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Abstract. The Pacific–Andean region in western South
America suffers from rainfall data scarcity, as is the case for
many regions in the South. An important research question is
whether the latest satellite-based and numerical weather pre-
diction (NWP) model outputs capture well the temporal and
spatial patterns of rainfall over the region, and hence have
the potential to compensate for the data scarcity. Based on an
interpolated gauge-based rainfall data set, the performance
of the Tropical Rainfall Measuring Mission (TRMM) 3B42
V7 and its predecessor V6, and the North Western South
America Retrospective Simulation (OA-NOSA30) are eval-
uated over 21 sub-catchments in the Pacific–Andean region
of Ecuador and Peru (PAEP).

In general, precipitation estimates from TRMM and OA-
NOSA30 capture the seasonal features of precipitation in the
study area. Quantitatively, only the southern sub-catchments
of Ecuador and northern Peru (3.6–6◦ S) are relatively well
estimated by both products. The accuracy is considerably
less in the northern and central basins of Ecuador (0–3.6◦ S).
It is shown that the probability of detection (POD) is better
for light precipitation (POD decreases from 0.6 for rates less
than 5 mm day−1 to 0.2 for rates higher than 20 mm day−1).
Compared to its predecessor, 3B42 V7 shows modest region-
wide improvements in reducing biases. The improvement is
specific to the coastal and open ocean sub-catchments. In
view of hydrological applications, the correlation of TRMM
and OA-NOSA30 estimates with observations increases with

time aggregation. The correlation is higher for the monthly
time aggregation in comparison with the daily, weekly, and
15-day time scales. Furthermore, it is found that TRMM per-
forms better than OA-NOSA30 in generating the spatial dis-
tribution of mean annual precipitation.

1 Introduction

Precipitation is the primary driver of the hydrologic cycle and
the main input of most hydrologic studies. Accurate estima-
tion of precipitation is therefore essential. The availability of
rainfall data, in particular in developing countries, is ham-
pered by the scarcity of accurate high-resolution precipita-
tion. Since its inception, rainfall measurement principles re-
mained unchanged; non-recording and recording rain gauges
are still the standard equipment for ground-based measuring
precipitation notwithstanding that they only provide point
measurements. Rainfall amounts measured at different loca-
tions are traditionally extrapolated to obtain areal-averaged
rainfall estimates. These estimates from point gauge mea-
surements will only improve if over time the rain gauge net-
work density increases. The latter is not always the case in
developing countries. In fact, in many regions gauge densi-
ties are decreasing (Becker et al., 2013). One potential way
to overcome the limitations of rain-gauge-based networks
and weather radar systems in estimating areal rainfall is by
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using satellite-based global climate information and numeri-
cal weather prediction (NWP) products. Compared with rain
gauge observations, satellite rainfall data provide observa-
tions in otherwise data sparse areas but their disadvantage
is that they are indirect estimates of rainfall. On the other
hand, increased computational power and improvement of
NWP models have resulted in a considerable advancement in
the ability to estimate rainfall. However, the main limitation
for NWP models is that they cannot resolve weather features
that occur within a single model grid box. To improve the ac-
curacy of satellite rainfall estimation and NWP models, and
facilitate their intake over data sparse areas, the evaluation of
both products needs to be region-specific and user-oriented.

A wide range of satellite-derived precipitation products
have emerged in the last decade and their performance over
different regions of the world has been evaluated. Several
studies have been conducted to assess the accuracy of three
of the most widely used satellite-based methods producing
global precipitation estimates, such as the Climate Predic-
tion Center morphing method (CMORPH), Precipitation Es-
timation from Remotely Sensed Information using Neural
Networks (PERSIANN) and the Tropical Rainfall Measur-
ing Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA) 3B42 (Romilly and Gebremichael, 2011). TMPA
3B42 V6 version performance has been evaluated over the
tropical Andes of South America at high-altitude regions
(> 3000 m a.s.l.) by Scheel et al. (2011) with focus on the
Cuzco and La Paz regions in the central Andes. Ward et
al. (2011) conducted a similar investigation in the Paute re-
gion (> 1684 m a.s.l.) situated in the southern Ecuadorian
Andes, and Arias-Hidalgo et al. (2013) explored its ap-
plicability as input for hydrologic studies on a catchment
in the Pacific–Andean region in central Ecuador. They all
concluded that by disregarding the limitations at the small
temporal scale (daily), the performance of this product in-
creases with time aggregation, and they highlighted the po-
tential to use TMPA 3B42 V6 on large-scale basins. Dinku
et al. (2010) conducted a wider evaluation covering different
climatological regions and altitudinal ranges of the Colom-
bian territory. Results showed good performance when the
temporal scale increases (10 days); however, they are re-
gion distinct, yielding the best performance over the eastern
Colombian plain. The availability of the improved version,
the TMPA 3B42 V7, opens a new question concerning its
usefulness for South American regions. Recently, Zulkafli et
al. (2014) assessed the improvement of the V7 over the V6
and reported a lower bias and an improved representation of
the rainfall distribution over the northern Peruvian Andes and
the Amazon watershed. The diversity of South American en-
vironments demands new comparisons over regions with dif-
ferent precipitation regimens and mechanisms.

On the other hand, NWP models’ capabilities keep evolv-
ing and providing precipitation fields at high spatiotem-
poral resolutions. In general, NWP models are not only
valuable tools for weather forecasting but also for climate

reconstruction. Numerical weather prediction can be initial-
ized and bounded by assimilated observational data describ-
ing the large-scale atmospheric conditions throughout the re-
constructed period. Periods of years to decades can be re-
trieved using NWP models, commonly known as “regional
atmospheric reanalysis”. Although this technique is still in
its early stages, in tropical South America, some NWP model
applications were conducted by Muñoz et al. (2010). Their
study follows a three-level hierarchical approach. Global-
scale analysis and/or general circulation model (GCM) out-
puts are generated and then used as boundary conditions
for the mesoscale meteorological models, which in turn pro-
vide information for tailored applications. In a regional at-
mospheric reanalysis setting, the weather research and fore-
casting model (WRF, Skamarock et al., 2005) was forced
by applying boundary conditions of the National Centers for
Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) Reanalysis project (NNRP, Kistler
et al., 2001) to retrieve, for the first time, meteorologi-
cal data for northwestern South America in the so-called
OA-NOSA30 product. The aim of the retrospective simu-
lation was to provide input data for hydrologic and health–
epidemiological models with the hypothesis that the WRF
retrospective simulation may add skill to GCMs in countries
where the Andes provides complex disturbances that global
models cannot solve.

The westernmost N–S axis of South America, which em-
braces the Pacific–Andean region of Ecuador and northern
Peru (PAEP), is a region with below-average density and un-
evenly distribution of meteorological stations. Because of its
location, contrasting landscapes, and complex topography, it
includes humid regions of the western Andean foothills and
arid areas offshore the coastal line. The PAEP region pro-
vides a unique case to evaluate the potentials and drawbacks
of satellite and numerical model rainfall estimates. Conse-
quently, the objective of this study is to provide an evalua-
tion of the performance of the TMPA V7 and its predecessor,
the TMPAV6 version and the OA-NOSA30 products versus
regionalized ground data over the PAEP region. Specifically,
emphasis is given to determine whether there are regions and
time aggregation scales on which precipitation estimates may
be considered as an alternative and/or complementary infor-
mation source for poorly gauged basins.

2 Materials and methods

2.1 Study area

The western coast of South America is a region with con-
trasting landscapes and a rather complex orography. Near the
equator the coastal area of Ecuador is characterized by a high
precipitation regimen and supports dense vegetation down
to the shore. However, at the southern margin and along
the northern Peruvian littoral, the coast is almost devoid of
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vegetation. The PAEP region (ca. 100 800 km2) is located
along the N–S axis between 0–6◦ S and drains the western-
most slope of the Andes (Fig. 1a). The various steep Andean
ridges down to the coast together with the Ecuador–Peru
“Cordillera costanera” shapes thirteen Pacific–Andean val-
leys from north to south: Chone (1), Portoviejo (2), Guayas
(3), Taura (4), Cañar (5), Naranjal-Pagua (6), Jubones (7),
Santa Rosa (8), Arenillas (9), Zarumilla (10), Puyango–
Tumbes (11), Catamayo–Chira (12), and Piura (13) (Fig. 1b)
each one with particular geomorphological and climatologi-
cal features. The proximity of the Andes to the coastal line
is the main influence on the basin’s relief and climatology.
Short and steep basins, i.e., Puyango (10), descend from
nearly 4000 m of altitude in less than 240 km of river length.
On the other hand, large basins host the largest plains and
lowland valleys in the Ecuadorian littoral with roughly 70 %
of its area below an elevation of 200 m. The Guayas (3),
which is one the most important fluvial systems on the west-
ern coast of South America, is such a basin.

2.2 Climate

The coastal region of Ecuador has a seasonal rainfall distri-
bution characterized by a single rainy period, with 75–90 %
of the rainfall occurring between December and May. Over-
all, in the PAEP region the rainy season starts around late
November and ends in June, with a peak between February
and March. Over the humid Andean foothills in the coastal
plains a 2–3 month dry period separates the rainy seasons.
On top of this seasonal rainfall pattern, the distribution of
precipitation is affected by the seasonal latitudinal migra-
tion of the Inter-Tropical Convergence Zone (ITCZ) and east-
ern tropical Pacific sea surface temperature (SST) variations.
The northern–southern seasonal ITCZ displacement and SST
variations bring to the area air masses of different humidity
and temperature. When the ITCZ and the equatorial front are
in their southernmost position near the equator, Ecuador’s
coastal regions are under the influence of warm moist air
masses, originating from the northwest, bringing significant
rainfall and rising air temperatures. The latter mainly defines
the rainy season. Inversely, the northernmost ITCZ displace-
ment and the equatorial front result in the presence of cooler
and dryer air masses descending from upwelling regions in
the southwest, influencing the dry season (Rossel and Cadier,
2009).

The most important feature of the rainfall variability in
the PAEP region is the occurrence of interannual anomalies
as related to the large-scale circulation phenomena such as
El Niño–Southern Oscillation (ENSO). The PAEP region is
bounded by the limit of the strong ENSO influence defined
by Rossel et al. (1999) as the region where the increase in
mean annual precipitation is greater than 40 %. Therefore,
in ENSO years abrupt changes in the mean annual rainfall
conditions are considerable, with a coefficient of variation
reaching 0.40 (Rossel and Cadier, 2009). Such increase is

not uniform region wide; there are important regional differ-
ences in heavy rainfall formation during El Niño (EN) events
(Bendix and Bendix, 2006) and the EN influence on rainfall
variability may change substantially in short distances in the
same Pacific–Andean hydrological unit (Pineda et al., 2013).
Furthermore, since 2000 an atypical meteorological response
to EN and La Niña (LN) conditions has been reported over
the coastal plains and the western Andean highlands (Bendix
et al., 2011). All this results in a very complex spatiotemporal
distribution of rainfall patterns during ENSO and non-ENSO
years. These considerations are of paramount interest when
dealing with data quality control of unevenly distributed rain
gauges in the PAEP region.

2.3 Data

2.3.1 Rain gauge data

A ground precipitation network of 131 rain gauges with daily
data (∼ 1964–2010) in the PAEP region was provided by
the Ecuadorian and Peruvian meteorological and hydrologi-
cal services, INAMHI and SENAMHI, respectively (Fig. 1b).
Records with gaps higher than 20 % were excluded, resulting
in 107 locations with long-term daily rainfall time series.

In a first step, a regionalization analysis was conducted on
the long-term records to group spatially homogeneous sta-
tions. A station was considered as spatially homogenous if it
showed proportionality in the cumulative monthly volumes
with regards to a control station in the same sub-catchment.
The most reliable records were identified by selecting records
with no changes in location and instrument type and then set
as control stations for a double mass analysis (Wilson, 1983).
In the double mass analysis, the hierarchical criteria to check
proportionality between the control and the candidate sta-
tion involves: (i) neighboring, (ii) similarity in altitude, and
(iii) exposure to the same meso/synoptic climatological fea-
ture (e.g., ENSO).

Next, the temporal homogeneity of each record was
checked against error measurements. A record was consid-
ered as temporally homogenous if the record showed no
step changes (shifts in the means) or if the detected step
changes were attributed only to climatic processes. The R-
based RHtests_dlyPrcp software package, developed by the
Climate Research Division of the Meteorological Service of
Canada and which is available from the Expert Team on
Climate Change Detection, Monitoring and Indices (ETC-
CDMI) website (Wang and Feng, 2012), was used to iden-
tify multiple step changes at documented or undocumented
change points. It is based on the integration of a Box–Cox
power transformation into a common trend two-phase regres-
sion model suitable for non-Gaussian series such as non-zero
daily precipitation (Wang et al., 2010). Documented changes
(EN driven) are referred as those defined by Rossel and
Cadier (2009) and are the sequence of at least 3 consecu-
tive months where the monthly SST anomalies are above
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Figure 1. Location of the study areas(a). Topography and boundaries of the catchments (grey line) in the Pacific–Andean region of Ecuador
and Peru. Sub-catchment boundaries (grey line) and rain gauge stations (triangles) used for the evaluation(b). Dots indicate GTS stations.

23◦ C and exhibit a positive anomaly equal to or greater
than 1◦ C. Such events occurred in the years 1965, 1972–
1973, 1976, 1982–1983, 1987, 1992, and 1997–1998. For
LN-driven changes, the year 2008 was also considered. Non-
homogeneous periods were considered as modifications in
the field during data collection and set as Not Available (NA)
and then retested to verify whether they are homogeneous
with the disregarded period(s).

2.3.2 Gridded rainfall data set

In this study we compare basin station-gridded precipitation
fields against basin-averaged precipitation products. Rather
than rescaling the products to an arbitrary resolution, the
products were evaluated at the sub-catchment scale identi-
fied during the regionalization analysis. Namely, instead of
a punctual comparison, spatial averages were calculated for
the precipitation products using the proportional coverage of
each grid cell. The analysis was performed for the 1998–
2008 11 year period. This period was chosen as common be-
tween the TMPA products and the WRF retrospective simu-
lation. All data-quality-checked records were interpolated to
obtain spatial averages in each sub-catchment, except the few
whose data is available through the Global Telecommunica-
tion System (GTS). Data from these stations may have been
used for adjusting TRMM estimates. Three GTS stations
were identified in our data set and excluded. The locations
of the GTS stations (five) are shown in Fig. 1b.

Using the kriging approach for spatial interpolation of
daily rainfall over complex terrains, the incorporation of
correlation with topography/altitude has been suggested to

improve performance; see Buytaert et al. (2006) for high-
lands∼ 3500 m a.s.l. and Cedeño and Cornejo (2008) for the
coastal region below 1350 m a.s.l. in Ecuador. Also, in a cli-
matological study for Ecuador and north Peru, Bendix and
Bendix (1998) showed that the inclusion of the altitude in-
creases the performance of kriging significantly.

In parallel, several interpolation techniques of increasing
complexity have been developed and evaluated using the
gstat R package (Edzer Pebesma, 2011). Inverse distance
weighting (IDW) and ordinary kriging (OK) are fairly simi-
lar; both take into account the distance between stations, but
OK has a more complex formulation and therefore is ex-
pected to be more accurate. Linear regression (LR) is sup-
posed to perform similar to kriging with external drift (KED)
since they both implement regression with altitude. KED is,
however, more accurate at accounting for kriging of resid-
uals, which means that distance between stations influences
interpolation as well. KED was applied on daily basis, the
variogram analysis was performed at each time step to deter-
mine the spatial variability function of precipitation, and then
parameters were estimated from regression residuals for each
time step (zero values were included in the semi-variogram
fitting). To discern among different interpolation techniques,
Li and Heap (2008) recommend assessing the performance
by cross-validation methods.

A key issue in this study is whether the change of spa-
tial support provides a sound reference for comparison with
TMPA and WRF products. In general, errors and uncer-
tainty in a gridded data set arise from many sources, in-
cluding errors in the different steps of the data supply chain
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(measurements, collection, homogeneity) and in the interpo-
lation technique. It would be ideal to split and quantify all of
them. This is, however, not possible without the possibility
of tracking them back. Kriging provides a measure of the ex-
pected mean value and its variance at an interpolated point.
Several climate studies have used the kriging variance as a
proxy of uncertainty. However, it is acknowledged that krig-
ing variance is not a true estimate of uncertainty (Yamamoto,
2000 and Haylock et al., 2008). A solution would be to per-
form an ensemble of stochastic simulations from which un-
certainty can be estimated at the expense of highly computa-
tional resources. Such detailed analysis is out of the scope of
this work.

We therefore adopted the alternative method by Yamamoto
(2000) for assessing kriging uncertainty using just the data
provided by a single realization. We quantify the total resid-
ual variance and split it up in its main contributing residual
variance sources (input (data) and kriging interpolation (geo-
statistical model)) based on a variance decomposition tech-
nique (Willems, 2008, 2012) in order to estimate the fraction
of each contributing source. The total residual variance is as-
sessed based on statistical analysis of the residuals between
each precipitation product (YPP) and KED estimates (YKED).
The underlying assumption of the variance decomposition is
that the (causes of the) errors on theYPP andYKED precipi-
tation estimates are highly different, hence that they can be
assumed independent. The residuals are converted into ho-
moscedastic residuals by means of a Box–Cox (BC) trans-
formation (Box and Cox, 1964). After this conversion, the
total YPP residual variance (S2

BC(YPP,Residual)) is decomposed
into the precipitation product error variance, hereafter called
model error variance (S2

BC(YPP,Model)), and the KED error

variance (S2
BC(KED)) (Eq. 1).

The KED uncertainty is evaluated using just the random
field provided by a single realization with prescribed param-
eters (i.e., mean structure, residual variogram) (Yamamoto,
2000). We estimate the total (YPP) residual variance at every
tile (PP-KED). By subtracting the KED error variance from
the total residual variance ofYPP based on Eq. (1), we ob-
tain indirect estimates of the model error variance and map
its spatial distribution.

S2
BC(YPP,Residual) = S2

BC(YPP,Model) + S2
BC(KED). (1)

2.3.3 TMPA TRMM 3B42 products

The TMPA 3B42 V7 and its predecessor version V6 are used
in this study. The TMPA 3B42 V6 consists of hourly rain-
fall rates (mm h−1) at surface level with a global coverage
between 50◦ N and S since 1998. This method combined
precipitation estimates of four passive microwave (PMW)
sensors, namely TRMM Microwave Imager (TMI); Special
Sensor Microwave/Imager (SSM/I) F13, F14, and F15; Ad-
vanced Microwave Scanning Radiometer-EOS (AMSR-E);
and Advanced Microwave Sounding Unit-B (AMSU-B). The

TMPA V6 algorithm is described in Huffman et al. (2007).
The improved version, the 3B42 V7, includes consistently re-
processed versions for the data sources used in 3B42 V6 and
introduces additional data sets, including the Special Sen-
sor Microwave Imager/Sounder (SSMIS) F16–17 and Mi-
crowave Humidity Sounder (MHS) (N18 and N19), the Me-
teorological Operational satellite programme (MetOp) and
the 0.07◦ Grisat-B1 infrared data. The changes in the V7 al-
gorithm at various processing levels are described in Huff-
man et al. (2010) and Huffman and Bolvin (2014).

It is useful to review some of the efforts in validating
TMPA V6 and/or comparing V6 and V7 at low and high
altitudes in the tropical Pacific because it has a bearing on
the choice of the satellite products used in our study. While
evaluating several precipitation products, Dinku et al. (2010)
reported that V6 outperforms other satellite products (i.e.,
CMORPH) at 10-day accumulation over the dry northern
Colombian littoral. The converse was found over the wet
western Pacific coast where CMORPH was slightly better
especially at daily scale. In an evaluation of V7 daily rain-
fall estimates to analyze tropical cyclone rainfall, Cheng et
al. (2013) found improved skill scores over coastal and island
sites in the tropical Pacific. Also, Zulkafli et al. (2014) re-
ported that the improvement of V7 against V6 is a reduction
of the bias, especially in the Peruvian Pacific lowlands. To
assess whether such improvements are seen in the PAEP re-
gion, we use both TMPA versions. TMPA 3B42 V6 and 3B42
V7 precipitation estimates having 3-hour, 0.25×0.25 degrees
resolution were aggregated to daily data for the 11 year pe-
riod.

2.3.4 WRF retrospective simulation

The Scientific Modeling Center of Venezuela (CMC) and
the National Institute of Hydrology and Meteorology from
Ecuador (INAMHI) developed a North Western South Amer-
ica Retrospective simulation. The data set, called OA-
NOSA30, is available online at the International Research In-
stitute for Climate and Society (IRI) web page (Muñoz and
Recalde, 2010). The simulation provides numerous climate
variables with a 30 km spatial and 6 h temporal resolution
for the period January 1996 to December 2008 and a global
coverage between 11◦ S to 17◦ N and 98◦ W to 50◦ E. The
accumulated precipitation was extracted on a daily basis for
the 11 year common period.

OA-NOSA30 is the simulation result from the weather
research and forecasting (WRF) model, a regional climate
model (RCM) herein used to downscale the meteorological
data from the NCEP/NCAR Reanalysis Project (NNRP or
R1, details at Kistler et al., 2001). This project is defined as
the combination of global climate model outputs and obser-
vations. The WRF configuration for the microphysics param-
eterization, governing the outputs, was applied. Muñoz and
Recalde (2010) explained that the microphysics were mod-
eled by the Kessler scheme (RRTM), the Dudhia schemes
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were used for the modeling of the long-wave and shortwave
radiation, respectively; the Monin–Obukhov (Janjic) scheme
for modeling of the surface-layer; and the thermal diffusion
with five soil levels for modeling the land-surface physics.
Finally the Mellor–Yamada–Janjic turbulent kinetic energy
scheme was applied for describing the boundary-layer op-
tion, in which the SST update option was selected.

2.4 Rainfall products evaluation

Bias, root mean square error (RMSE), and Pearson’s cor-
relation (γxy) were applied to analyze the accuracy of the
TMPA and OA-NOSA30 estimates comparing them with
rain-gauge-interpolated estimates at sub-catchment scale
(Eqs. 1 to 3). RMSE includes both systematic (bias) and non-
systematic (random) errors.

BIAS =
1

n

n∑
i=1

(P PP
xi −P

gauge
xi ) (2)

RMSE=

√√√√1

n

n∑
i=1

(P PP
Xi − P

gauge
Xi )

2
(3)

γxy =
Cov(P PP,P gauge)√

Var(P PP) ×
√

Var(P gauge)
, (4)

whereP pp is the precipitation products value,P gaugethe in-
terpolation estimate from rain gauge values, and n the num-
ber of observations.

Additionally, skill scores were calculated to quantify the
products accuracy in detecting daily accumulation at differ-
ent precipitation thresholds and they were calculated based
on average sub-catchment precipitation. The probability of
detection (POD) gives the fraction of rain occurrences that
were correctly detected; it ranges from 0 to a perfect score
of 1. The equitable threat score (ETS) measures the fraction
of observed and/or detected rain that was correctly detected,
and it adjusted for the number of hits that could be expected
due purely to random chance. A perfect score for the ETS is
1. The frequency bias index (FBI) is the ratio of the number
of estimated to observed rain events; it can indicate whether
there is a tendency to underestimate or overestimate rainy
events. It ranges from 0 to infinity with a perfect score of 1.
The false alarm rate (FAR) measures the fraction of rain de-
tections that were actually false alarms. It ranges from 0 to 1
with a perfect score of 0 (Su et al., 2008).

The ETS is commonly used as an overall skill mea-
surement by the numerical weather prediction community,
whereas the FBI, FAR, and POD provide complementary in-
formation about bias, false alarms, and misses. To evaluate
the performance of the products for light and heavy precipita-
tion events, they were calculated for each sub-catchment and
for several thresholds: 0.1, 0.5, 1, 2, 5, 10, and 20 mm day−1

(Schaefer, 1990; Su et al., 2008).

Seasonality accuracy at the sub-catchment level was eval-
uated comparing precipitation estimates against interpolated
average monthly rainfall depths. Furthermore, in order to
evaluate precipitation products on increasing time scales,
daily, weekly, 15-day, and monthly estimates were accu-
mulated deriving Pearson’s correlation (Eq. 3) and relative
bias. The relative bias was calculated for daily/weekly/15-
day/monthly time aggregations by normalizing the bias
(Eq. 1) in order to compare different time resolutions. Fi-
nally, annual mean precipitation was calculated for interpo-
lated rain gauges and precipitation products and depicted
spatially.

3 Results

3.1 Data quality verification, interpolation
and uncertainty

The double mass analysis discriminated 21 sub-catchments
within which rainfall is spatially correlated. The proportion-
ality is strong in the coastal areas where the altitude range
is narrow but is less marked at higher altitudes. Four stations
do not have significant correlation with any other station, and
the sub-catchments in which they are situated were ranked as
independent.

The temporal homogeneity check for each station reported
several change points, with a statistical significance of 5 %.
However, most of them were attributed to EN regional varia-
tions and therefore rejected as artificial change points. Be-
sides the documented changes, several change points ap-
peared repeatedly in nearby locations. They were interpreted
as a common modification in the local climate and therefore
disregarded as change points. Despite these considerations,
non-homogeneous periods significant at 5 % were found in
30 stations. Those periods were discarded and the stations
tested again for homogeneity. Nine stations did not pass the
test. Therefore they were no longer taken into account, re-
sulting in a quality checked set of 98 time series. From this
data set, the 11-year period, January 1998 to December 2008,
was taken for the comparison between OA-NOSA30 and the
TMPA estimates, and rain gauge precipitation data. The 98
homogeneous stations together with the 21 homogenous sub-
catchments are shown in Fig. 1b. The area and the density of
the rain gauge stations per sub-catchment are listed in Ta-
ble 1. The highest density is found in Quiroz, Upper Guayas,
Alamor, and Chipillico and the lowest in Naranjal-Pagua,
Lower Guayas, Piura, and Tumbes.

Table 2 reports the mean cross-validation results of the
four investigated techniques for gridding daily precipitation
in the period 1998–2008. Correlation for KED (0.49) is twice
the value than for IDW, LR, and OK techniques (0.26, 0.28,
and 0.21, respectively). Not only is its mean higher but corre-
lation on almost every day was better than for any other tech-
nique. The mean square error (MSE) for KED is less than for
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Table 1.Description of sub-catchments and rain gauge density of homogeneous stations.

Code Sub-catchments Catchment Altitudinal range (m) Area (km2) Station density*

1 Chone Chone 0–350 3259 0.80
2 Portoviejo Portoviejo 0–600 3548 1.00
3 Lower Guayas Guayas 0–680 14 641 0.30
4 Middle Guayas 0–4100 21 423 0.70
5 Upper Guayas 300–4000 3642 2.50
6 Taura Taura 0–2600 2449 0.40
7 Cañar Cañar 0–4300 2412 1.50
8 Naranjal-Pagua Naranjal-Pagua 0–4000 3387 0.01
9 Jubones Jubones 0–4000 4361 1.20

10 Santa Rosa Santa Rosa 0–2200 1062 0.80
11 Arenillas Arenillas 0–1400 653 1.40
12 Zarumilla Zarumilla 0–800 810 1.10
13 Puyango Puyango–Tumbes 300–3500 3662 0.50
14 Catamayo Catamayo–Chira 300–3500 4173 1.70
15 Alamor 200–2300 1182 2.30
16 Macará 150–3600 3166 2.00
17 Quiroz 150–3500 3137 3.70
18 Chira 0–800 4931 0.70
19 Chipillico 100–3200 1179 2.30
20 Tumbes Puyango–Tumbes 0–1200 8200 0.30
21 Piura Piura 0–2500 9472 0.30

Total 100 745

* Stations per precipitation products grid cell (∼ 900 km2).

Table 2. Cross-validation results of daily rainfall interpolation
for all stations over the period 1998–2008 using inverse distance
weighting (IDW), linear regression with altitude (LR), ordinary
kriging (OK), and kriging with external drift (KED) techniques.

Method Correlation MSE Performance

IDW 0.260 65.33 0.012
LR 0.275 0.656 0.881
OK 0.210 0.550 0.865
KED 0.484 0.510 0.885

LR and slightly less than for OK. The performance values
explain how well the technique represents the variability of
the precipitation assessed by the squared of the residuals and
it was found to be better for KED. Overall, KED performed
better in all statistics and LR was the second best. Finally, the
KED technique, which includes variogram analysis and the
use of a 92× 92 m digital elevation model (DEM) from the
Shuttle Radar Topography Mission (SRTM) as external drift,
was chosen to interpolate station precipitation. The result is a
daily gridded data set (4018 time steps) with 92×92 m reso-
lution, which captures the horizontal and vertical gradients as
well as the most prominent orographic features. We first dis-
cuss the gridded data set constraints and related uncertainty
when applying this data set for comparison with the precipi-
tation products.

Figure 2a–c present results of the uncertainty analysis for
the comparison of OA-NOSA30, TMPAV6, and V7 with
KED estimates, based on the variance decomposition tech-
nique of a 1-day single random realization. Figure 2a shows
that the OA-NOSA30 estimates are subject to the largest
model residual variance, which strongly correlates with the
high topographic precipitation gradients as seen over the
inner-mountain foothills (i.e., Upper Guayas (5), Cañar (7)
and Jubones (9)), and to a lesser extent over the moderate
slopes of the Cordillera Costanera (i.e., Chone (1)). The KED
uncertainty has the highest contribution to the total residual
variance in these regions whereas in the remaining stations
the contribution of the KED uncertainty is more or less pro-
portional to the total residual variance. In the comparison of
TMPAV6-V7 (Fig. 2b and c) with KED estimates the spa-
tial trends are less evident. Correlation with elevation still
takes place in the V6 analysis but the largest total resid-
ual variance does not show clear distinction between middle
(∼ 500 m a.s.l.) and high altitudes (∼ 3000 m a.s.l.). For the
V7 analysis, the uncertainty mapping shows a more scattered
distribution with almost no spatial trends. In both the V6
and V7 cases, the KED contribution to the total uncertainty
remains slightly larger than the precipitation product error
variance. All results together suggest that when comparing
precipitation products against KED estimates, the TMPAV7-
based product, in the first place, followed by the V6 prod-
uct, offers the best precipitation estimates since the precip-
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Figure 2. Spatial distribution of the total residual variance (graded orange circles) and the fractional contribution of the KED uncertainty in
the total residual variance (graded red circles) based on the comparison of a 1-day random KED simulation against(a) OA-NOSA30,(b)
TMPA V6, and(c) TMPA V7. The size of the circles is proportional to the variance value.

itation uncertainty is less affected by the topographic set-
ting that provides the basis for our proposed gridded data set.
The largest errors are encountered in the comparison between
OA-NOSA30 and KED estimates at high altitudes. This has
implications for our catchment-averaged analysis. These lim-
itations are relevant for the results presented in the following
sections.

3.2 Daily verification

Figure 3a, b, c show the bias, RMSE, and Pearson’s correla-
tion between precipitation products and daily KED estimates
accumulated over each sub-catchment unit and ranked from
N–S within the period 1998–2008. These statistics reveal a
strong spatial variation; for 3B42 V6 and OA-NOSA30, bias
and RMSE decrease from north to south while correlation
increases, whereas for TMPA V7 significant bias reduction
and increase in correlation seems sub-catchment and precip-
itation regimen dependent.

TMPA V7 and V6 overestimate precipitation in all
sub-catchments, with an average range between 0 to
∼ 2 mm day−1. Conversely, OA-NOSA30 underestimates
precipitation, except in Quiroz (17) and Chipillico (19),
the range of over-/underestimation is within∼ 0.5 to
−1.5 mm day−1 (Fig. 3a). The RMSE ranges from 4 to
9 mm day−1 for both TMPA estimates. The RMSE gives
more weight to the extremes because residuals are squared
and they are typically higher for precipitation extremes.
Given that, particularly for TMPA V6, the bias is very high
in wet seasons, RMSE values are higher for TMPA V6 esti-
mates than for OA-NOSA30 (Fig. 3b).

Figure 3. Overall performance of the daily analysis for TMPA
V7, V6, and OA-NOSA30 and precipitation estimates per sub-
catchment, averaged over the period 1998–2008. Names of sub-
catchments corresponding to the numbers are detailed in Table 1.
Bias(a), RMSE(b), and Pearson’s correlation coefficient(c).

Hydrol. Earth Syst. Sci., 18, 3179–3193, 2014 www.hydrol-earth-syst-sci.net/18/3179/2014/



A. Ochoa et al.: Evaluation of TRMM 3B42 precipitation estimates 3187

Figure 4. Categorical scores (POD, ETS, FBI, and FAR) of daily rainfall average for(a) TMPA V7, (b) V6, and(c) OA-NOSA30 outputs
against KED interpolated station data averaged over the period 1998–2008, applying different thresholds as precipitation upper limit.

Figure 3c shows that the Pearson correlation is very similar
between TMPA V6 and OA-NOSA30, oscillating between
0.3 and 0.6 except in Arenillas (11) where OA-NOSA30’s
detection fails. In the northern region the highest correlation
(0.5) is found at Lower/Middle Guayas (3)/(4) and the rest of
the northern sub-catchments record correlations∼ 0.3. In the
central region, average correlation is about 0.35. In the south-
ern region, correlation consistently rises to 0.5 in a large area
(Catamayo–Chira and Piura catchments). TMPA V7 shows
a very modest region-wide improvement over TMPA V6
only with a notable correlation increase in Chone (1), Upper
Guayas (5), Taura (6), Jubones (9), and Zarumilla (12).

OA-NOSA30 presents almost no region-wide bias for
precipitation rates less than 1 mm day−1. For the south-
ern sub-catchment: Alamor (15), Macará (16), Quiroz (17),
Chira (18) and Piura (21) this is up to 10 mm day−1; over
such a threshold precipitation is systematically underesti-
mated. TMPA V7 and V6 overestimate precipitation amounts
smaller than 10 mm day−1 in sub-catchments in the cen-
tral and southern regions. For lowland areas in the north,
this threshold changes to 20 mm day−1. As well as for OA-
NOSA30, precipitations over 20 mm day−1 are systemati-
cally underestimated.

Figure 4a–c show categorical scores POD, ETS, FBI and
FAR for representative sub-catchments distributed in the
northern, central and southern region corresponding to the
TMPA V7, V6, and OA-NOSA30 estimates. The four sub-
catchments shown in Fig. 3 were chosen as representative

according to their location and dominant precipitation
regime. In the humid northern part, Chone (1), a coastal and
ocean-exposed sub-catchment, and Middle Guayas, (4) in the
inner core and greatly influenced by the continental climate
divide, were selected. In the central region, Jubones (9) with
a pronounced leeward effect and Chira (18), in the southern
arid coast, were considered. Their indexes lead to conclu-
sions which can also describe the situation of the surround-
ing sub-catchments in each region. The difference between
scores of TMPA V7 (Fig. 4a) and V6 (Fig. 4b) is almost
undistinguished, both estimates shows a POD value of 0.6,
on average, for precipitation rates less than 5 mm day−1. It
gradually decreases to∼ 0.2 when the threshold is higher
than 20 mm day−1. A close inspection reveals a marginal im-
provement of V7 over V6 only evident in Middle Guayas (4)
at higher thresholds. Equitable threat scores, for precipitation
estimates equal or lower than 5 mm day−1, are on average
0.25. Equitable threat scores, a summary score that penal-
izes for hits that could occur due to randomness, can be used
to compare performance across regimes. A slight improve-
ment of V7 across all threshold is restricted to Chone (1). The
false alarm rate and FBI increase with higher thresholds. This
means that overestimation exists over 1 or 2 mm day−1 and
false alarms are then also present. In general, TMPA prod-
ucts detect amounts of precipitation higher than 5 mm day−1

but it overestimates them, while amounts of precipitation less
than 2 mm day−1 are detected with a low fraction of FAR,
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Figure 5. Mean monthly precipitation in sub-catchments from north to south:(a) Chone,(b) Middle Guayas,(c) Jubones, and(d) Chira over
the period 1998–2008.

although bias is present. TMPA scores are better in the south-
ern region, Chira (1).

Figure 4c shows the same categorical scores for OA-
NOSA30. In all sub-catchments, POD decreases when the
threshold increases, indicating that the NWP estimates small
precipitation events better. POD decreases abruptly to 0 when
considering thresholds of 5 and 10 mm day−1 thresholds. The
behavior of ETS scores is the same as for POD but the aver-
age scores are half the amount of POD. For small amounts
of precipitation, i.e., less than 3 mm day−1, OA-NOSA30’s
POD scores are around 0.6 while ETS scores are 0.3. The
FBI plot shows underestimation. False alarms increase with
higher thresholds with FAR values typically in the range 0.2
to 0.5. There are no FAR values given for thresholds over
5–10 mm day−1 since the POD of OA-NOSA30 is zero for
those precipitation depths. Spatially, POD and ETS show a
better probability of detection in the southern region and FBI
shows lower bias in that region compared to the northern and
central regions; however FAR is lower in the northern region
Middle Guayas (4).

3.3 Monthly verification

Although Fig. 5a–c show the mean monthly precipitation
within the period 1998–2008 for KED estimates against
TMPA V7, V6, and OA-NOSA30 for the four selected sub-
catchments, the analysis below corresponds to all 21 sub-
catchments. In general, Figure 5c reveals that the three ap-
proaches yield comparable results for the southern region,
which includes the sub-catchments Alamor (15), Macará
(16), Quiroz (17), Chira (18), and Chipillico (19). In most
of the sub-catchments, all data sets depict well seasonal-
ity showing wet conditions within the period January–May.
In the northern and central regions, during the wet season,
TMPA V7 and V6 overestimate precipitation while OA-
NOSA30 underestimates (Fig. 5a, b). The pattern of over-
and underestimation is not that clear in all data sets during
the dry season. Maussion et al. (2011) showed that the WRF
and TRMM well estimated the precipitation distribution, but
depths and positions of maxima do not match. Additionally,
they showed that WRF usually predicts more rainfall over
larger areas; notwithstanding, WRF may better reflect reality
than TRMM.

The density of rain gauges in the Catamayo–Chira catch-
ment is higher and also the quality of data is better (fewer
missing gaps and change points). This might indicate that
KED estimates are better for this area. However, in most
of the southern region TMPA and OA-NOSA30 estimates
are similar to KED estimates, even in the high altitude sub-
catchment, i.e., Quiroz (17), which is not the case for the rest
of the sub-catchments. Also, there are other sub-catchments
such as Catamayo (14) and Upper Guayas (5) where the pre-
cipitation estimates are neither similar between them nor to
KED estimates, despite the high quality of data. Thus, KED
estimates prove to be good references and the dependence
of the interpolation technique on the rain gauge density (Ta-
ble 1) as well as the error seen at high altitudes when com-
paring OA-NOS30 and KED is not substantially affecting the
analysis. This is a very important issue given that the density
of rain gauges is relatively low and building up a gridded
rainfall data set that is the least influenced by this fact is cru-
cial. Notice that the success of KED technique may differ
for areas with lower gauge densities, which was not tested in
this study. TMPA’s overestimation occurs for any precipita-
tion amount when aggregated per month (Fig. 5), unlike daily
aggregation where over-underestimation occurs according to
the amount of precipitation (see FBI scores in the Fig. 4a and
b).

3.4 Verification on multi-temporal resolutions

The Pearson correlation (Fig. 6a) and bias (Fig. 6b) were cal-
culated on daily, weekly, 15-day, and monthly time scales
for TMPAV7, V6, and OA-NOSA30. In general, correlation
increases with time scale, and is higher for monthly than 15-
day and weekly time aggregated periods. Bias seems to accu-
mulate when time aggregation increases, as found for WRF
in other regions (Cheng and Steenburgh, 2005; Ruiz et al.,
2010). The purpose of finding the relative bias in the esti-
mates is to quantify respectively the over-/underestimation
of the precipitation depth. The relative bias is consistent with
the correlation coefficient, decreasing as the time aggrega-
tion increases. Although the daily bias is high in Jubones
(9) (∼ 1000 % for V7 and∼ 1200 % for V6) and in Middle
Guayas (4) (higher for V7 than V6), on a weekly-to-monthly
scale the bias percentage decreases. The worst performance
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Figure 6. Overall performance analysis considered for daily, weekly, 15-day, and monthly time aggregations over the period 1998–2008.
Pearson’s correlation coefficient(a) and relative bias (%)(b) for TMPA V7, V6, and OA-NOSA30 products calculated for a representative
sub-catchment in the north, center, and south.

of both TMPA estimates was found in Jubones, where cor-
relation is lowest and bias percentage is highest. For OA-
NOSA30, that is the case for Chone (1) and Jubones (9). The
results found for TMPA, i.e., that correlation increases and
bias reduces as time aggregation increases, are in agreement
with previous studies (Scheel et al., 2011; Habib et al., 2009;
among others).

Aggregation of the mean annual rainfall was performed
to compare the spatial performance of the three approaches
(OA-NOSA30, TMPAV6, and V7) against KED estimates in
the study area (Fig. 7). Comparison shows that the TMPA
estimates are closer to the spatial pattern of the mean annual
rainfall, though mean annual rainfall in the north and south-
east are overestimated. OA-NOSA30 presents a huge under-
estimation and does not reflect spatial variability, except over
the southern region. Over the latter region, OA-NOSA30 bias
is small enough to represent a spatial pattern approaching the
one based on TMPA estimates.

4 Discussion

Our analysis shows that both TMPA products overestimate
precipitation in the 21 sub-catchments of the heterogeneous
PAEP region. Key challenges in the estimation of precipita-
tion from satellite estimates arise from the processing scheme
for microwave (MW) and IR data. The problem with IR
data processing is that global algorithms do not consider
the altitude of the hydrometeor. Dinku et al. (2011) sug-
gest that overestimation over dry areas may be attributed
to sub-cloud evaporation. While this mechanism may have

implications on the overestimation of TMPA onshore the
coastal plain, especially in the arid Peruvian littoral where
a dry low atmosphere is common year-round; the attribu-
tion of TMPA overestimation to sub-cloud evaporation on the
middle/high altitude sub-catchments is inconclusive. Bendix
et al. (2006) showed that, over the Ecuadorian territory and
surroundings, average cloud-top height increases from W–
E, showing more stratiform cloud dynamics in the Pacific
area and the coastal plains, and that the western Andes
is a true division for Pacific influence. These authors de-
scribe the seasonal spatial pattern of cloud-top height dis-
tribution within December–May (wet season), possessing a
well-defined blocking height (∼ 4.5< 5.0 km) between 0–
3◦ S, but less marked southward. Given that IR data process-
ing scheme infers precipitation from the IR brightness tem-
perature at the cloud top (implicitly cloud height) it would
be expected that overestimation follows the same spatial pat-
tern. However, our analysis showed that even though TMPA
overestimation matches the increasing W–E cloud-top gradi-
ent it does not explain the large overestimation in the north-
ern bottom valleys (i.e., Lower Guayas and Chone catch-
ment). The regional differences in cloud properties between
the northern and southern catchments help to explain the
differences in TMPA overestimation. Over the northern re-
gion ∼ 0◦ (Quito-transect) (Bendix et al., 2006), cloud fre-
quency is substantially higher than the reduced cloudiness at
∼ 4◦ S (Loja-transect). To illustrate these differences Fig. 8a–
c show cloud density patterns using anomalies of interpolated
outgoing long-wave radiation (OLR) (Liebmann and Smith,
1996) as proxy for cloudiness (negative anomalies imply
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Figure 7. Spatial distribution of mean annual precipitation over the period 1998–2008 according to the KED interpolation of 98 rain gauges
(a), OA-NOSA30(b), TMPA V6 (c), and TMPA V7(d).

Figure 8. Monthly anomalies of OLR (Watts m−2) during 1998–2008 within the rainy season December–January (left), February–March
(center), April–May (right).

increased cloudiness) during the rainy season within 1998–
2008. During December–January (Fig. 8a) symmetrical pat-
terns of cloudiness are observed over northern and south-
ern sub-catchments, followed by increased cloudiness which
concentrates over the northwestern edge during January–
February (Fig. 8b). Then, cloudiness exhibits a marked
north–southeast gradient in April–May (Fig. 8c). This sug-
gests that in addition to the error introduced by the estimation
of the cloud-top, the TMPA overestimation for the northern
catchments may also be influenced by frequent occurrence
of low stratiform clouds (typical on the coastal area) which
under stable conditions are detached from precipitation pat-
terns (Bendix, et al., 2006). This high density of non-rain
producing clouds would affect the IR data retrieval resulting
in overestimation.

The largest deficiencies of TMPA estimates are encoun-
tered in separating the windward/leeward effect of the An-
dean ridges on orographic rainfall which is particularly

witnessed in Jubones where the leeward effect is dominant.
West of the climate divide there is no typical precipitation
gradient. Through blocking at the ridges and through re-
evaporation, rainfall of any origin more frequently affects
higher elevations than valley floors (Emck, 2007).

TMPA V7 and V6 estimates show different region-wide
skills on a daily basis but they yield comparable results
particularly in the southern region (3.6–6◦ S) in weekly to
monthly time aggregations. TMPA V7 shows localized skill
that is higher than V6 on short-steep coastal and ocean-
exposed sub-catchments but similar or lower skills on large
inland basins. The improvement is seen in the detection ca-
pacity of light orographic precipitation on coastal ocean-
exposed sub-catchments, where the spatial sampling seems
to capture small precipitation gradients. Over coastal areas,
the orographic enhancement is a small spatial-scale event
(Minder et al., 2008, Cheng et al., 2013). In the innermost
sub-catchments where gradients of annual precipitation may
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reach 700 mm/100 m at 3400 m a.s.l. (Emck, 2007) the tem-
poral sampling of V7 cannot capture the rapid evolution of
orographic rainfall and the overestimation is similar to that of
the V6 version. Notice that inland the total residual variance
and the KED uncertainty increase with elevation (especially
for V6). This could influence the apparent decrease of the
V6 performance seen for the innermost sub-catchments. This
is, however, restricted to very few sub-catchments where the
spatial average is dominated by the weight of high altitude
stations.

OA-NOSA30 product only shows reasonable skills in the
southern region (3.6–6◦ S) where amount and occurrence
are relatively well represented. The greatest NWP limita-
tions are encountered in representing the fast enhancement
of rain rates due to the effect of the coastal mountains as a
first barrier for moisture transport in short-steep coastal sub-
catchments (3–3.6◦ S). The nearly null NWP detection ca-
pability is likely related to the unique rainfall rates that oc-
cur on the ocean facing foothills of the Cordillera Costan-
era. Unlike in most tropical mountains where convective
rainfall dominates, in southeast Ecuador vigorous advection
shapes a monotonic increasing precipitation gradient with
altitude. In the core of the southern region, Emck (2007)
reported that rainfall originates from an equal balance of
advective–topographic (light) and convective (heavier) gen-
esis. Such a characteristic, over the southern region, sug-
gests that the NWP parameterization for OA-NOSA30 is par-
ticularly suited to solve for this type of precipitation. For
the northern regions, which are more affected by the an-
nual movement of the ITCZ, the influence of the continental
climate divide and the occurrence of more stratiform cloud,
deep convection (likely the dominant mechanism) is not em-
ulated by the NWP model. A complete description of the er-
rors in the NWP implementation is out of the scope of this
study; we therefore only highlight some of the major sources.
The lateral boundary conditions (reanalysis data set) have
presumably a major role on the degradation of WRF product
quality. The poor representation of the Andes in the reanal-
ysis model has been shown to contribute to a modest simu-
lation of meteorological fields such as wind (Schafer et al.,
2003). Maussion et al. (2011) found that some undesired nu-
merical effects and, eventually, inadequate input data can af-
fect the operational output of the WRF model, in particular
for extreme events; that is probably by overstressing certain
physical processes. Jankov et al. (2005) found that the great-
est variability in rainfall estimates from the WRF model orig-
inates from changes in the choice of the convective scheme,
although notable impacts were observed from changes in the
microphysics and planetary boundary layer (PBL) schemes.
However, Ruiz et al. (2010) found that rainfall estimates
only vary slightly among different configurations, but biases
increase with time aggregation. Those findings agree with
previous studies (Blázquez and Nuñez, 2009; Pessacg, 2008)
and suggest that there is a common deficiency in the convec-
tive schemes used for this model.

5 Conclusions

In general, TRMM V7, V6, and OA-NOSA30 estimates
capture the most prominent seasonal features of precipita-
tion in the study area. Quantitatively, only the southern sub-
catchments of Ecuador and northern Peru are well estimated
by both satellite and NWP estimates. There is low accu-
racy of both approaches in the northern and central regions
where TMPA V7 and V6 overestimate precipitation while
OA-NOSA30 systematically underestimates. The improve-
ment of V7 over V6 is not evident region wide. It appears
that V7 detects better light precipitation rates on coastal and
ocean-exposed basins. Inland the differences of the two ver-
sions of TRMM 3B42 are almost unnoticeable. The separa-
tion of the windward/leeward Andean effect on orographic
precipitation appears the main challenge for TMPA algo-
rithms. It was found that the detection probability is bet-
ter for small rainfall depths (less than 5 mm day−1) than for
high amounts of precipitation. OA-NOSA30 showed the best
skills in detecting a balanced advective/convective regime of
precipitation in the southern region.

Analysis of daily, weekly, 15-day, and monthly time se-
ries revealed that the correlation with station observations
increases and bias decreases with the time aggregation. Dif-
ferences are considerably larger for daily than weekly ag-
gregation. The correlation and bias values are similar in the
northern and southern region but in the central region corre-
lation is smaller and bias is higher for all time aggregations.
TMPA V7, V6, and OA-NOSA30 are able to capture rela-
tively well the spatial pattern in the southern region of the
study area, but the performance of both approaches reduces
in the northern and central region. In general the two TMPA
versions perform better than OA-NOSA30.

In view of hydrological and water resources management
applications, it has been demonstrated that the potential in-
take of both satellite and NWP estimates in the PAEP region
differs among catchments and precipitation regimes. Our
analysis has shown that both approaches capture the mean
spatial and temporal features of precipitation at weekly to
monthly accumulations over a particular region of southern
Ecuador and northern Peru. These findings are relevant for
these poorly gauged regions where there is growing pool of
modeling work that relies on the use of satellite-based rain-
fall estimates as forcing data. Also dynamical weather pre-
diction becomes more frequently applied, but this prediction
is still in an experimental stage. However, for operational ap-
plications such as flood warnings, which demand high tem-
poral resolution rainfall data, accurate depth and storm lo-
cation estimates are mandatory. The usefulness of both esti-
mates is less promising.
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