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Abstract. The aim of this study is to estimate the green and
blue water footprint (WF) and the total water use (TWU) of
wheat crop in China in both irrigated and rainfed produc-
tions. Crop evapotranspiration and water evaporation loss are
both considered when calculating the water footprint in irri-
gated fields. We compared the water use for per-unit product
between irrigated and rainfed crops and analyzed the rela-
tionship between promoting the yield and conserving wa-
ter resources. The national total and per-unit-product WF
of wheat production in 2010 were approximately 111.5 Gm3

(64.2 % green and 35.8 % blue) and 0.968 m3 kg−1, respec-
tively. There is a large difference in the water footprint
of the per-kilogram wheat product (WFP) among different
provinces: the WFP is low in the provinces in and around
the Huang–Huai–Hai Plain, while it is relatively high in the
provinces south of the Yangtze River and in northwestern
China. The major portion of WF (80.9 %) comes from irri-
gated farmland, and the remaining 19.1 % is rainfed. Green
water dominates the area south of the Yangtze River, whereas
low green water proportions are found in the provinces lo-
cated in northern China, especially northwestern China. The
national TWU and total water use of the per-kilogram wheat
product (TWUP) are 142.5 Gm3 and 1.237 m3 kg−1, respec-
tively, containing approximately 21.7 % blue water perco-
lation (BWp). The values of WFP for irrigated (WFPI) and
rainfed (WFPR) crops are 0.911 and 1.202 m3 kg−1, respec-
tively. Irrigation plays an important role in food production,
promoting the wheat yield by 170 % and reducing the WFP
by 24 % compared to those of rainfed wheat production. Due
to the low irrigation efficiency, more water is needed per
kilogram in irrigated farmland in many arid regions, such

as the Xinjiang, Ningxia and Gansu Provinces. We divided
the 30 provinces of China into three categories according
to the relationship between the TWUPI (TWU for per-unit
product in irrigated farmland) and TWUPR (TWU for per-
unit product in rainfed farmland): (I) TWUPI < TWUPR,
(II) TWUPI = TWUPR, and (III) TWUPI > TWUPR. Cate-
gory II, which contains the major wheat-producing areas in
the North China Plain, produces nearly 75 % of the wheat of
China. The double benefits of conserving water and promot-
ing production can be achieved by irrigating wheat in Cate-
gory I provinces. Nevertheless, the provinces in this category
produce only 1.1 % of the national wheat yield.

1 Introduction

China is not only the most populous and the largest food-
consuming country, it is also one of the poorest countries
in terms of individual water resources, at only 2100 m3 per
capita in 2010 (MWR, 2011), or less than one-quarter of
the worldwide water resources per capita (Ge et al., 2011).
With the population surge and socioeconomic development,
the water crisis has become a hot spot all over the nation be-
cause the gap between increased demands and limited water
resources is increasing. Meanwhile, agriculture is the largest
water user in China, accounting for more than 60 % of the to-
tal water (blue water) withdrawals (MWR, 2011). Currently,
due to bottlenecks in technology and management, agricul-
tural irrigation water is used with low efficiency and is sig-
nificantly wasted. It is important to reduce the water use in
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agriculture to meet the freshwater challenges facing China in
the future (Wu et al., 2010).

The concept of “water footprint” was introduced by
Hoekstra (2003) and offers a new approach to assessing wa-
ter resource utilisation in agricultural production. The water
footprint of a crop product is defined as the volume of fresh-
water that is consumed during the crop production process.
Normally, the water footprint has three components: blue,
green and gray water footprints. The blue water footprint
refers to the consumption of blue water resources (surface
and groundwater) throughout the supply chain of a product;
the green water footprint refers to the consumption of rainwa-
ter insofar as it does not become run-off; and the gray water
footprint refers to the volume of freshwater that is required
to assimilate the load of pollutants given natural background
concentrations and existing ambient water quality standards
(Hoekstra et al., 2011). The water footprint of a crop prod-
uct is usually measured in two ways: the total water footprint
in a specific region (in m3) and the water footprint of a unit
mass of product (in m3 kg−1 or m3 t−1). The total water foot-
print links itself directly to water resource availability, and
the green and blue water footprints of unit production reflect
the regional water productivity.

Wheat is one of the three most important grain crops
in China. The sown area of wheat was approximately
24.26 million ha, and the yield was 115.18 million t in 2010,
contributing approximately 17.8 % of the worldwide pro-
duction (NBSC, 2011). Wheat includes spring wheat and
winter wheat based on the growing period. Winter wheat
is planted in most provinces of China, while spring wheat
is planted mainly in Heilongjiang, Neimenggu, Qinghai,
Ningxia and Xinjiang. A number of studies have been pub-
lished in the past decade on the water footprint of wheat
production. Hoekstra and Hung (2005), Hoekstra and Cha-
pagain (2007) and Chapagain et al. (2006) globally evalu-
ated the water use in wheat production during the periods of
1995–1999 and 1997–2001 without distinguishing between
green and blue water consumption. Liu et al. (2007a) and
Liu (2009) globally estimated the water consumption and
its blue and green water distinction in wheat production in
2000 using a GIS-based EPIC model. Aldaya et al. (2010)
estimated the WF of wheat and analyzed the green and blue
water components for the major wheat-producing countries
of the world. Siebert and Döll (2010) quantified the blue
and green water consumption in global crop production as
well as the potential production losses without irrigation us-
ing a grid-based approach for the period 1998–2002. Aldaya
and Hoekstra (2010) assessed the water footprint of wheat in
Italy, specifying for the first time the green, blue and gray
water footprint. Mekonnen and Hoekstra (2010, 2011) con-
ducted a global and high-resolution assessment of the green,
blue and gray water footprint of wheat.

Meanwhile, many scholars have studied the water foot-
print of China’s wheat production. Liu et al. (2007b) simu-
lated the national blue and green water evapotranspiration of

winter wheat using the GIS-based Environmental Policy In-
tegrated Climate (GEPIC) model. Zhang (2009) and Sun et
al. (2012) calculated the provincial water footprint of each
kilogram of wheat product for the periods of 1997–2007 and
the year 2009, respectively. Ge et al. (2010) estimated the
water footprint of wheat in the North China Plain and distin-
guished between the green, blue and gray water footprints.
Xu et al. (2013) studied the water footprint of wheat product
in four basins using the life cycle assessment (LCA). Based
on the evapotranspiration (ET) that was calculated with the
CROPWAT model, Tian et al. (2013) analyzed the temporal
variation of the water footprint of China’s major food crops
from 1978 to 2010. Including the loss of irrigation water (irri-
gation water that is not consumed by the field crop ET during
the transmission and distribution processes of water sources
to the field) in the blue water footprint calculation, Sun et
al. (2013) assessed the water footprint of grain crops, includ-
ing wheat, in typical irrigation districts of China using a mod-
ified method.

These studies have promoted the development of the wa-
ter footprint theory. However, almost every study calculated
the water consumption only at the field scale and under the
assumption that the crop that was planted in farmland with
irrigation suffered no water stress. The estimation methods
of these studies did not consider the irrigation water loss
through evaporation from the surface water during the water
transport from source to cropland. Consequently, the results
of these studies failed to reflect the actual water consumption
in the irrigation system (Perry, 2014). In addition, few stud-
ies have contrasted the WF with traditional agricultural water
utilisation assessment indicators.

In this study, we focused on the water footprint of wheat.
The objective was to estimate the green and blue water foot-
print of wheat from a production perspective, distinguishing
between crops that were cultivated in irrigated and rainfed
farmland. Herein, we quantified the green and blue water
footprint of wheat considering the actual water use by agri-
cultural production at the regional scale. The water that evap-
orated from the water surface (E) was included in the water
footprint calculation, and the blue water footprint was ob-
tained by the mutual check between the crop irrigation water
requirement (IWR) and the actual irrigation water capacity
(IWC). The effects of irrigation on the crop yield, water foot-
print and total water use in each province of China were also
explored in this study.

2 Data description

The water footprints of wheat in irrigated and rainfed farm-
lands in China were calculated using a crop-model-coupled-
statistics approach, where the required elements are consol-
idated, including the CROPWAT model, agricultural data
in irrigated land and provincial agricultural data in total
cropland.
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2.1 FAO CROPWAT 8.0 model

CROPWAT is a decision support tool that was developed by
the Land and Water Development Division of UN Food and
Agriculture Organization FAO (FAO, 2009). The computer
program can be used to calculate the crop water requirements
(CWR) and irrigation water requirements (IWR) based on
the soil, climate and crop data. In addition, the program per-
mits the development of irrigation schedules under different
management conditions and the calculation of water supply
schemes for various crop patterns (FAO, 2009). It is recom-
mended by the Water Footprint Network to calculate the crop
water footprint. All of the calculation procedures that were
used in CROPWAT 8.0 are based on the two FAO publi-
cations of the Irrigation and Drainage Series: no. 56 “Crop
evapotranspiration – Guidelines for computing crop water re-
quirements” (Allen et al., 1998) and no. 33, “Yield response
to water” (Doorenbos and Kassam, 1979).

2.2 Agricultural data in irrigated land

The statistical data, including the actual irrigation water ca-
pacity (IWC, the gross irrigation water diversion), the crop
yield, the irrigation water utilisation coefficient (η) and the
irrigated area from the administration bureaus of 442 irriga-
tion districts in 30 provinces (Fig. 1), were collected for this
study. The actualη was measured by engineers working for
the administration bureau of the irrigation district.

2.3 Agricultural data in the total cropland

The climate data from 517 weather stations in 30 provinces
of China were acquired from the China Meteorological
Data Sharing Service System (CMA, 2011) and include the
monthly average maximum temperature, the monthly aver-
age minimum temperature, the relative humidity, the wind
speed, the sunshine hours and the precipitation. The provin-
cial agricultural data, including the crop yield, crop-sowing
area, agricultural acreage and irrigation area, were referenced
from the China statistical yearbook 2011 (NBSC, 2011). The
crop planting and harvesting dates of 180 agricultural obser-
vation stations were obtained from the Farmland Irrigation
Research Institute, Chinese Academy of Agricultural Sci-
ences (FIRI, CAAS). The crop coefficient (Kc) of wheat was
referenced from Chen et al. (1995) and Duan et al. (2004).
TheKc values that are listed in these references are the test
results that were collected from irrigation experimental sta-
tions in different regions of China.

3 Methods

The blue and green water footprints of wheat were evalu-
ated in this study. Both blue water and green water play a
key role in crop growth in irrigated farmland, but in rainfed
cropland, no blue water is consumed. The water footprints of

Figure 1. Distribution of 442 irrigation districts in 30 investigated
provinces in China.

the per-kilogram wheat product in irrigated and rainfed crop-
lands were estimated separately, after which each provincial
total water footprint was calculated.

3.1 Water footprint of the per-kilogram wheat product
(WFP) in irrigated farmland

Because the irrigated farmland within a province is scat-
tered, the provincial WFP of the irrigated farmland should
be the average of the water footprints from every piece of
irrigated land. Therefore, 442 typical irrigation districts in
30 provinces (Hainan Province was excluded because it does
not plant wheat) were used as the calculation units (see
Fig. 1), and WFP for each irrigation district was calculated.
Then, the WFP in the irrigated farmlands of each province
was estimated using the weighted average method.

3.1.1 Green water footprint (GWF)

The GWF during the crop growth period is normally equal to
the effective precipitation in both rainfed and irrigated crop-
land. The effective precipitation during the crop growth pe-
riod can be calculated using Eq. (1), which is recommended
by the FAO CROPWAT 8.0 Model.

Pe =

{
P × (4.17 − 0.02P), P < 83
4.17 + 0.1P, P · 83,

(1)

whereP andPe are the 10-day precipitation and effective
precipitation, respectively, in mm.

To preventPe from exceeding the crop water requirement
of wheat (ETc), the GWF was calculated as

GWF = Ap × Min (ETc, Pe) (2)

and

ETc = Kc · ET0, (3)
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whereAp is the crop planting area in ha;Kc is the crop co-
efficient, which is dimensionless; and ET0 is the reference
crop evapotranspiration as calculated by the CROPWAT 8.0
Model in mm.

3.1.2 Blue water footprint (BWF)

The blue water of wheat in an irrigation system is the sum
of the irrigation water that evaporated from the water surface
during the transmission and distribution the water sources to
the field (BWFe) and the field evapotranspiration (BWFf):

BWF = BWFf + BWFe. (4)

The BWFf was obtained via the mutual check between the
crop irrigation water requirement (IWR) as calculated by
Eq. (5) and the irrigation water capacity (IWC) as sur-
veyed by the administration bureaus of the studied irrigation
districts.

IWR =

{
0, ETc ≤ Pe
ETc − Pe, ETc > Pe

. (5)

The calculation process of BWFf in an irrigation district is as
follows:

if η × IWC > IWR, then

BWFf = WR (6)

otherwise

BWFf = η × IWC, (7)

whereη is the irrigation water utilisation coefficient (irriga-
tion efficiency), which is dimensionless.

The BWFe was estimated as follows:

BWFe = α × IWC, (8)

where α is the evaporation loss coefficient, which is
dimensionless.

Referencing to the “Code for Design of Irriga-
tion and Drainage Engineering” (MWR, 1999), the
value of α could be (1) AI < 20× 103 ha, α = 3 %;
(2) 20× 103 ha< AI < 100× 103 ha, α = 5 %; or (3) AI >

100× 103 ha,α = 8 %.AI is the area of the irrigation district.
The value ofα that was recommended by the reference was
calculated by irrigation engineering designers in China and
is widely considered to agree with the actual conditions (Li,
2006).

The water footprint of the per-kilogram wheat product in
an irrigation district (WFPID) was calculated as

WFPID =
GW + BW

YID
= GWFPID + BWFPID (9)

BWFPID = BWFPID,ET + BWFPID,CL, (10)

where YID is the crop yield of the irrigation district in
ton/ha; GWFPID and BWFPID are the green and blue wa-
ter footprints, respectively, of the per-kilogram wheat prod-
uct in an irrigation district in m3 kg−1; and BWFPID,ET and
BWFPID,CL are the blue water footprints of the per-kilogram
wheat product for evapotranspiration and conveyance loss,
respectively, in m3 kg−1.

3.1.3 Water footprint of the per-kilogram wheat
product in the irrigated farmland (WFP I ) of
each province

The water footprint of per kg wheat product in irrigated farm-
land (WFPI) is estimated by the weighted average method:

WFPI =

∑ (
WFPi

ID × Ai
)∑

Ai
, (11)

where WFPiID is the water footprint of the per-kilogram
wheat product in theith irrigation district in m3 kg−1, and
Ai is the irrigation area of theith irrigation district in ha.

The green water footprint and the blue water footprint of
the per-kilogram wheat product and the crop yield in irrigated
farmland (GWFI , BWFPI , andYI , respectively) can also be
calculated using a method that is similar to Eq. (11).

3.2 Water footprint of the per-kilogram wheat product
in rainfed farmland (WFP R) of each province

For the rainfed crops, the WF is derived from green water.
The green water footprint (GWF) in the rainfed cropland of a
province was calculated using Eqs. (1)–(5). Then, the water
footprint of the per-kilogram wheat product in the rainfed
farmland (WFPR) of a province was calculated as follows:

WFPR =
GWF

YR
, (12)

whereYR is the crop yield in rainfed farmland in t ha−1. YR is
hard to determine due to a lack of surveyed data from man-
agement institutions, thus different from the calculation of
the crop yield of irrigated land in China.YR can be calcu-
lated using Eq. (13):

YR =
OT − YI × AI

AR
(13)

AR = A − AI, (14)

whereOT is the provincial total output of the wheat product
in t; YI is the crop yield in irrigated farmland in t ha−1; AI
is the area of irrigated farmland in ha; andAR is the area of
rainfed farmland in ha.

3.3 Provincial water footprint of wheat in the total
cropland

The water footprint of wheat (WF) in the total cropland of
a province is the sum of the water footprint in the irrigated
land and that in the rainfed land:
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WF = WFI + WFR (15)

WFI = WFPI × YI × AI (16)

WFR = WFPR × YR × AR, (17)

where WFI and WFR are the water footprint of wheat in irri-
gated farmland and rainfed farmland, respectively, in 106 m3;
YI andYR are the crop yield in irrigated and rainfed farmland,
respectively, in t ha−1; andAI andAR are the sown area of
irrigated and rainfed wheat in ha. The green water footprint
(GWF) and blue water footprint (BWF) in the total cropland
of a province can be calculated similarly to Eqs. (15)–(17).
The provincial water footprint, green water footprint and blue
water footprint of the per-kilogram wheat (WFP, GWFP and
BWFP, respectively) in the total farmland can be calculated
based on the WF, GWF and BWF.

3.4 Total water use (TWU)

The total water use (TWU) is a common and useful index
when evaluating agricultural water utilisation, especially for
irrigation agriculture. The TWU refers to the total amount
of water that is invested in agricultural production in terms
of evapotranspiration and percolation (BWp). BWp, which
can be calculated using Eq. (18), is the irrigation water that
infiltrated into deep soil or groundwater mass that can neither
be reused by crops during their growth stages nor sever the
departments of the social economy.

BWp = IWC − BWF (18)

The blue water footprint (BWF) of a crop could not be sat-
isfied if additional water withdrawal for percolation was not
supplied by the reservoir or the headwork of an irrigation dis-
trict. The regional BWp could be reduced by improving the
quality of irrigation works. The TWU of wheat production in
the cropland of China can also be estimated as follows:

TWU = WF + BWp. (19)

TWU, which reflects both the water productivity and irriga-
tion efficiency, is the amount of water that is required to pro-
duce wheat at the regional scale. TWU is associated with the
climate, crop variety, water diversion ability and condition of
irrigation engineering. The WF is the most important part of
TWU. The proportion of water use consumption in the TWU
as a whole reflects the condition of agricultural water utili-
sation and the regional water conservation potential (Playan
and Mateos, 2006; Cao et al., 2012, 2014). Therefore, it is
meaningful to analyze the relationship between the WF and
TWU for the areas facing water scarcity.

Figure 2. Provincial amount of water use for wheat production in
China in 2010.

4 Results and discussions

4.1 Water footprint (WF) and total water use (TWU)

4.1.1 From the total cropland perspective

The national WF and TWU of wheat production are ap-
proximately 111 548.2 and 142 520.3 Mm3, respectively. The
data and the spatial distribution of the water use are shown
in Table 1 and Fig. 2 for the 30 provinces in mainland
China. The spatial difference of the water footprint was ob-
vious among all of the provinces of China in 2010. The
provinces with large WF values are concentrated in the
Huang–Huai–Hai Plain, while those with low WF values
mostly aggregate in south of the Yangtze River. Approxi-
mately 75.3 % of the wheat product and 70.0 % of the WF
are contributed by the northern China sub-region in contrast
to 0.85 and 1.05 % by the northeastern. At the provincial
level, large WFs are estimated for Henan (25 036.8 Mm3),
Shandong (18 577.1 Mm3), Anhui (12 357.8 m3), Hebei
(10 731.8 Mm3), Jiangsu (10 419.5 Mm3) and Xinjiang
(8913.7 Mm3). These six provinces together contribute to
69.4 % of the national total sown area, 80.0 % of the
wheat production, and 77.1 % of the wheat production-
related WF. The provinces with a WF of less than 50 Mm3

include Guangdong (3.2 Mm3), Gaungxi (8.4 Mm3), Jilin
(15.4 Mm3), Fujian (18.5 Mm3), Jiangxi (27.1 Mm3) and
Liaoning (49.2 Mm3), whose combined WF constitutes only
0.1 % of the national WF.

The national green water footprint (GWF) in wheat
cultivation in 2010 was calculated to be 71 629.7 Mm3.
The largest green water GWF was observed for
Henan (16 511.4 Mm3), Shandong (11 499.6 Mm3), An-
hui (8489.1 Mm3), Jiangsu (6883.0 Mm3) and Hebei
(6867.3 Mm3). These five provinces together account for
70.2 % of the total blue water footprint related to wheat
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Table 1.Water use of wheat production for the 30 provinces of China in 2010.

Sub-region Province Contribution Yield α BWF GWF WF BWp TWU
(%) (t ha−1) (%) (Mm3 yr−1) (Mm3 yr−1) (Mm3 yr−1) (Mm3 yr−1) (Mm3 yr−1)

Northern China

Henan 26.760 5.8 5.34 8525.4 16 511.4 25 036.8 7937.4 32 974.2
Shandong 17.873 5.8 6.02 7077.5 11 499.6 18 577.1 4346.6 22 923.7
Anhui 10.476 5.1 7.57 3868.6 8489.1 12 357.8 3060.4 15 418.1
Hebei 10.684 5.1 6.09 3864.5 6867.3 10 731.8 3327.6 14 059.4
Jiangsu 8.752 4.8 4.87 3536.5 6883.0 10 419.5 2195.0 12 614.5
Tianjin 0.462 4.8 5.00 305.1 301.0 606.0 171.7 777.8
Beijing 0.246 4.6 5.00 152.5 183.8 336.3 57.1 393.4

Northeast
Heilongjiang 0.803 3.3 3.85 250.2 852.1 1102.2 195.2 1297.4
Liaoning 0.032 4.9 4.89 17.4 31.8 49.2 10.1 59.3
Jilin 0.011 3.5 3.77 4.9 10.5 15.4 3.1 18.4

Northwest

Xinjiang 5.413 5.6 6.59 5988.2 2925.5 8913.7 4613.4 13 527.1
Shaanxi 3.506 3.5 5.66 825.5 3162.1 3987.6 558.0 4545.7
Gansu 2.178 2.9 4.34 1333.3 1484.8 2818.1 745.8 3563.9
Shanxi 2.016 3.2 4.79 636.8 1701.3 2338.1 593.3 2931.4
Neimenggu 1.435 2.9 6.65 564.3 1377.1 1941.5 685.3 2626.8
Ningxia 0.611 3.3 7.54 361.8 340.3 702.0 362.6 1064.6
Qinghai 0.324 3.7 3.00 244.4 288.8 533.2 184.7 717.9

Southeast

Hubei 2.979 3.4 5.79 665.0 3094.2 3759.2 543.1 4302.3
Zhejiang 0.214 3.7 4.79 74.1 247.5 321.6 58.2 379.9
Shanghai 0.167 3.9 5.00 88.1 135.1 223.2 56.5 279.7
Hunan 0.086 2.5 4.13 28.4 87.5 115.9 28.2 144.1
Jiangxi 0.018 2.0 4.06 4.2 23.0 27.1 4.7 31.8
Fujain 0.009 2.8 3.85 4.7 13.9 18.5 4.4 22.9
Guangdong 0.002 2.8 5.00 0.7 2.5 3.2 0.7 3.9

Southwest

Sichuan 3.713 3.4 4.88 1192.4 3236.9 4429.3 999.2 5428.5
Yunnan 0.399 1.1 4.77 69.5 890.6 960.1 45.8 1005.8
Chongqing 0.399 3.1 4.55 66.1 497.7 563.8 55.6 619.4
Guizhou 0.216 1.0 3.53 48.8 361.8 410.6 43.0 453.6
Xizang 0.211 5.2 3.00 118.5 122.4 240.9 84.1 325.0
Guangxi 0.005 1.4 4.29 1.3 7.1 8.4 1.3 9.7

China 100 4.7 5.86 39 918.6 71 629.7 111 548.2 30 972.1 142 520.3

production. At the sub-regional level, the largest and
smallest blue water footprints were in northern China
(50 735.2 Mm3) and northeastern China (894.4 Mm3), re-
spectively. The blue water footprint (BWF) related to wheat
production was 39 918.6 Mm3 in the studied year. The largest
blue water footprint in wheat cultivation was also found in
Henan (8525.4 Mm3), Shandong (7077.5 Mm3), Xinjiang
(5988.2 Mm3), Anhui (3868.6 Mm3), Hebei (3864.5 Mm3)
and Jiangsu (3536.5 Mm3). These six provinces alone
account for approximately 82.3 % of the national blue water
footprint related to wheat production. The provinces with
small green and blue water footprints in wheat production
include Hunan, Liaoning, Jilin, Fujian, Jiangxi, Guangxi and
Guangdong.

The estimatedα in the irrigation system of China is ap-
proximately 5.86 %, and the provincial value ranges from
approximately 3.00 % in Xizang and Qinghai to 7.57 %
in Anhui (Table 1). China’s blue water percolation (BWp)
is 30 972.1 Mm3, accounting for approximately 43.7 % of

the total irrigation water (70 890.7 Mm3) that is invested in
wheat production. Combining the WF and BWp, the total
water use (TWU) in the studied year was 142 520.3 Mm3.
Similarly to the WF, large TWUs were found in Henan
(32 974.2 Mm3), Shandong (2923.7 Mm3), Anhui (15 418.1
Mm3), Hebei (14 059.4 Mm3), Xinjiang (13 527.1 Mm3) and
Jiangsu (10 419.5 Mm3). These six provinces alone account
for approximately 78.2 % of the national TWU related to
wheat production. The WF occupies the main part of TWU,
and the national WF proportion in the TWU as a whole (Pw)
is 78.3 %. The provinces with a highPw are located in the
southwest, while those with a lowPw are concentrated in
northwestern China (Fig. 2).

4.1.2 Distinguishing between irrigated and rainfed
crops

Irrigated farmland produced 80.4 % of China’s wheat in
2010. Table 2 presents the provincial and sub-regional
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Figure 3. Proportions of water use in irrigated land in China, including(a) the proportion of the WFI in the WF,(b) the proportion of the
TWUI in the TWU and(c) the proportion of the WF in the TWU for irrigated crops (WFI/TWUI ).

wheat outputs, water footprint (WF) and total water use
(TWU) in irrigated and rainfed farmland. Figure 3 illustrates
the provincial WF–TWU relationship between the irrigated
farmland and total cropland. The irrigated and rainfed WFs
were 84 365.1 and 27 183.2 Mm3, accounting for 75.6 and
24.4 %, respectively, of the national WF. Irrigated land pro-
duces 84.3, 73.4, 62.6, 58.4 and 53.7 % wheat in northern,
northwestern, southeastern, southwestern and northeastern
China, contributing to 79.7, 74.2, 55.7, 48.2 and 62.5 % of
the WF, respectively.

The provinces with a large water footprint in irri-
gated land (WFI) include Henan (19 652.9 Mm3), Shan-
dong (14 781.6 Mm3), Anhui (9134.6 Mm3), Jiangsu
(8975.7 Mm3), Hebei (8822.0 Mm3) and Xinjiang
(8586.7 Mm3). The sum of the WFI in these six provinces is
up to 69 953.5 Mm3, accounting for 82.9 % of the national
WF of irrigated wheat. A large water footprint in the
rainfed land (WFR) can be found in Henan (5383.8 Mm3),
Shandong (3795.5 Mm3), Anhui (3223.2 Mm3), Shaanxi
(2058.0 Mm3), Hebei (1909.8 Mm3), Sichuan (1830.7 Mm3)
and Hubei (1785.7 Mm3). These seven provinces together
account for 73.5 % of the total water footprint related to
rainfed wheat. As illustrated in Fig. 3a, the proportions of
the WFI (or WFR) in the water footprint of the total cropland
are significantly different between provinces. In general,
the proportion of the WFI in the WF in a province that has
a large water footprint in the total cropland is high. The
proportions of the WFI in the 6 provinces (including Henan,
Shandong, Hebei, Beijing, Jiangsu, Tianjin and Xinjiang)
exceed the national level, with the highest percentages of up
to 96.3 % in Xinjiang. In contrast, this proportion is no more
than 30.0 % in the Guizhou (29.6 %), Chongqing (29.0 %)
and Yunnan (19.3 %) provinces.

The TWU is equal to the WF for rainfed crops; how-
ever, this is not the case for irrigated farmland. The TWU
for irrigated wheat (TWUI) in 2010 was 115 337.1 Mm3,

accounting for approximately 80.9 % of the TWU. The dis-
tribution pattern of the provincial proportion of TWUI in the
TWU as a whole in Fig. 3b is quite similar to the proportion
of the WFI in the WF as shown in Fig. 3a. The gap of per-
centage of the WF in the TWU for the irrigated crop (Fig. 3c)
among provinces is very small. Most of the provinces (20)
have values ranging from 70.0 to 80.0 % in Fig. 3c.

4.2 Blue and green water composition of the water
footprint (WF) and total water use (TWU)

From the perspective of the source of water resources, the
provincial proportion of the green water footprint (GWF) in
the WF in the total cropland and the composition of the TWU
in the irrigated land are shown in Fig. 3. The spatial distribu-
tion pattern of the green water proportions in both the total
cropland and the irrigated farmland (not shown in the figure)
agrees with that of precipitation. The GWF proportions are
low for the provinces in the North China Plain and northwest-
ern China, while these proportions exceed 70.0 % in most of
the provinces south of the Yangtze River. The proportions
of the green and blue water footprints for wheat production
in the total cropland in 2010 were 64.2 and 35.8 %, respec-
tively. The GWF proportion in Yunnan is 92.8 %, the highest
among the 30 provinces along with the ratio of GWF to WF.
The other regions with a GWF greater than 80.0 % include
Chongqing, Guizhou, Guangxi, Jiangxi and Hubei, at 88.3,
88.1, 84.9, 84.6, and 82.3 %, respectively. The GWF propor-
tions of Gansu, Tianjin, Xizang (Tibet), Ningxia and Xin-
jiang rank the lowest in China; the proportion in Xinjiang is
only 32.8 %.

The national proportions of the green water footprint
(GWF), blue water footprint (BWF) and blue water perco-
lation (BWp) in the TWU for the irrigated land were 38.5,
34.6 and 26.9 %, respectively. As revealed in Fig. 4, the
GWF proportions in most (21) of the provinces were

www.hydrol-earth-syst-sci.net/18/3165/2014/ Hydrol. Earth Syst. Sci., 18, 3165–3178, 2014



3172 X. C. Cao et al.: Assessing blue and green water utilisation in wheat production of China

Table 2.Provincial water footprint of wheat production in irrigated and rainfed farmland.

Sub-region Province
Irrigated Rainfed

Output BWFe BWFf GWFI WFI Output WFR
(103 t) (Mm3 yr−1) (Mm3 yr−1) (Mm3 yr−1) (Mm3 yr−1) (103 t) (Mm3 yr−1)

Northern China

Henan 2590.8 878.4 7647.0 11 127.5 19 652.9 491.5 5383.8
Shandong 1725.6 688.2 6389.3 7704.1 14781.6 333.0 3795.5
Anhui 965.2 524.4 3344.2 5266.0 9134.6 241.5 3223.2
Hebei 1077.9 437.9 3426.6 4957.5 8822.0 152.8 1909.8
Jiangsu 873.4 279.1 3257.4 5439.2 8975.7 134.7 1443.8
Tianjin 49.7 23.8 281.2 256.3 561.4 3.5 44.6
Beijing 24.3 10.5 142.0 132.8 285.3 4.1 51.0

Northeast
Heilongjiang 49.0 17.2 233.0 334.2 584.4 43.5 517.8
Liaoning 2.6 1.3 16.0 17.9 35.3 1.1 13.9
Jilin 0.7 0.3 4.6 4.7 9.6 0.5 5.8

Northwest

Xinjiang 605.3 698.9 5289.3 2598.5 8586.7 18.1 327.0
Shaanxi 217.0 78.3 747.3 1104.1 1929.6 186.8 2058.0
Gansu 150.0 90.2 1243.1 515.5 1848.9 100.9 969.2
Shanxi 156.8 58.9 577.9 682.6 1319.4 75.5 1018.8
Neimenggu 108.7 83.1 481.3 637.4 1201.8 56.6 739.7
Ningxia 50.3 54.6 307.2 127.8 489.6 20.0 212.5
Qinghai 27.1 12.9 231.5 153.9 398.2 10.1 134.9

Southeast

Hubei 202.3 70.0 595.0 1308.5 1973.5 140.8 1785.7
Zhejiang 20.3 6.3 67.8 150.7 224.8 4.4 96.8
Shanghai 17.5 7.2 80.9 99.8 187.9 1.7 35.3
Hunan 8.0 2.3 26.1 46.4 74.8 1.9 41.1
Jiangxi 1.5 0.4 3.8 10.9 15.0 0.6 12.1
Fujain 0.8 0.3 4.3 8.5 13.1 0.2 5.4
Guangdong 0.2 0.1 0.7 1.8 2.5 0.1 0.8

Southwest

Sichuan 269.1 107.0 1085.4 1406.1 2598.5 158.6 1830.7
Yunnan 16.5 5.5 64.0 116.2 185.7 29.5 774.4
Chongqing 17.0 5.5 60.6 97.4 163.5 28.9 400.3
Guizhou 10.3 3.2 45.6 72.8 121.6 14.5 289.0
Xizang 19.0 6.1 112.4 64.0 182.5 5.3 58.4
Guangxi 0.3 0.1 1.2 3.2 4.5 0.2 3.9

China 9257.3 4152.1 35 766.5 44 446.5 84 365.1 2260.8 27 183.2

greater than the national average and exceed 50.0 % in
6 provinces, namely Yunnan (50.2 %), Hubei (52.0 %), Zhe-
jiang (53.2 %), Jiangxi (55.0 %), Guangdong (55.6 %) and
Guangxi (55.7 %). In contrast, provinces with low GWF pro-
portions for irrigated wheat include Gansu (19.9 %), Xin-
jiang (19.7 %) and Ningxia (15.0 %), none of which was
greater than 20.0 %. The irrigation water utilisation coeffi-
cient (η) was 0.503 in the irrigation system of China in the
studied year, and the provincial values ranged from 0.424
(in Ningxia) to 0.678 (in Beijing). Several provinces that
are characterised by a WF that contains a large share of
BWp in irrigated land include Ningxia (42.5 %), Neimenggu
(36.3 %) and Xinjiang (34.9 %). The BWFCL proportions of
21 provinces were between 20.0 and 30.0 %. With the highest
irrigation efficiency, Beijing has a water-wasting proportion

for irrigated wheat that is lower than that of all of the studied
provinces, at only 16.7 %.

4.3 Water footprint per kilogram of wheat (WFP)

4.3.1 WFP in the total cropland

The national average WFP in 2010 was 0.968 m3 kg−1.
The results (in Fig. 5) demonstrate a great variation among
provinces. The provinces in and around the Huang–Huai–
Hai Plain are lower in WFP, while the provinces south of the
Yangtze River and northwestern China have a lower water-
use efficiency. Only three provinces have WFPs below the
national average, namely Shandong (0.902 m3 kg−1), Hebei
(0.872 m3 kg−1) and Henan (0.812 m3 kg−1). These four
provinces together produce 63.7 Mt of wheat, accumulatively
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Table 3.Documented results for the WFP of wheat production in China.

Reference Year/period WFP Crop yield Field ET Proportion of
(m3 kg−1) (t ha−1) (mm) green water

This study 2010

0.968

4.7

– 64.2 %
1.007∗ – –
0.932 (ETP) 443 66.7 %
0.971 (ETP∗) 461 64.1 %

Sun et al. (2012) 2009 1.071 4.7 508 51.0 %
Liu et al. (2007a) 2000 1.266 3.7 473 –
Liu et al. (2007c) 1999–2001 0.975 4.1 430 –
Zhang (2009) 1997–2007 1.190 4.1 484 –
Mekonnen and Hoekstra (2010) 1996–2005 1.286 3.9 505 63.8 %
Hoekstra and Hung (2005) 1995–1999 0.690 3.8 262 –

∗ assumed a sufficient irrigation.

Figure 4. Proportion of GWF (green water footprint) in the total
cropland and the composition of the TWU (total water use) in the
irrigated land in China.

contributing to 55.3 % of the total output of China. Thus, in-
creasing harvest from the regions with low WFP improves
the water productivity (WP) of the country. In contrast, some
provinces, such as Fujian, Yunnan and Xinjiang, have a WFP
greater than 1500 m3 kg−1. Xinjiang was the sixth largest
wheat producer of China in 2010 and was one of the most
promising and pressing regions reducing the water footprint.

Apart from the WFP variation, the spatial distribution of
the green water footprint per kilogram of wheat (GWFP)
and the blue water footprint per kilogram of wheat (BWFP)
is also displayed in Fig. 5. The distribution patterns of
the GWFP and BWFP are opposite. In the sunny, hot
and resource-adequate northwestern provinces, wheat is
planted extensively in some areas despite the poor precip-
itation. However, a large amount of irrigation water di-
version is required for crop growth in these areas. Some
provinces in the southwest (including Yunnan, Guizhou and

Chongqing), with an average annual precipitation of greater
than 1500 mm, require almost no irrigation for wheat pro-
duction. The climatic conditions in southeastern provinces,
such as Hunan, Fujian and Guangdong, are similar to those of
southwestern provinces. This mismatch of rainy seasons, the
growth period of wheat and the low yield lead to a relatively
low GWFP and a high BWFP. The North China Plain is the
winter-wheat-intensive centre of the country. Precipitation
during the growth period of wheat in North China is approx-
imately 300 mm; therefore, a substantial amount of irrigation
water is demanded, making the BWFP greater than that of
the southern provinces. The crop yield in the provinces in
the plain is greater than that of any other region, resulting
mainly in low WFPs in these provinces.

The calculated national WFP value in this study was com-
pared to that reported in the literature (Table 3). Because
the WFP in previous studies was calculated at the field scale
assuming sufficient irrigation, the water footprint (WF) and
consumptive water use (ET) per kilogram of wheat under ac-
tual irrigation and sufficient irrigation are listed in the table.
Hoekstra and Hung (2005) obtained a WFP of approximately
0.690 m3 kg−1, which is much lower than that in any other
study. The WFP of wheat from 1995 to 1999 should be higher
because of the low actual crop yield. The WFP in this re-
port was 0.968 m3 kg−1, which is lower than 1.266 m3 kg−1

in Liu et al. (2007a), 1.190 m3 kg−1 in Zhang (2009) and
1.286 m3 kg−1 in Mekonnen and Hoekstra (2010) and ap-
proximately the same as the water footprint of the wheat
product as estimated by Sun et al. (2013) and Liu et
al. (2007c).

The national crop yield and field evapotranspiration (ET)
for each study are also enumerated in Table 3 for a clear
comparison. The national wheat crop yield increased over
time in the last two decades and reached up to 4.7 t ha−1 in
2010. The national crop water requirement (ET under suf-
ficient irrigation) of wheat ranged from 430 to 510 mm ex-
cept for the value of 262 mm in Hoekstra and Hung (2005).
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Figure 5. The blue, green and total water footprints per kilogram of
wheat product in China.

The variation in the calculated ET from year to year is nor-
mal due to the different climatic conditions. The crop wa-
ter requirement and actual ET of this study were approxi-
mately 461 and 443 mm, respectively, and are very close to
those Liu et al. (2007a), Liu et al. (2007c) and Zhang (2009).

Distinguishing between crops that were cultivated in irri-
gated and rainfed farmlands, Liu et al. (2007a) estimated the
ET using the grid-based GEPIC model. Liu et al. (2007c) ref-
erenced a crop water requirement that was averaged for many
years from Chen et al. (1995), and Zhang (2009) referenced
a crop water requirement that was averaged for many years
from Liao (2005). In addition, the crop yield 4.1 t ha−1 in Liu
et al. (2007c) is the average of the Henan, Shandong, Hebei,
Anhui and Jiangsu Provinces instead of the national average.
Sun et al. (2012) and Mekonnen and Hoekstra (2010) ob-
tained an ET of greater than 500 mm using a different ap-
proach. Similar to our study, Sun et al. (2012) also applied
the CROPWAT model and climate data from the China Me-
teorological Data Sharing Service System (CMA) but did
not distinguish between irrigated and rainfed crops. Among
these previous studies, only three studies distinguished be-
tween the green and blue water footprints. The proportions of
green water at the field scale in both this paper and Mekon-
nen and Hoekstra (2010) were approximately 65.0 %. Our
green water proportion in the field ET, under both sufficient
and actual irrigation conditions, was greater than 51.0 and
63.8 %, the values from Sun et al. (2013) and Mekonnen
and Hoekstra (2010), respectively. It is necessary to note
that the crops that were cultivated under land-equipped ir-
rigation may not be irrigated crops. Many reasons, such as
not enough water in the source and deficient irrigation facil-
ities, may cause an insufficiency in irrigation. The gap be-
tween the actual and potential ET without water stress was
approximately 18 mm, accounting for approximately 3.9 %
of the crop water requirement. The 18 mm could equate to
4474 Mm3 of consumed water use on the field scale. The
national average irrigation efficiency in the study year was
approximately 0.503, indicating that China’s irrigation wa-
ter deficit in 2010 was approximately 890 Mm3. In addition,
the percolation loss of irrigation water during transmission
and distribution was approximately 30 972 Mm3, which is
3.5 times the irrigation water deficit. The irrigation water re-
quirement could be met if the efficiency of the irrigation sys-
tem of China was enhanced by 13.0 % (to 0.566). Increasing
the irrigation efficiency is of great importance for the utilisa-
tion of water resources.

A significant difference between our report and the previ-
ous studies is the irrigation water sources. Based on the ac-
tual irrigation from typical irrigation districts, we estimated
the gap between the crop water requirement and actual field
evapotranspiration. However, because the actual agricultural
data in irrigated land are affected by human factors (arti-
ficially influenced), we estimate water use in crop produc-
tion based on finite sample points. Therefore, the agricultural
production data and weather data cannot be processed by
gridding or spatial interpolation but by weighted averaging.
Our estimates of the water consumption and water footprint
of wheat production are better than the previous estimates
of Hoekstra and Hung (2005), Zhang (2009) and Sun et
al. (2012). However, these estimates are more accurate than
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Table 4.Crop yield and total water use of per kg wheat product for three categories.

Category
Crop yield (t ha−1)

QY
Total water use of per kg product (m3 kg−1)

QU
Total cropland Irrigated Rainfed Total cropland Irrigated Rainfed

(Y ) (YI ) (YR) (TWUP) (TWUPI ) (TWUPR)

Category I 2.4 2.8 1.7 1.64 1.762 1.492 2.099 0.71
Category II 4.9 6.8 2.4 2.83 1.165 1.155 1.208 0.96
Category III 4.1 5.4 2.1 2.57 1.522 1.618 1.140 1.42
China 4.7 6.4 2.3 2.76 1.237 1.246 1.202 1.04

are the results from the grid-based estimates as presented by
Liu et al. (2007a) and Mekonnen and Hoekstra (2010, 2011).

4.3.2 Comparison between the rainfed and irrigated
WFPs and TWUPs

The calculated national average water footprint per kilo-
gram of rainfed wheat (WFPR) was 1.202 m3 kg−1. The
results (in Fig. 6) demonstrate a great variation among
the 30 provinces. The highest WFPR was found for Zhe-
jiang, Fujian and Yunnan, with WFPR values of 2.210,
2.374 and 2.623 m3 kg−1, respectively. In contrast, some
provinces, such as Gansu, Ningxia, Jiangsu and Henan,
have wheat water footprint values of approximately 0.900–
1.100 m3 kg−1 in rainfed farmland. The national average
water footprint per kilogram of wheat in irrigated land
(WFPI) was 0.911 m3 kg−1, slightly lower than the WFPR.
The WFPI in Fujian was 1.658 m3 kg−1, ranking the high-
est among all of the provinces. The WFPI of Qinghai and
Xinjiang also surpassed 1.400 m3 kg−1. The WFPI in the
other 22 provinces were greater than the national average.
The lowest WFPI was found in Henan (0.759 m3 kg−1),
Hebei (0.818 m3 kg−1), Shanxi (0.842 m3kg−1), Shandong
(0.857 m3 kg−1), and Shaanxi (0.889 m3 kg−1), all of which
are major wheat-producing areas of China. The total wa-
ter use per kilogram of wheat in the rainfed land (TWUPR)
was equal to the WFPR. The total water use per kilo-
gram of irrigated wheat (TWUPI) in China was approxi-
mately 1.237 m3 kg−1, and the provincial value ranges from
1.065 m3 kg−1 in Henan to 2.214 m3 kg−1 in Fujian.

The crop yield when rainfed will be enhanced under irri-
gation, which is the case for water-deficient areas. The cal-
culated result based on statistical data indicates that the crop
yield in irrigated land is 2.76 times greater than that of rain-
fed wheat. However, irrigation does not always achieve both
the water-conserving and production-increasing goals. As il-
lustrated in Fig. 6, TWUPI and WFPI are not equal to those
in rainfed land. The TWUPI is greater than the WFPR in most
provinces in northern China, while the opposite trend occurs
in the south. To compare the crop yield and water footprint
per kilogram of wheat between irrigated and rainfed farm-
lands, the four indexes QW, QF, QU and QY are defined as
follows:

Figure 6. Water footprint and total water use per kilogram of wheat
product in irrigated and rainfed lands in China.

QW = ETPI/ETPR (20)

QF = WFPI/WFPR (21)

QU = TWUPI/TWUPR (22)

QY = YI/YR, (23)

where ETPI and ETPR are the field evapotranspiration (ET)
for the per-kilogram wheat product in irrigated and rainfed
lands, respectively; and ETPR = WFPR. The other param-
eters in Eqs. (20)–(23) are defined in Sect. 3 and above.
The calculated provincial results of QW, QF, QU and QY
in 2010 are shown in Fig. 7. The national QW, QF, QU
and QY are 0.72, 0.76, 1.04 and 2.76, indicating that the
crop yield, field water productivity (WPf), and total water
use can be increased by 176, 39 and 4 %, while the water
footprint (WF) can be decreased by approximately 28.0 %
when wheat is irrigated. Irrigation helps achieve the dual
benefit of yield increase and water conservation at the field
scale in almost all of the provinces of China. Neverthe-
less, the estimated results from the water footprint perspec-
tive and based on the regional scale indicate that an ex-
tra 0.044 m3 of water resources are required for irrigated
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Figure 7. Provincial value of QU, QW, QY and QF in 2010.

land compared to the water amount in rainfed land to pro-
duce 1 kg of wheat product. Irrigation increases the crop
yield and reduces the water footprint per kilogram of prod-
uct while increasing the total water use of China’s wheat
production. The QW and QF in most of the 30 studied
provinces are lower than 1, which is not the case for QW.
The provinces can be divided into three categories accord-
ing to QU value: (I) QU< 0.900; (II) 0.900< QU< 1.100
and (III) QU> 1.100. The provinces with low QU val-
ues, including Yunnan, Hunan, Jiangxi, Zhejiang, Shang-
hai and Guizhou, belong to Category I; with QU val-
ues approximately 1.000, the 10 provinces Hebei, Shanxi,
Chongqing, Fujian, Anhui, Guangxi, Henan Shandong,
Hubei, and Shaanxi belong to Category II; and the remain-
ing 14 provinces fall into Category III. The QW and QF in
the three categories are below 1.00, while the QU in reaches
up to 1.42 in Category III.

The contributions to the country of the three categories
for wheat output, sown area, WF, TWU and IWC are shown
in Fig. 7. In addition, the crop yield and TWU of the per-
kilogram wheat product for the three categories as well as
the QU and QY (including the values in the total cropland,
irrigated land and rainfed land) are listed in Table 4.

The total water use per kilogram of product in the irri-
gated (TWUPI) and rainfed (TWUPR, WFPR) farmlands of
Category I is 1.492 and 2.099 m3 kg−1, respectively, and the
value of QU is 0.71. Irrigation conserves water resources by
29 % while increasing the crop yield by 64 % in this cat-
egory. Water-conserving and production-increasing targets
can be achieved simultaneously through irrigation in these
provinces. Category I provinces should expand the wheat
acreage and irrigation area as far as the water-use efficiency
is concerned. However, all of the provinces of Category I are
located in southern China, where climatic conditions are not
suitable for the cultivation of wheat but are suitable for that
of rice. As illustrated in Fig. 8, the wheat planting area and
output of Category I account for only 3.5 and 1.1 %, respec-
tively, of the amounts nationally. This category contributes to

27 
 

 623 

Fig.8. Contributions of three categories to the wheat production indicators. 624 

  625 

Figure 8. Contributions of three categories to the wheat production
indicators.

1.8 % of the water footprint, 1.6 % of the total water use and
only 0.8 % of the irrigation water capacity to the whole coun-
try. Therefore, reducing the water investment of wheat pro-
duction makes is not necessary to increase the wheat yield or
relieving the water resource pressure in China. Moreover, the
crop yield of this category was only 2.4 t ha−1, significantly
lower than that of other regions. It is unrealistic to depend on
these areas to produce more wheat in China.

The calculated QY and QU were 2.83 and 0.96 in Cat-
egory II. Irrigation conspicuously increases the yield yet
hardly reduces the water footprint. This category, which en-
compasses all of the major wheat-producing areas in the
North China Plain, safeguards China’s food security. In 2010,
68.7 % of the sown area, 74.7 % of the total output, 69.4 % of
the water footprint, 68.6 % of the total water use and 64.8 %
of the irrigation water capacity of wheat production across
the country are contributed by Category II. The WFP and
TWUP in this category were 0.899 and 1.165 m3 kg−1, less
than the national average. Therefore, producing more wheat
in this category is instrumental to promoting the country’s
water-use efficiency. In reality, however, with an annual per
capita water resource volume of approximately 400 m3, the
North China Plain is one of the most water-deficient regions
of China; in addition, water pollution is also a serious issue
facing these provinces. Effective measures, such as adopting
water-conserving irrigation technology to promote irrigation
efficiency, should be taken to protect agricultural production
from the effects of water crisis.

The QY in Category III was 2.57, indicating that the crop
yield could be increased by 157 % when wheat is irrigated.
The QU increases up to 1.42, indicating plenty of water
waste during wheat production. This category contributes to
24.4 % of the output, 28.8 % of the water footprint, 29.8 %
of the total water use and 34.4 % of the irrigation water to
China’s total. The provinces with high QY and QU values
belong to Category III and are located in droughty northwest-
ern China, whereby massive irrigation water is demanded to
withdraw due to scarce rainfall. In the meantime, the irri-
gation efficiency is low (no more than 0.500), resulting in
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a large amount of water waste in irrigated farmland. With
these two drawbacks, this category is not suitable for pro-
ducing irrigated wheat as far as the water efficiency is con-
cerned. However, this category is essential for China’s food
security due to a few advantages. The climatic condition with
sufficient sunlight and heat is conducive to crop growth, and
the provinces in Category III together produce nearly one-
quarter (24.2 %) of the national wheat production. In addi-
tion, the total water use per kilogram of wheat in the to-
tal and irrigated farmlands is 1.522 and 1.618 m3 kg−1 (Ta-
ble 4), much higher than that of Category II and the national
average. The proportions of blue water use for percolation
in some provinces of Category II, are very high, such as in
Ningxia (42.5 %), Neimenggu (36.3 %), Xinjiang (34.9 %)
and Qinghai (31.7 %). These high WPF and BWp propor-
tions signify a great water saving potential. The irrigation
efficiency should be improved further, and the blue water
footprints should be reduced for water conservation and to
increase production.

5 Conclusions

Studies of the crop water footprint at a macroscale (global or
national) frequently suffer from limitations in terms of data
availability and quality. By distinguishing between the irri-
gated and rainfed crops, the contribution of this study is the
utilisation of the actual statistical data from typical irriga-
tion districts and the calculation of the crop water footprint
and the total water use at the regional scale. The major find-
ings of the current study are as follows: (i) the green water
related to China’s wheat production plays a dominant role in
the water footprint, while it is roughly equal to the blue water
footprint in the total water use; (ii) a large portion of the wa-
ter footprint is depleted during delivery and cannot be reused
during the crop growth period; and (iii) irrigation increases
the crop yield and reduces the water footprint per kilogram
of wheat product dramatically, also indicating that more wa-
ter resources need to be invested in crop production, leading
to the total water per unit of irrigated wheat being greater
than that of rainfed crops. It is important to compare the wa-
ter productivity (water use per unit of product) between the
irrigated and rainfed farmlands only when the water utilisa-
tion is assessed on the regional scale.

This study agrees with previous studies in terms of the im-
portance of green water in China’s wheat production, espe-
cially for field evapotranspiration (consumption water use).
Compared to rainfed crops, obtaining the double benefits of
increasing the yield and conserving water in irrigated land is
an unattainable objective for some arid provinces. The calcu-
lated result is compared to the measured water productivity
and virtual water values from previous studies. It is difficult
to attribute differences in the estimates from various studies
to specific factors and to assess the quality of our new esti-
mates relative to the quality of previous estimates. The data

authenticity defines the accuracy of the water footprint cal-
culation result. In this study, we collected a large amount of
data regarding agricultural production, and we tried to de-
termine a water footprint value as close to the actual value
as possible. An unavoidable drawback of this study is that
the water footprint we estimated is only for the representa-
tive year. Decision making requires long-term serial historic
data sets of actual data and of high quality. Databases regard-
ing agricultural production should be built by the government
in the future in cooperation with scientific and technological
workers.
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