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Abstract. The direct sampling technique, belonging to the since the 1960s is the Markov-chain (MC) simulation: in
family of multiple-point statistics, is proposed as a nonpara-its classical form, it is a linear model which cannot simu-
metric alternative to the classical autoregressive and Markoviate the variability and persistence at different scales. So-
chain-based models for daily rainfall time-series simulation.lutions to deal with this limitation consist of introducing
The algorithm makes use of the patterns contained insidexogenous climatic variables and large-scale circulation in-
the training image (the past rainfall record) to reproduce thedexes Hay et al, 1991, Bardossy and Platé992 Katz and
complexity of the signal without inferring its prior statistical Parlange1993 Woolhiser et al.1993 Hughes and Guttorp
model: the time series is simulated by sampling the train-1994 Wallis and Griffiths 1997 Wilby, 1998 Kiely et al,
ing data set where a sulfficiently similar neighborhood exists.1998 Hughes et a].1999, lower-frequency daily rainfall co-
The advantage of this approach is the capability of simulat-variates Wilks, 1989 Briggs and Wilks 1996 Jones and
ing complex statistical relations by respecting the similarity Thornton 1997 Katz and Zhengl999 or an index based on
of the patterns at different scales. The technique is appliedhe short-term daily historical or previously generated record
to daily rainfall records from different climate settings, using (Harrold et al, 2003a b; Mehrotra and Sharma2007a
a standard setup and without performing any optimizationMehrotra and Sharm&0078 as conditioning variables for
of the parameters. The results show that the overall statisthe estimation of the MC parameters. By doing this, nonlin-
tics as well as the dry/wet spells patterns are simulated acearity is introduced in the prior model, and the MC param-
curately. Also the extremes at the higher temporal scale areters change with time as a function of some specific low-
reproduced adequately, reducing the well known problem offrequency fluctuations. An alternative method proposed is
overdispersion. model nesting\(Vang and Nathgr2002 Srikanthan 2004
2005 Srikanthan and Pegrara009, which implies the cor-
rection of the generated daily rainfall using a multiplicative
. factor to compensate the bias in the higher-scale statistics.
1 Introduction These techniques generally allow a better reproduction of the
statistics up to the annual scale, but they imply the estimation
of a more complex prior model and cannot completely cap-
ture a complex dependence structure.
In this paper, we propose the use of some lower-frequency
covariates of daily rainfall in a completely unusual frame-
ork: the direct sampling (DS) techniquBldriethoz et al.
010, which belongs to multiple-point statistics (MPS). In-
mtroduced byGuardiano and Srivastayd 993 and widely

The stochastic generation of rainfall time series is a key
topic for hydrological and climate science applications: the
challenge is to simulate a synthetic signal honoring the
high-order statistics observed in the historical record, re-
specting the seasonality and persistence from the daily t
the higher temporal scales. Among the different propose
techniques, exhaustively reviewed 8harma and Mehrotra
(2010, the most commonly adopted approach to the proble
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developed during the last decadstrebelle 2002 Allard information used by MPS to simulate a certain process is
et al, 2006 Zhang et al. 2006 Arpat and Caers2007, based on theraining image(TI) or training data set the
Honarkhah and Caer201Q Straubhaar et al2011;, Tah-  data set constituted of one or more variables used to infer the
masebi et a).2012, MPS is a family of geostatistical tech- statistical relations and occurrence probability of any datum
niques widely used in spatial-data simulations and particu-in the simulation. The TI may be constituted of a concep-
larly suited to pattern reproduction. MPS algorithms use atual model instead of real data, but in the case of the rainfall
training image; i.e., a data set to evaluate the probability distime series it is more likely to be a historical record of rainfall
tribution (pdf) of the variable simulated at each point (in time measurements. Theimulation grid(SG) is a time-referenced
or space), conditionally to the values present in its neighborvector in which the generated values are stored during the
hood. In the particular case of the DS technique, the consimulation. Following a simulation path which is usually ran-
cept of training image is taken to the limit by avoiding the dom, the SG is progressively filled with simulated values
computation of the conditional pdf and making a randomand becomes the actual output of the simulation. Gtie-
sampling of the historical data set where a pattern similarditioning dataare a group of given data (e.qg., rainfall mea-
to the conditioning data is found. If the training data set is surements) situated in the SG. Being already informed, no
representative enough, these techniques can easily reprodusinulation occurs at those time steps. The presence of con-
high-order statistics of complex natural processes at differentlitioning data affects, in their neighborhood, the conditional
scales. MPS has already been successfully applied to the sinhaw used for the simulation and limits the range of possible
ulation of spatial rainfall occurrence patterdjcik et al, patterns. MPS, as well some MC-based algorithms for rain-
2009. In this paper, we test the DS technique on the simula-fall simulation (see Secl), may include the use @fuxiliary
tion of daily rainfall time series. The aim is to reproduce the variablesto condition the simulation of the target variable.
complexity of the rainfall signal up to the decennial scale, Auxiliary variables may either be known (fully or partially)
simulating the occurrence and the amount at the same timand used to guide the simulation, or they may be unknown
with the aid of a multivariate data set. Similar algorithms per- but still cosimulated because their structures contain impor-
forming a multivariate simulation had been previously de- tant characteristics of the signal. For rainfall time series it
veloped byYoung (1994 and Rajagopalan and La(1999 could be, for example, covariates of the original or previously
using a bootstrap-based approach. As discussed in detail isimulated data (e.g., the number of wet days in a past period),
Sect.2.3 the advantage of DS with respect to the mentioneda correlated variable for which the record is known, a theo-
techniques is the possibility to have a variable high-orderretical variable that imposes a periodicity or a trend (e.g., a
time-dependence, without incurring excessive computatiorsinusoid function describing the annual seasonality over the
since the estimation of the-dimensional conditional pdf is data). Finally, thesearch neighborhoot$ a moving window
not needed. Moreover, we propose a standard setup for rain- i.e., the portion of time series located in the past and future
fall simulation: an ensemble of auxiliary variables and fixed neighborhood of each simulated value — used to retrieve the
values for the main parameters required by the direct sameata eventi.e., the group of time-referenced values used to
pling algorithm, suitable for the simulation of any stationary condition the simulation.
rainfall time series, without the need of calibration. The tech-
nique is tested on three time series from different climatic2.2 The direct sampling algorithm
regions of Australia. The paper is organized as follows: in
Sect.2 the DS algorithm is introduced and compared with Classical MPS implementations create a catalog of the possi-
the existing resampling techniques. The data set used, thile neighbor patterns to evaluate the conditional probability
proposed setup and the method of evaluation are described iof occurrence for each event with respect to the considered
Sect.3. The statistical analysis of the simulated time series isneighborhood. This may imply a significant amount of mem-
presented and discussed in Sdand Sect5is dedicated to  ory and always limits the application to categorical variables.
the conclusions. On the contrary, the DS algorithm generates each value by
sampling the data from the Tl where a sufficiently similar
neighborhood exists. The DS implementation used in this pa-
2 Methodology per is calledeeSs€Straubhagr2011). The following is the
main workflow of the algorithm for the simulation of a single
In this section we recall the basics of multiple-point statistics variable. For the multivariate case see the last paragraph of
and we focus on the direct sampling algorithm. The data sethis section.

used is then presented as well as the methods of evaluation. Let us denoter =[xy, ..., x,] the time vector represent-
ing the SGy =[v1, ..., yn] the one representing the Tl and
2.1 Background on multiple-point statistics Z(-) the target variable, object of the simulation, defined at

each element af andy. Before the simulation begins, all
Before entering in the details of the DS algorithm, let continuous variables are normalized using the transformation
us introduce some common elements of MPS. The wholeZ — Z - (max(Z) — min(Z))~! in order to have distances
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(see sted) in the range [0, 1]. During the simulation, the un- This procedure is repeated for the simulation at eaaln-
informed time steps of the SG are visited in a random ordertil the entire SG is covered. Figuteillustrates the iterative
The random simulation patte {1, 2, ..., M}isobtainedby simulation using the DS technique and stresses some of its
sampling without replacement the discrete uniform distribu-peculiarities. First, simulating (x;) in a random order al-
tionU (1, M) whereM is the SG length. At each uninformed lows x to be progressively populated at nonconsecutive time
x;, the following steps are executed: steps. Therefore, the simulation at eachan be conditioned
i on both past and future, as opposed to the classical Markov-
1. The data everd (x) = {Z(Xr+hy), ---» Z(X1+n,)} ISTE~ chain techniques, that use a linear simulation path starting

trieved from the SG according to a fixed neighborhood o the beginning of the series, allowing conditioning on
of radiusR centered orn;. It consists of at moswV in- past only.

formed time steps, closest 1. This defines a set of | the early iterations, the closest informed time steps used
lags H = {h1, ..., hn}, with [2;| < R andn < N. The 4 condition the simulation are located far from and its
size ofd (x;) is therefore limited by the user-defined pa- ,,mper is limited by the search window: i.e., conditioning
rameterN and. the available informed time steps inside ;g mainly based on large past and future time lags. On the
the search neighborhood. contrary, the final iterations dispose of a more populated SG,
conditioning is thus done on small time lags since only the
closestN values are considered. This variable time-lag prin-
ciple may not respect the autocorrelation on a specific time
lag rigorously, but it should preserve a more complex sta-
3. A distanceD(d(x;), d(y;)) — i.e., a measure of dis- tistical relationship, which cannot be explored exhaustively
similarity between the two data events — is calculated.using a fixed-dependence model.
For categorical variables (e.g., the dry/wet rainfall se- The DS can simulate multiple variables together similarly
quence), it is given by the formula to the univariate case, dealing with a vector of variables
Z(x;) and considering a data evefj different for eachkth
variable, defined by, and R;. Unlike the implementation
presented iMariethoz et al(2010, DeeSselso uses a spe-
) cific acceptance thresholfi, for each variable. Stef of
aj = { 1 !f Z(x./') a Z(yj) (1) the algorithm is repeated until a candidate with a distance
0 if Z(x;)=2Z(y;). below the threshold for all variables is found. If this con-
dition is not met, the scan stops at the prescribed TI frac-
tion F and the error for each candidateandkth variable is
computed with 'ihe following formulaky (y;) = (D (dy (x;),
1 di(y)—T) T, ~, whereD(., -) is defined as in step. Fi-
D (x;), d(yi)) = ;Z|Z(x./) —Z(yj) 1. ) nally, the can]aidate minimizing mak(y;)) is assigned to
j=1 Z(x;). Note that the entire data vectdi(x,) is simulated in
one iteration, reproducing exactly the same combination of
values found for all the variables at the sampled time step,
excluding the conditioning data, already present in the SG.
This feature, although reducing the variability in the simula-
|tion, has been adopted to accurately reproduce the correlation
between variables.

2. A random time stepy; in y is visited and the corre-
sponding data everndt(y;), defined according té7, is
retrieved to be compared with(x;).

l n
D@x), dy)==3 aj,
j=1

while for continuous variables the following one is
used:

wheren is the number of elements of the data event.
The elements ofl (x,), independently from their posi-

tion, play an equivalent role in conditioning the simu-
lation of Z(x;). Note that, using the above distance for-
mulas, the normalization is not needed for categorical
variables, while for the continuous ones it ensures dis-

tances in the range [0, 1]. . . - . .
ge [0. 1] 2.3 Comparison with existing resampling techniques

4. If D(d(x;), d(y;)) is below a fixed threshold™ —
i.e., the two data events are sufficiently similar — the it- The resampling principle is at the base of some already
eration stops and the datury;) is assigned t& (x;). proposed techniques for rainfall and hydrologic time-series
Otherwise, the process is repeated from p@inntil a ~ simulation. There exist two principal families of resampling
suitable candidatd(y;) is found or the prescribed Tl technigues: the block bootstraygogel and Shallcros4996
fraction limit F is scanned. Srinivas and Srinivasa2005 Ndiritu, 2011), which implies
) _ the resampling with replacement of entire pieces of time se-
5. If a Tl fraction F has been scanned and the distanceyieg with the aim of preserving the statistical dependence at
D(d(x;), d(y;)) is aboveT for each visitedy;, the 3 gcale minor than the block size, and thaearest neigh-
datum Z(y;") minimizing this distance is assigned t0 o pootstrap (k-NN), based on single-value resampling us-
Z(x1). ing a pattern similarity rule. This latter family of techniques,
introduced byEfron (1979 and inspired by the jackknife
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Beginning SG Z(xt) ' Tl _ Zy

Xt Yt
Early iterations

Final iterations

Figure 1. Sketch of the sequential simulation of a rainfall time series performed by the direct sampling technique: the dashed rectangle
represents the search neighborhood of ragtiuthe datum being simulated is in green and the ones composing the data event are in red. Note
the nonexact match between the data event in the SG and the one in the TI.

variance estimation, has seen several developments in hy- Going back to DS, the similarities with the k-NN bootstrap
drology (Young, 1994 Lall and Sharmal1996 Lall et al, are that both (i) make a resampling of the historical record
1996 Rajagopalan and Lalll999 Buishand and Brandsma conditioned by an ensemble of auxiliary/predictor variables,
2001, Wojcik and Buishand2003 Clark et al, 2004. Hav- and (ii) compute a distance as a measure of dissimilarity
ing different points in common with the DS technique, its between the simulating time step and the candidates consid-
general framework is briefly presented in the following. Eachered for resampling. Nevertheless, there are several points
datum inside the historical record is characterized by a vectoof divergence in the rationale of the techniques: (i) in the
d, of predictor variables, analogous to the data event for DSk-NN bootstrap, the distance is used to evaluate the resam-
For example, to generaf#(x;) one could usd; =[Z(x;_1), pling probability, while in the DS it is used to evaluate the
Z(x;—2,U(xy), U(x;—1)], meaning that the simulation is con- resampling possibility. This means that, using the k-NN re-
ditioned to the two previous time steps Bfand the present sampling, the conditional pdf is a function of the distance,
and previous time steps @f, a correlated variable. In the while in the DS the distance is only used to define its sup-
predictor variables spadB, the historical data as well as port. In fact, using the DS, the spateis not restricted to
Z(x;), which still has to be generated, are represented ashe k nearest neighbors but it is bounded by the distance
points whose coordinates are defineddyy Consequently, thresholds: outside the boundary, the resampling probabil-
proximity in D corresponds to similarity of the condition- ity is zero, while inside, it follows the occurrence of the data
ing patterns.Z(x;) is simulated by sampling an empirical in the scanned TI fraction, without being a function of the
pdf constructed on thé points closest t&Z (xt); the closer  pattern resemblance. Only in cases where no candidate is
the point is, the higher is the probability to sample the cor-found, it is the closest neighbor outside the bounded portion
responding historical datum. Proposed variations of the al-of D to be chosen for resampling. The latter can be consid-
gorithm include transformations of the predictor variablesered as an exceptional condition which usually does not lead
space, the application of kernel smoothing to the k-NN pdfto a good simulation and seldom occurs using an appropri-
to increase the variability beyond the historical values, andate setup and training data set. (ii) Using the DS, the con-
different methods to estimate the parameters of the modelgitional pdf remains implicit, its computation is not needed;
e.g.,k and the kernel bandwidth. i.e., the historical record is randomly visited instead and the
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first datum presenting a distance below the threshold is sam¥able 1. Summary of the data set used.
pled. This is an advantage since it avoids the problem of the

high-dimensional conditional pdf estimation which limits the  Location Station Period  Record Missing
degree of conditioning in bootstrap techniquSsgrma and (yeary '@23? (di?t;

Mehrotrg 2010. (iii) The k-NN technique considers a fixed

time-dependence, while it varies during the simulation in the Alice Springs  A.S. Airport ~~1940-2013 = 26347 305
. . . . . . Sydney S. Observatory Hill 1858-2013 56 662 184
case of DS. (iv) Finally, the simulation path (in the SG)is al-  pawin D. Airport 1941-2013 26356 0

ways linear in the k-NN technique, while it is random using
DS, allowing conditioning on future time steps of the target

variable. rainfall amount, which is the target of the simulation. The

first two auxiliary variables are covariates used to force the
o algorithm to preserve the interannual structure and the day-
3 Application to-day correlation, which are known to exist a priori. The oth-
. _ _ers are used to reproduce the dry/wet pattern and the annual
The data set chosen for this study is composed of three dailye,50n4jity accurately. Moreover, any unknown dependence
rainfall time series from different climatic regions of Aus-  the gaily rainfall signal is generically taken into account in
tralia: Alice Springs (hot desert), with a very dry rainfall ¢ gimyation by using a data event of variable length as ex-
regime and long droughts, Sydney (temperate), with a farained in Sect2.2 It has to be remarked that, apart from (3)

wetter climate due to its proximity to the ocean, and Darwin (4), which are known deterministic functions imposed as

(tropical savannah), showing an extreme variability between, o, gitioning data, the rest of the auxiliary variables are trans-

the dry and wet seasons. _ formations of the rainfall datum, automatically computed on
Tablel presents the data set used: the chosen stations pror. T and cosimulated with the daily rainfall.

vide a considerable record of about 70 years for Darwin and 15 summarize. the main parameters of the algorithm are

Alice Springs and 150 years for Sydney. Any gaps or trendsye fo|iowing: the maximum scanned Tl fractidhe (0, 1],

have been explicitly kept to test the behavior of the algorithmy, o caarch neighborhood radifis the maximum number of

with incomplete or nonstationary data sets. The direct SaMyeighborsi, both expressed in number of elements of the

pling algorithm treats gaps in the time series in a simple Way ime vector, and the distance threshale (0, 1]. Recall that,

ea_lch. data event found in the Tlis rejecte_d_if it.contains aNYanart fromF, each parameter is set independently for each
missing data. This allows incomplete training images to beg;, 1ated variable. The setup shown in TaBlis used to-

dealt with in a safe way, but, as one could expect, a larg&ether with F = 0.5 and proposed as a standard for daily
quantity of missing data, especially if sparsely distributed, r3jnta|| time series. A sensitivity analysis, not shown here,
may lead to a poor simulatioMariethoz and Renar@010  ,nfirmed the generality of this setup which is not the result

shoyv how ,DS can be used for.data recc.)n.sltrucnon. of a numerical optimization on a specific data set, but it is

_ Since rainfall is a complex signal exhibiting not only mul- o6 in accordance to the criteria used to define the order
tiscale time-dependence but also intermittence, the classizy extension of the variable time-dependence, as shown be-
cal approach is to split the daily time-series generation in

_ . low. Applying it to any type of single-station daily rainfall
two steps: the occurrence model, where the dry/wet daily seg4t4 set, the user should obtain a reliable simulation without

quence is generated using a Markov chain, and the amourﬁeeding to change any parameter or give supplementary in-

model, where the rainfall amount is simulated on wet daysg,mation, An additional refinement of the setup is also pos-
using an estimation of the conditional pdf (e.§oe and sible, keeping in mind the following general rules:
Stern 1982. The simulation framework proposed here is

radically different: we use the direct sampling technique to — R limits the maximum time-lag dependence in the sim-
generate the complete time series in one step, simulating  ulation and should be set according to the length of
multiple variables together. In particular, the Tlused isbased  the largest sufficiently repeated structure or frequency

on the past daily rainfall record and composed of the follow- in the signal that has to be reproduced. Being inter-
ing variables (Table): (1) the average rainfall amount on ested to condition the simulation upon the inter-annual
a 365-day centered moving window (365 MA; mm), (2) the fluctuations (visible in the 10-year MA time series in
moving sum of the current and the previous day amounts Fig. 9), we setR3s5Ms= Rrainfall = 5000 for the 365 MS
(2MS; mm), (3) and (4) two out-of-phase triangular func- and daily rainfall variables. We recommend keepitig
tions (trl and tr2) with frequency of 365.25 days, similar to below the half of the training data set’s total length, to
trigonometric coordinates expressing the position of the day  condition upon sufficiently repeated structures only. Re-
in the annual cycle, (5) the dry/wet sequence (i.e., a categori-  garding dry/wet pattern conditioning, we prefer limit-
cal variable indicating the position of a day inside the rainfall ing the variable time-dependence within a 21-day win-

pattern: 1 — wet, 0 — dry, 2 — solitary wet, and 3 — wet day at dow (Rgqw = 10). This window should be set between
the beginning or at the end of a wet spell), and (6) the daily the median and the maximum of the wet-spell-length
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Table 2. Standard setup proposed for rainfall simulation. The parameters are search windowRragiasimum number of neighborg

and distance thresholfl. The variables are (1) the 365-day moving average (365 MA), (2) the moving sum of the current and the previous
day amounts (2 MS), (3) and (4) annual seasonality triangular functions (trl and tr2), (5) the dry/wet sequence (dw), and (6) the daily rainfall
amount as the target variable. On the right, a portion of multivariate Tl is given as example.

Variable R N T

(1)365MA 5000 21 0.05 M

(2) 2Ms 1 1 0.05

(3)tr1 1 1 005 1 7 e

(4) tr2 1 1 005 — = ~

LA ] HE AL ]|

(5) dw 10 5 005 L TR

(6)rainfall 5000 21 0.05 ponal, e
istribution, in order to properly catch the continuity o ones may induce a bias in the marginal distribution an
distribution, in ord I h th inuity of ind bias in th inal distributi d
the rainfall events over multiple days. increase the phenomenon of verbatim copy; i.e., the ex-

_ L act reproduction of an entire portion of data by oversam-
— N controls the complexity of the conditioning structure pling the same pattern inside the TI. For these reasons,

but also influences the specific time-lag dependence. o racommend keeping the proposed standard value
For instance, if one increaseé, higher-order depen- T =0.05 for all the variables.

dencies are represented, but the weight accorded to a
specific neighbor in evaluating the distance between
patterns becomes lower. This leads to a less-accurate
specific-time-lag conditioning, but a more complex
time-dependence is respected on average. For the rain-
fall amount and 365 MA variablesy « R follows the
same setup rule as faRgw. In this way, in the ini-

tial iterations, the conditioning neighbors will be sparse
in a 10001-day window K =5000) to respect low-
frequency fluctuations, whereas, in the final iterations,
they will be contained in av-day window to respect
the within-spell variability. The standard value pro-
posed here N3ssma = N3ssma =21) corresponds ap- 31
proximately to the spell-distribution median of the Dar-

win time series, remaining in the appropriate range for og already shown ithugunova and H({2008, Mariethoz

the other considered climates. Conversalyy is kept & g). (2010, Honarkhah and Caer®01Q and Hu et al.
lower in order to focus the conditioning on the small- (2014 in case of a nonstationary target variable, the simula-
scale dry/wet patternVqy =5 gave in general the best {ion can be constrained to reproduce the same type of trend
result in terms of dry/wet pattern reproduction. found in the TI by making use of an auxiliary variable. The

— For 2MS, trl and tr2, the time-dependence is limited one prOPF’Sed here is the intgger vegIOf: (1, 2’_ - M, .
to lag 1 by usingV = R = 1. This combination should where M is the length of the time series, tracking the posi-
not be changed since we have no interest in expandiné'on of each datum inside the TL is assigned to the SG as

or varying the time-lag dependence for the mentionegconditioning datum with the following parameter;, = 1,
variables. Ny =1 andT; =0.01. According to the thresholdi;, the

sampling is therefore constrained to a neighborhood of the
— T determines the tolerance in accepting a patternsame time step inside the TI; for example, in the Darwin case,
The sensitivity analysis done until now on different being M =26 356 andl;, =0.01 (1% of the total variation
types of heterogeneitieMgerschman et a12013 con- allowed), the sampling to simulaté(x,) is constrained to
firmed that the optimum generally lies in the interval the intervaly, & 263 (days). In this way, the marginal distri-
[0.01, 0.07] (1—7 % of the total variation). High&rval- bution is respected, but the local variability is restricted to
ues usually lead to poorly simulated patterns, but lowerthe one found inside the training data set, reproducing the

— F should be set sufficiently high to have a consistent
choice of patterns but a value close to 1 — i.e., all of
the Tl is scanned each time — may lower the variability
of the simulations and increase the verbatim copy. Us-
ing a training data set representative enough, the optimal
value corresponds to a Tl fraction containing some rep-
etitions of the lowest-frequency fluctuation that should
be reproduced. Considering the randomness of the TI
scan, the valué¢' = 0.5 chosen in this paper is sufficient
to serve the purpose.

Imposing a trend
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same trend. The following remarks are noteworthy: (i) to correlation index between the datum at timand those at
avoid an unnecessary restriction of the sampliigshould  previous time steps— i, without considering the linear de-
correspond to the maximum time interval for which the tar- pendence with the in-between observations. For a stationary
get variable can be considered stationary; (ii) the simulatiortime series the sample PACF is expressed as a function of the
should not be longer than the training data set, having no batime lagk with the following formula:

sis to extrapolate the trend in the past or future; (iii) the local _ R
variability is not completely limited by.: a pattern outside 2 (Xr: /) =Corr[X, —EX{Xi-1, oy Xint1}),
the tolerance range (i.e., with a distance over the threshold)

could be sampled if no better candidate is found. X = EXeonl (Ximnra, - X‘_l})]’ )

whereE (X, [{X;—1, ..., X:_n+1}) isthe best linear predictor
knowing the observationsX;_1, ..., X;—p+1}. p(h) varies

in the range [0, 1], with high values for a highly autocor-

To test the proposed technique, the visual comparison Ofg|ateq process. This indicator is widely used in time series
the generated time series with the reference as well as sey, 5y sis since it gives information about the persistence of
eral groups of statistical indicators is considered. The eMihe signal. The autocorrelation function could be used in-

pirical cumulative probability distributions, obtained using geaq "hut PACF is preferred here since it shows the autocor-
the Kaplan-Meier estimatek@plan and Meier1958, of  tejation at each lag independently. In the case of daily rain-

the daily, the annual and decennial rainfall time series, 0byy 'the partial autocorrelation is usually very low, while the
tained by summing up the daily rainfall, are compared usingpjgher_scale rainfall may present a more important specific
quantile-quantile (qq) plots. Moreover, the miniMUM MOV- e |ag finear dependence. As usually done in the absence
ing average — i.e., the minimum value found on the Mov- ¢ ny prior knowledge abouk,, the 5-95 % confidence lim-

Ing average of each time series —is computed using differéns o an uncorrelated white noise are adopted to assess the
running window lengths of up to 60 years to assess the efg;gpificance of the PACF indexes. Since the time series used
ficiency of the algorithm in preserving the long-term depen-jn this paper are not necessarily stationary, any sample PACF
dence characteristics of the rainfal. is computed from the standardized sigid] obtained by ap-

The daily rainfall statistics have been analyzed separatel3b|ying moving average estimatiah, and standard deviation
for each month considering the average value of the follow-§

ing indicators: the probability of occurrence of a wet day and
the mean, standard deviation, minimum and maximum on,s _ X: —m;

q
H .. . X = s N, = 1 -1 X .
wet days only. For instance, the standard deviation is com-’ S i = (29 +1) Z =+

3.2 Validation

; filters with the following formula:

puted on the wet days of each month of January, then the = .

average value is taken as representative of that time series. L ol 2

We therefore obtain a unique value for the reference and a  §=|(2¢+1) Z (X14j —is) ,
j=—q

distribution of values for the simulations represented with a
box plot. g+l<t<n-—gq, 4
Another validation criteri(_)n l_Jse(_JI is the compa_rison of thewhereq — 2555 (15-year centered moving window). It is
dry- and_ wet-sp_ell-length dlstrlbut_lons. Each series is t_ransimportant to note that this operation may exclude from
formed into a binary sequence with zeros corre_spondmg 9he PACE computation a consistent part of the signal
dry days anq ones to the wet days. Then, countlng the nu.m(q + 1<t <n—q), especially on the higher timescale. In the
ber of days inside each dry and wet spell, we obtain the d'S'case of the data sets used, the annual time series is reduced

trlbu'gons_ of dry- ?nd v_vrit_-spell lengths, Wh!cg_can be com- 4, |ess than 60 values for Alice Springs and Darwin: a barely
pared using qq plots. This Is an Important indicator since sufficient quantity, considering that the minimum amount of

determines, for example, the efficiency of the algorithm in data for a useful sample PACF estimation suggesteidy

repr.oducing long droughts_or wet periods. and Jenking1976 is of about 50 observations.
Since DS works by pasting values from the Tl to the SG,

it is straightforward to keep track of the original location of

each value in the training image. If successive values in thel Results and discussion

Tl are also next to each other in the SG, then a patch is identi-

fied. A multiple box-plot is then used to represent the numberT0 evaluate the proposed technique, a group of 100 realiza-

of patches found in each realization as a function of the patctiions of the same length as the reference is generated for each

length to keep track of the verbatim-copy effect. of the three considered data sets to obtain a sufficiently sta-
The last group of indicators considered is the sample parble response in both the average and the extreme behavior.

tial autocorrelation function (PACFBox and Jenkinsl976  The setup used is the one presented in Sewith the fixed

of the daily, monthly and annual rainfall. Given a time- Parameter values shown in TatfleThe obtained results are

seriesX,, the sample PACF is the estimation of the linear Shown and discussed in the following section.
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Alice Springs (reference)
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Figure 2. Visual comparison between the simulated and the reference daily rainfall (mm) time series: 10-year (left-column panels) and
100-day (right-column panels) random samples.

4.1 Visual comparison reference: the extreme events inside the 10-year samples are

reproduced with an analogous frequency and magnitude. The
Figure 2 shows the comparison between random samplegnnual seasonality, particularly pronounced in the Darwin se-
from both the simulated and the reference time series. FoFi€s, is accurately simulated as well as the persistence of the
each data set, the generated rainfall looks similar to the
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Figure 3. qq plots of the empirical probability rainfall amount (mm) distributions: median of the realizations (blue dots), 5th and 95th per-
centiles (dashed lines). The bisector (solid line) indicates the exact quantile match.

rainfall events, visible in the 100-day samples. These aspectsimulation. It is the case of the Darwin series, with a mis-

are evaluated quantitatively in the following sections. match of the very upper quantiles. Moreover, being that the
_ S DS is an algorithm based on resampling, the distribution of
4.2 Multiple-scale probability distribution the simulated values is limited by the range of the training

. - o data set: this is shown in the Alice Springs and Sydney qq
The qq plots of the rainfall empirical distributions are pre- pjots, where the distribution of the last quantiles is clearly
sented in Fig3, where all the range of quantiles is consid- tryncated at the maximum value found in the reference. This
ered. The distribution of the daily rainfall (computed on wet yag it is normally expected using this type of technique: the

days only) is generally respected, although some extremegs algorithm is of course not able to extrapolate extreme
that are present only once in the reference and, in particular,

at the start or end of the time series, may not appear in the
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Alice Springs Sydney Darwin
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Figure 4. Box plots of the average wet-day probability, mean daily rainfall amount (mm) and its standard deviation per month. The solid line
indicates the reference.

intensities higher than the ones found in the Tl at the scale o&ince it is not focused on modeling the tail of the probability
the simulated signal. distribution.

On the contrary, the distribution of the rainfall amount on
the solitary wet days is accurately respected, with some real4.3 Annual seasonality and extremes
izations including higher extremes than the reference. More
importantly, the annual and 10-year rainfall distributions arefrigure4 shows the principal indicators describing the annual
correctly reproduced and do not show overdispersion. Thisseasonality of the reference and the generated time series:
phenomenon, common among the classical techniques base@ch different season is accurately reproduced by the algo-
on daily scale conditioning, consists in the scarce represenrithm, with almost no bias. The probability of having a wet
tation of the extremes and underestimation of the variancejay, usually imposed by a prior model in the classical para-
at the higher scale. This problem is avoided here because @etric techniques, is indirectly obtained by sampling from
variable dependence is considered, up to a 5000-day radiuge rainfall patterns of the appropriate period of the year. This
on the 365 MA auxiliary variable, that helps preserving the goal is mainly achieved using the auxiliary variables trl and
low-frequency fluctuations. We also see that, at this scale, D$r2 as conditioning data (see Seg}.
is capable of generating extremes higher than those found in The simulation of the average extremes, shown in Eig.
the reference, meaning that new patterns have been genesiso follows the reference rather accurately.
ated using the same values at the daily scale. This results is
purely based on the reproduction of higher-scale patterns: thg 4 Rainfall patterns and verbatim copy
acceptance threshold value chosen for the 365 MA auxiliary
variable allows enough freedom to generate new patterns alrhe statistical indicators regarding the dry/wet patterns
though maintaining an unbiased distribution. Neverthelessghown in Fig.6 demonstrate the efficiency of the proposed
this approach is not meant to replace a specific techniqugys setup in simulating long droughts or wet periods ac-
to predict long recurrence-time events at any temporal scalesording to the training data set: the dry- and wet-spell
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Figure 5. Box plots of the average extremes per month (mm). The solid line indicates the reference.

distributions are preserved and extremes higher than the ondke peculiarities of both climates with a sharp rising from the
present in the Tl are also simulated. annual to the 60-year scale.

The verbatim-copy box plots show the distribution of the  According to this indicator, the simulation of the long-
time series pieces exactly copied from the Tl as a functionterm structure is fairly accurate. The negative bias, lower than
of their size for the ensemble of the realizations: the num-0.5 mm, shows a modest tendency to underestimate the min-
ber of patches decreases exponentially with their size. Thémum moving average from the annual to the decennial scale
phenomenon is mainly limited to a maximum of a few 8-day for wet climates such as Sydney and Darwin.
patches, with isolated cases of up to 14 days.

The 10-year rainfall moving sum, shown at the bottom of
Fig. 6, illustrates the low-frequency time series structure: the
quantiles of the simulations at each time step confirm that the
overall variability is correctly simulated, but the local fluc- The specific linear time-dependence of the generated and ref-
tuations do not match the reference. For example, the Darerence signals has been evaluated at different scales using the
win reference series shows a clear upward trend which is nosample PACF (Fig8, Eq.4).
present in the superposed randomly picked DS realization. At the daily scale, the data show the same level of auto-
Generally, the Tl is supposed to be stationary or the nonstaeorrelation at lag 1 and a low but significant linear depen-
tionarity should be at least described by an auxiliary variable.dence until lag 3 for Alice Springs and Sydney, while Darwin
If it is not the case, as for the Darwin time series, the algo-presents a longer tailing which asymptotically approaches
rithm honors the marginal distribution of the reference, but it the confidence bounds of an uncorrelated noise. The DS sim-
does not reproduce a specific trend. This problem is treatedlation shows a tendency to a slight underestimation of the
separately in Sect.6. lag 1 PACF, with a maximum error around 0.1 for Sydney.

The minimum moving average on different window Since the algorithm operates in a nonparametric way and im-
lengths of up to 60 years (Fi@) gives information about poses a variable time-dependence, the eventuality of modi-
the long-term structure of rainfall. The zero values are in ac-fying the structure of the daily signal cannot be excluded a
cordance with the dry spell distribution shown in F&g for priori, for this reason the PACF has been calculated up to the
example, Alice Springs presents a zero-minimum moving av-20th lag, assuring that no extra linear-dependence has been
erage until 5 months, meaning that it contains dry spells ofintroduced.
this length. Alice Springs and Sydney show a very different At the monthly scale, the linear time-dependence struc-
long-term structure: the former with long dry spells, the lat- ture is clearly related to the annual seasonality, with a nega-
ter with a wider range of minimum values. Darwin presentstive autocorrelation around lag 6 and a positive one around

lag 12. The climate characterization is also evident: from
Alice Springs to Darwin we see a more marked seasonality

4.5 Linear time-dependence
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Figure 6. Main indicators describing the rainfall pattern: qq plots of the dry- and wet-spell (days) distributions, verbatim-copy box plots as
function of the patch size (days) and daily 10-year MS time series (mm) of the reference (black line), median, 5th and 95th percentiles of the
realizations (gray lines) and a randomly picked simulation (dashed blue line).

reflected in the PACF. The simulation follows the referencethe timescale considered here, it is difficult to determine if

fairly well, with a maximum error of approximateh 0.1. the reference PACF is really indicative of an effective linear
At the annual scale, the limited length of the time seriesdependence.

leads to wider confidence bounds for the nonsignificant val-

ues (see SecB.2). The reference does not show a clear lin- 4.6 Nonstationary simulation

ear time-dependence structure which is not similarly repro-

duced by the simulation. Some more relevant discrepancieg;q reg shows the Darwin time-series simulation preserving
are present in the Darwin series, showing a more disconting,e same nonstationarity contained in the reference by us-
uous structure. However, using such a limited data set foring the technique proposed in SegfL The 10-year moving
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sum plot shows that the trend and low-frequency fluctuation Reproducing the specific trend found in the data is also
present in the reference are accurately simulated: the medigpossible by making use of an additional auxiliary variable
of the realizations follows the reference and a variability of which simply restricts the sampling to a local portion of the
about 4 m between the 5th and 95th percentiles is presentl. In this way, any type of nonstationarity presentin the Tl is
Regarding the other considered statistical indicators, the perautomatically imposed on the simulation. The Darwin exam-
formance appears to be essentially the same as for the stgle demonstrates the efficiency of this approach in reproduc-
tionary simulation: the only remarkable difference is a mod-ing 100 different realizations showing the same type of trend
est positive bias in the maximum wet-period length. and marginal distribution. This setup can be useful to simu-
The fact that, to impose the trend, the sampling is restrictedate multiple realizations of a specific nonstationary scenario
to a local region of the reference reduces the local variabil-regardless of its complexity.
ity with respect to the stationary simulation. Consequently, a In conclusion, the direct sampling technique used with
modest increase of the verbatim-copy effect occurs. the proposed generic setup can produce realistic daily rain-
This technique can be applied in cases where a specifiall time-series replicates from different climates without the
nonstationarity extended to high-order moments should beneed of calibration or additional information. The generality
imposed; e.g., exploring the uncertainty of a given past orand the total automation of the technique makes it a powerful
future scenario, where a simple trend or seasonality adjusttool for routine use in scientific and engineering applications.
ment is insufficient and an overly complex parametric model

would be necessary to preserve the same long-term behavior. . )
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