be able to account for the nonlinearity of the sys-
tem; 5 %–10 % appears to be the area percentage for which
the best extrapolation quality can be expected (Fig. 6). This
percentage is expected to increase with finer timescales and
to change with different climate and hydrological regimes.

A new data-driven scale-extrapolation method was pro-
posed to estimate annual water resources for large river
basins. The new method builds upon the fact that the dy-
namic interaction between climate and hydrology of a large
river basin can be equally well resembled by multiple small
regions, each characterized by a number of small river basins
that typically give around 5 % areal percentage of the large
basin. Therefore, those multiple small regions can provide an
ensemble of water resource estimations for the large basin.
The new method, being purely data-based, makes it possi-
ble for regional water resource estimations to benefit from a
multitude of readily available measurements from small river
basins.

The scale-extrapolation method provides both new
methodology and new data into the field of large-scale hy-
drology. It allows regional water resources to be estimated
directly from small river basins that are typically 1–2 orders
of magnitude smaller and therefore better preserve the small-
scale dynamics and nonlinearity, which are vital for credible

predictions. The extrapolation is modelling-free, and there-
fore the estimation is free of modelling uncertainties that usu-
ally contribute significantly to large-scale estimation uncer-
tainties. The method is not sensitive to the bias of the climate
data set because the climate data set is only used for sub-
basin selection and not directly for extrapolation.

The scale-extrapolation methods made it possible to study
the interaction between climate and hydrology, and the cli-
mate change impact in ungauged or partially gauged large
river basins from data alone. At the same time, the method
offers ensemble predictions that have the potential of brack-
eting the estimation uncertainty. Because the scale extrapola-
tion uses completely different data and method compared to
the modelling approach, it provides a unique opportunity to
be compared with modelling results.
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