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Abstract. The direct sampling technique, belonging to the
family of multiple-point statistics, is proposed as a nonpara-
metric alternative to the classical autoregressive and Markov-
chain-based models for daily rainfall time-series simulation.
The algorithm makes use of the patterns contained inside
the training image (the past rainfall record) to reproduce the
complexity of the signal without inferring its prior statistical
model: the time series is simulated by sampling the train-
ing data set where a sufficiently similar neighborhood exists.
The advantage of this approach is the capability of simulat-
ing complex statistical relations by respecting the similarity
of the patterns at different scales. The technique is applied
to daily rainfall records from different climate settings, using
a standard setup and without performing any optimization
of the parameters. The results show that the overall statis-
tics as well as the dry/wet spells patterns are simulated ac-
curately. Also the extremes at the higher temporal scale are
reproduced adequately, reducing the well known problem of
overdispersion.

1 Introduction

The stochastic generation of rainfall time series is a key
topic for hydrological and climate science applications: the
challenge is to simulate a synthetic signal honoring the
high-order statistics observed in the historical record, re-
specting the seasonality and persistence from the daily to
the higher temporal scales. Among the different proposed
techniques, exhaustively reviewed bySharma and Mehrotra
(2010), the most commonly adopted approach to the problem

since the 1960s is the Markov-chain (MC) simulation: in
its classical form, it is a linear model which cannot simu-
late the variability and persistence at different scales. So-
lutions to deal with this limitation consist of introducing
exogenous climatic variables and large-scale circulation in-
dexes (Hay et al., 1991; Bardossy and Plate, 1992; Katz and
Parlange, 1993; Woolhiser et al., 1993; Hughes and Guttorp,
1994; Wallis and Griffiths, 1997; Wilby, 1998; Kiely et al.,
1998; Hughes et al., 1999), lower-frequency daily rainfall co-
variates (Wilks, 1989; Briggs and Wilks, 1996; Jones and
Thornton, 1997; Katz and Zheng, 1999) or an index based on
the short-term daily historical or previously generated record
(Harrold et al., 2003a, b; Mehrotra and Sharma, 2007a;
Mehrotra and Sharma, 2007b) as conditioning variables for
the estimation of the MC parameters. By doing this, nonlin-
earity is introduced in the prior model, and the MC param-
eters change with time as a function of some specific low-
frequency fluctuations. An alternative method proposed is
model nesting (Wang and Nathan, 2002; Srikanthan, 2004,
2005; Srikanthan and Pegram, 2009), which implies the cor-
rection of the generated daily rainfall using a multiplicative
factor to compensate the bias in the higher-scale statistics.
These techniques generally allow a better reproduction of the
statistics up to the annual scale, but they imply the estimation
of a more complex prior model and cannot completely cap-
ture a complex dependence structure.

In this paper, we propose the use of some lower-frequency
covariates of daily rainfall in a completely unusual frame-
work: the direct sampling (DS) technique (Mariethoz et al.,
2010), which belongs to multiple-point statistics (MPS). In-
troduced byGuardiano and Srivastava(1993) and widely
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developed during the last decade (Strebelle, 2002; Allard
et al., 2006; Zhang et al., 2006; Arpat and Caers, 2007;
Honarkhah and Caers, 2010; Straubhaar et al., 2011; Tah-
masebi et al., 2012), MPS is a family of geostatistical tech-
niques widely used in spatial-data simulations and particu-
larly suited to pattern reproduction. MPS algorithms use a
training image; i.e., a data set to evaluate the probability dis-
tribution (pdf) of the variable simulated at each point (in time
or space), conditionally to the values present in its neighbor-
hood. In the particular case of the DS technique, the con-
cept of training image is taken to the limit by avoiding the
computation of the conditional pdf and making a random
sampling of the historical data set where a pattern similar
to the conditioning data is found. If the training data set is
representative enough, these techniques can easily reproduce
high-order statistics of complex natural processes at different
scales. MPS has already been successfully applied to the sim-
ulation of spatial rainfall occurrence patterns (Wojcik et al.,
2009). In this paper, we test the DS technique on the simula-
tion of daily rainfall time series. The aim is to reproduce the
complexity of the rainfall signal up to the decennial scale,
simulating the occurrence and the amount at the same time
with the aid of a multivariate data set. Similar algorithms per-
forming a multivariate simulation had been previously de-
veloped byYoung (1994) andRajagopalan and Lall(1999)
using a bootstrap-based approach. As discussed in detail in
Sect.2.3, the advantage of DS with respect to the mentioned
techniques is the possibility to have a variable high-order
time-dependence, without incurring excessive computation
since the estimation of then-dimensional conditional pdf is
not needed. Moreover, we propose a standard setup for rain-
fall simulation: an ensemble of auxiliary variables and fixed
values for the main parameters required by the direct sam-
pling algorithm, suitable for the simulation of any stationary
rainfall time series, without the need of calibration. The tech-
nique is tested on three time series from different climatic
regions of Australia. The paper is organized as follows: in
Sect.2 the DS algorithm is introduced and compared with
the existing resampling techniques. The data set used, the
proposed setup and the method of evaluation are described in
Sect.3. The statistical analysis of the simulated time series is
presented and discussed in Sect.4 and Sect.5 is dedicated to
the conclusions.

2 Methodology

In this section we recall the basics of multiple-point statistics
and we focus on the direct sampling algorithm. The data set
used is then presented as well as the methods of evaluation.

2.1 Background on multiple-point statistics

Before entering in the details of the DS algorithm, let
us introduce some common elements of MPS. The whole

information used by MPS to simulate a certain process is
based on thetraining image(TI) or training data set: the
data set constituted of one or more variables used to infer the
statistical relations and occurrence probability of any datum
in the simulation. The TI may be constituted of a concep-
tual model instead of real data, but in the case of the rainfall
time series it is more likely to be a historical record of rainfall
measurements. Thesimulation grid(SG) is a time-referenced
vector in which the generated values are stored during the
simulation. Following a simulation path which is usually ran-
dom, the SG is progressively filled with simulated values
and becomes the actual output of the simulation. Thecon-
ditioning dataare a group of given data (e.g., rainfall mea-
surements) situated in the SG. Being already informed, no
simulation occurs at those time steps. The presence of con-
ditioning data affects, in their neighborhood, the conditional
law used for the simulation and limits the range of possible
patterns. MPS, as well some MC-based algorithms for rain-
fall simulation (see Sect.1), may include the use ofauxiliary
variablesto condition the simulation of the target variable.
Auxiliary variables may either be known (fully or partially)
and used to guide the simulation, or they may be unknown
but still cosimulated because their structures contain impor-
tant characteristics of the signal. For rainfall time series it
could be, for example, covariates of the original or previously
simulated data (e.g., the number of wet days in a past period),
a correlated variable for which the record is known, a theo-
retical variable that imposes a periodicity or a trend (e.g., a
sinusoid function describing the annual seasonality over the
data). Finally, thesearch neighborhoodis a moving window
– i.e., the portion of time series located in the past and future
neighborhood of each simulated value – used to retrieve the
data event; i.e., the group of time-referenced values used to
condition the simulation.

2.2 The direct sampling algorithm

Classical MPS implementations create a catalog of the possi-
ble neighbor patterns to evaluate the conditional probability
of occurrence for each event with respect to the considered
neighborhood. This may imply a significant amount of mem-
ory and always limits the application to categorical variables.
On the contrary, the DS algorithm generates each value by
sampling the data from the TI where a sufficiently similar
neighborhood exists. The DS implementation used in this pa-
per is calledDeeSse(Straubhaar, 2011). The following is the
main workflow of the algorithm for the simulation of a single
variable. For the multivariate case see the last paragraph of
this section.

Let us denotex = [x1, . . . , xn] the time vector represent-
ing the SG,y = [y1, . . . ,ym] the one representing the TI and
Z(·) the target variable, object of the simulation, defined at
each element ofx andy. Before the simulation begins, all
continuous variables are normalized using the transformation
Z 7−→ Z · (max(Z) − min(Z))−1 in order to have distances
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(see step3) in the range [0, 1]. During the simulation, the un-
informed time steps of the SG are visited in a random order.
The random simulation patht ∈ {1, 2, . . . , M} is obtained by
sampling without replacement the discrete uniform distribu-
tionU(1, M) whereM is the SG length. At each uninformed
xt , the following steps are executed:

1. The data eventd(xt ) = {Z(xt+h1), . . . , Z(xt+hn)} is re-
trieved from the SG according to a fixed neighborhood
of radiusR centered onxt . It consists of at mostN in-
formed time steps, closest toxt . This defines a set of
lagsH = {h1, . . . , hn}, with |hi | ≤R andn ≤ N . The
size ofd(xt ) is therefore limited by the user-defined pa-
rameterN and the available informed time steps inside
the search neighborhood.

2. A random time stepyi in y is visited and the corre-
sponding data eventd(yi), defined according toH , is
retrieved to be compared withd(xt ).

3. A distanceD(d(xt ), d(yi)) – i.e., a measure of dis-
similarity between the two data events – is calculated.
For categorical variables (e.g., the dry/wet rainfall se-
quence), it is given by the formula

D(d (xt ) , d (yi)) =
1

n

n∑
j=1

aj ,

aj =

{
1 if Z

(
xj

)
6= Z

(
yj

)
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(
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)
= Z

(
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)
,
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while for continuous variables the following one is
used:

D(d (xt ) , d (yi)) =
1

n

n∑
j=1

|Z
(
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)
− Z

(
yj

)
|, (2)

wheren is the number of elements of the data event.
The elements ofd(xt ), independently from their posi-
tion, play an equivalent role in conditioning the simu-
lation ofZ(xt ). Note that, using the above distance for-
mulas, the normalization is not needed for categorical
variables, while for the continuous ones it ensures dis-
tances in the range [0, 1].

4. If D(d(xt ), d(yi)) is below a fixed thresholdT –
i.e., the two data events are sufficiently similar – the it-
eration stops and the datumZ(yi) is assigned toZ(xt ).
Otherwise, the process is repeated from point2 until a
suitable candidated(yi) is found or the prescribed TI
fraction limit F is scanned.

5. If a TI fraction F has been scanned and the distance
D(d(xt ), d(yi)) is aboveT for each visitedyi , the
datumZ(y∗

i ) minimizing this distance is assigned to
Z(xt ).

This procedure is repeated for the simulation at eachxt un-
til the entire SG is covered. Figure1 illustrates the iterative
simulation using the DS technique and stresses some of its
peculiarities. First, simulatingZ(xt ) in a random order al-
lowsx to be progressively populated at nonconsecutive time
steps. Therefore, the simulation at eachxt can be conditioned
on both past and future, as opposed to the classical Markov-
chain techniques, that use a linear simulation path starting
from the beginning of the series, allowing conditioning on
past only.

In the early iterations, the closest informed time steps used
to condition the simulation are located far fromxt and its
number is limited by the search window; i.e., conditioning
is mainly based on large past and future time lags. On the
contrary, the final iterations dispose of a more populated SG,
conditioning is thus done on small time lags since only the
closestN values are considered. This variable time-lag prin-
ciple may not respect the autocorrelation on a specific time
lag rigorously, but it should preserve a more complex sta-
tistical relationship, which cannot be explored exhaustively
using a fixed-dependence model.

The DS can simulate multiple variables together similarly
to the univariate case, dealing with a vector of variables
Z(xt ) and considering a data eventdk different for eachkth
variable, defined byNk andRk. Unlike the implementation
presented inMariethoz et al.(2010), DeeSsealso uses a spe-
cific acceptance thresholdTk for each variable. Step3 of
the algorithm is repeated until a candidate with a distance
below the threshold for all variables is found. If this con-
dition is not met, the scan stops at the prescribed TI frac-
tion F and the error for each candidateyi andkth variable is
computed with the following formula:Ek(yi) = (D(dk(xt ),
dk(yi)) − Tk)T

−1
k , whereD(·, ·) is defined as in step3. Fi-

nally, the candidate minimizing max(E(yi)) is assigned to
Z(xt ). Note that the entire data vectorZ(xt ) is simulated in
one iteration, reproducing exactly the same combination of
values found for all the variables at the sampled time step,
excluding the conditioning data, already present in the SG.
This feature, although reducing the variability in the simula-
tion, has been adopted to accurately reproduce the correlation
between variables.

2.3 Comparison with existing resampling techniques

The resampling principle is at the base of some already
proposed techniques for rainfall and hydrologic time-series
simulation. There exist two principal families of resampling
techniques: the block bootstrap (Vogel and Shallcross, 1996;
Srinivas and Srinivasan, 2005; Ndiritu, 2011), which implies
the resampling with replacement of entire pieces of time se-
ries with the aim of preserving the statistical dependence at
a scale minor than the block size, and thek-nearest neigh-
bor bootstrap (k-NN), based on single-value resampling us-
ing a pattern similarity rule. This latter family of techniques,
introduced byEfron (1979) and inspired by the jackknife
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Fig. 1. Sketch of the sequential simulation of a rainfall time-series performed by the Direct Sampling: the

dashed rectangle represents the search neighborhood of radius R, the datum being simulated is in green and the

ones composing the data event are in red. Note the non-exact match between the data event in the SG and the

one in the TI.

Table 1. Summary of the dataset used.

Location Station Period [years] Record length [days] Missing data [days]

Alice Springs A.S.Airport 1940-2013 26347 305

Sydney S.Observatory Hill 1858-2013 56662 184

Darwin D.Airport 1941-2013 26356 0

20

Figure 1. Sketch of the sequential simulation of a rainfall time series performed by the direct sampling technique: the dashed rectangle
represents the search neighborhood of radiusR, the datum being simulated is in green and the ones composing the data event are in red. Note
the nonexact match between the data event in the SG and the one in the TI.

variance estimation, has seen several developments in hy-
drology (Young, 1994; Lall and Sharma, 1996; Lall et al.,
1996; Rajagopalan and Lall, 1999; Buishand and Brandsma,
2001; Wojcik and Buishand, 2003; Clark et al., 2004). Hav-
ing different points in common with the DS technique, its
general framework is briefly presented in the following. Each
datum inside the historical record is characterized by a vector
d t of predictor variables, analogous to the data event for DS.
For example, to generateZ(xt ) one could used t = [Z(xt−1),
Z(xt−2, U(xt ), U(xt−1)], meaning that the simulation is con-
ditioned to the two previous time steps ofZ and the present
and previous time steps ofU , a correlated variable. In the
predictor variables spaceD, the historical data as well as
Z(xt ), which still has to be generated, are represented as
points whose coordinates are defined byd t . Consequently,
proximity in D corresponds to similarity of the condition-
ing patterns.Z(xt ) is simulated by sampling an empirical
pdf constructed on thek points closest toZ(xt); the closer
the point is, the higher is the probability to sample the cor-
responding historical datum. Proposed variations of the al-
gorithm include transformations of the predictor variables
space, the application of kernel smoothing to the k-NN pdf
to increase the variability beyond the historical values, and
different methods to estimate the parameters of the model;
e.g.,k and the kernel bandwidth.

Going back to DS, the similarities with the k-NN bootstrap
are that both (i) make a resampling of the historical record
conditioned by an ensemble of auxiliary/predictor variables,
and (ii) compute a distance as a measure of dissimilarity
between the simulating time step and the candidates consid-
ered for resampling. Nevertheless, there are several points
of divergence in the rationale of the techniques: (i) in the
k-NN bootstrap, the distance is used to evaluate the resam-
pling probability, while in the DS it is used to evaluate the
resampling possibility. This means that, using the k-NN re-
sampling, the conditional pdf is a function of the distance,
while in the DS the distance is only used to define its sup-
port. In fact, using the DS, the spaceD is not restricted to
the k nearest neighbors but it is bounded by the distance
thresholds: outside the boundary, the resampling probabil-
ity is zero, while inside, it follows the occurrence of the data
in the scanned TI fraction, without being a function of the
pattern resemblance. Only in cases where no candidate is
found, it is the closest neighbor outside the bounded portion
of D to be chosen for resampling. The latter can be consid-
ered as an exceptional condition which usually does not lead
to a good simulation and seldom occurs using an appropri-
ate setup and training data set. (ii) Using the DS, the con-
ditional pdf remains implicit, its computation is not needed;
i.e., the historical record is randomly visited instead and the

Hydrol. Earth Syst. Sci., 18, 3015–3031, 2014 www.hydrol-earth-syst-sci.net/18/3015/2014/



F. Oriani et al.: Simulation of rainfall time series from different climatic regions 3019

first datum presenting a distance below the threshold is sam-
pled. This is an advantage since it avoids the problem of the
high-dimensional conditional pdf estimation which limits the
degree of conditioning in bootstrap techniques (Sharma and
Mehrotra, 2010). (iii) The k-NN technique considers a fixed
time-dependence, while it varies during the simulation in the
case of DS. (iv) Finally, the simulation path (in the SG) is al-
ways linear in the k-NN technique, while it is random using
DS, allowing conditioning on future time steps of the target
variable.

3 Application

The data set chosen for this study is composed of three daily
rainfall time series from different climatic regions of Aus-
tralia: Alice Springs (hot desert), with a very dry rainfall
regime and long droughts, Sydney (temperate), with a far
wetter climate due to its proximity to the ocean, and Darwin
(tropical savannah), showing an extreme variability between
the dry and wet seasons.

Table1 presents the data set used: the chosen stations pro-
vide a considerable record of about 70 years for Darwin and
Alice Springs and 150 years for Sydney. Any gaps or trends
have been explicitly kept to test the behavior of the algorithm
with incomplete or nonstationary data sets. The direct sam-
pling algorithm treats gaps in the time series in a simple way:
each data event found in the TI is rejected if it contains any
missing data. This allows incomplete training images to be
dealt with in a safe way, but, as one could expect, a large
quantity of missing data, especially if sparsely distributed,
may lead to a poor simulation.Mariethoz and Renard(2010)
show how DS can be used for data reconstruction.

Since rainfall is a complex signal exhibiting not only mul-
tiscale time-dependence but also intermittence, the classi-
cal approach is to split the daily time-series generation in
two steps: the occurrence model, where the dry/wet daily se-
quence is generated using a Markov chain, and the amount
model, where the rainfall amount is simulated on wet days
using an estimation of the conditional pdf (e.g.,Coe and
Stern, 1982). The simulation framework proposed here is
radically different: we use the direct sampling technique to
generate the complete time series in one step, simulating
multiple variables together. In particular, the TI used is based
on the past daily rainfall record and composed of the follow-
ing variables (Table2): (1) the average rainfall amount on
a 365-day centered moving window (365 MA; mm), (2) the
moving sum of the current and the previous day amounts
(2 MS; mm), (3) and (4) two out-of-phase triangular func-
tions (tr1 and tr2) with frequency of 365.25 days, similar to
trigonometric coordinates expressing the position of the day
in the annual cycle, (5) the dry/wet sequence (i.e., a categori-
cal variable indicating the position of a day inside the rainfall
pattern: 1 – wet, 0 – dry, 2 – solitary wet, and 3 – wet day at
the beginning or at the end of a wet spell), and (6) the daily

Table 1.Summary of the data set used.

Location Station Period Record Missing
(years) length data

(days) (days)

Alice Springs A. S. Airport 1940–2013 26 347 305
Sydney S. Observatory Hill 1858–2013 56 662 184
Darwin D. Airport 1941–2013 26 356 0

rainfall amount, which is the target of the simulation. The
first two auxiliary variables are covariates used to force the
algorithm to preserve the interannual structure and the day-
to-day correlation, which are known to exist a priori. The oth-
ers are used to reproduce the dry/wet pattern and the annual
seasonality accurately. Moreover, any unknown dependence
in the daily rainfall signal is generically taken into account in
the simulation by using a data event of variable length as ex-
plained in Sect.2.2. It has to be remarked that, apart from (3)
and (4), which are known deterministic functions imposed as
conditioning data, the rest of the auxiliary variables are trans-
formations of the rainfall datum, automatically computed on
the TI and cosimulated with the daily rainfall.

To summarize, the main parameters of the algorithm are
the following: the maximum scanned TI fractionF ∈ (0, 1],
the search neighborhood radiusR, the maximum number of
neighborsN , both expressed in number of elements of the
time vector, and the distance thresholdT ∈ (0, 1]. Recall that,
apart fromF , each parameter is set independently for each
simulated variable. The setup shown in Table2 is used to-
gether withF = 0.5 and proposed as a standard for daily
rainfall time series. A sensitivity analysis, not shown here,
confirmed the generality of this setup which is not the result
of a numerical optimization on a specific data set, but it is
rather in accordance to the criteria used to define the order
and extension of the variable time-dependence, as shown be-
low. Applying it to any type of single-station daily rainfall
data set, the user should obtain a reliable simulation without
needing to change any parameter or give supplementary in-
formation. An additional refinement of the setup is also pos-
sible, keeping in mind the following general rules:

– R limits the maximum time-lag dependence in the sim-
ulation and should be set according to the length of
the largest sufficiently repeated structure or frequency
in the signal that has to be reproduced. Being inter-
ested to condition the simulation upon the inter-annual
fluctuations (visible in the 10-year MA time series in
Fig. 9), we setR365MS= Rrainfall = 5000 for the 365 MS
and daily rainfall variables. We recommend keepingR

below the half of the training data set’s total length, to
condition upon sufficiently repeated structures only. Re-
garding dry/wet pattern conditioning, we prefer limit-
ing the variable time-dependence within a 21-day win-
dow (Rdw = 10). This window should be set between
the median and the maximum of the wet-spell-length
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Table 2. Standard setup proposed for rainfall simulation. The parameters are search window radiusR, maximum number of neighborsN
and distance thresholdT . The variables are (1) the 365-day moving average (365 MA), (2) the moving sum of the current and the previous
day amounts (2 MS), (3) and (4) annual seasonality triangular functions (tr1 and tr2), (5) the dry/wet sequence (dw), and (6) the daily rainfall
amount as the target variable. On the right, a portion of multivariate TI is given as example.

Variable R N T

(1) 365 MA 5000 21 0.05

(2) 2 MS 1 1 0.05
(3) tr1 1 1 0.05
(4) tr2 1 1 0.05

(5) dw 10 5 0.05

(6) rainfall 5000 21 0.05

distribution, in order to properly catch the continuity of
the rainfall events over multiple days.

– N controls the complexity of the conditioning structure
but also influences the specific time-lag dependence.
For instance, if one increasesN , higher-order depen-
dencies are represented, but the weight accorded to a
specific neighbor in evaluating the distance between
patterns becomes lower. This leads to a less-accurate
specific-time-lag conditioning, but a more complex
time-dependence is respected on average. For the rain-
fall amount and 365 MA variables,N � R follows the
same setup rule as forRdw. In this way, in the ini-
tial iterations, the conditioning neighbors will be sparse
in a 10 001-day window (R = 5000) to respect low-
frequency fluctuations, whereas, in the final iterations,
they will be contained in aN -day window to respect
the within-spell variability. The standard value pro-
posed here (N365MA = N365MA = 21) corresponds ap-
proximately to the spell-distribution median of the Dar-
win time series, remaining in the appropriate range for
the other considered climates. Conversely,Ndw is kept
lower in order to focus the conditioning on the small-
scale dry/wet pattern.Ndw = 5 gave in general the best
result in terms of dry/wet pattern reproduction.

– For 2 MS, tr1 and tr2, the time-dependence is limited
to lag 1 by usingN = R = 1. This combination should
not be changed since we have no interest in expanding
or varying the time-lag dependence for the mentioned
variables.

– T determines the tolerance in accepting a pattern.
The sensitivity analysis done until now on different
types of heterogeneities (Meerschman et al., 2013) con-
firmed that the optimum generally lies in the interval
[0.01, 0.07] (1–7 % of the total variation). HigherT val-
ues usually lead to poorly simulated patterns, but lower

ones may induce a bias in the marginal distribution and
increase the phenomenon of verbatim copy; i.e., the ex-
act reproduction of an entire portion of data by oversam-
pling the same pattern inside the TI. For these reasons,
we recommend keeping the proposed standard value
T = 0.05 for all the variables.

– F should be set sufficiently high to have a consistent
choice of patterns but a value close to 1 – i.e., all of
the TI is scanned each time – may lower the variability
of the simulations and increase the verbatim copy. Us-
ing a training data set representative enough, the optimal
value corresponds to a TI fraction containing some rep-
etitions of the lowest-frequency fluctuation that should
be reproduced. Considering the randomness of the TI
scan, the valueF = 0.5 chosen in this paper is sufficient
to serve the purpose.

3.1 Imposing a trend

As already shown inChugunova and Hu(2008), Mariethoz
et al. (2010), Honarkhah and Caers(2010) and Hu et al.
(2014), in case of a nonstationary target variable, the simula-
tion can be constrained to reproduce the same type of trend
found in the TI by making use of an auxiliary variable. The
one proposed here is the integer vectorL = [1, 2, . . . ,M],
whereM is the length of the time series, tracking the posi-
tion of each datum inside the TI.L is assigned to the SG as
conditioning datum with the following parameters:RL = 1,
NL = 1 andTL = 0.01. According to the thresholdTL, the
sampling is therefore constrained to a neighborhood of the
same time step inside the TI; for example, in the Darwin case,
beingM = 26 356 andTL = 0.01 (1 % of the total variation
allowed), the sampling to simulateZ(xt ) is constrained to
the intervalyt ± 263 (days). In this way, the marginal distri-
bution is respected, but the local variability is restricted to
the one found inside the training data set, reproducing the
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same trend. The following remarks are noteworthy: (i) to
avoid an unnecessary restriction of the sampling,TL should
correspond to the maximum time interval for which the tar-
get variable can be considered stationary; (ii) the simulation
should not be longer than the training data set, having no ba-
sis to extrapolate the trend in the past or future; (iii) the local
variability is not completely limited byL: a pattern outside
the tolerance range (i.e., with a distance over the threshold)
could be sampled if no better candidate is found.

3.2 Validation

To test the proposed technique, the visual comparison of
the generated time series with the reference as well as sev-
eral groups of statistical indicators is considered. The em-
pirical cumulative probability distributions, obtained using
the Kaplan–Meier estimate (Kaplan and Meier, 1958), of
the daily, the annual and decennial rainfall time series, ob-
tained by summing up the daily rainfall, are compared using
quantile–quantile (qq) plots. Moreover, the minimum mov-
ing average – i.e., the minimum value found on the mov-
ing average of each time series – is computed using different
running window lengths of up to 60 years to assess the ef-
ficiency of the algorithm in preserving the long-term depen-
dence characteristics of the rainfall.

The daily rainfall statistics have been analyzed separately
for each month considering the average value of the follow-
ing indicators: the probability of occurrence of a wet day and
the mean, standard deviation, minimum and maximum on
wet days only. For instance, the standard deviation is com-
puted on the wet days of each month of January, then the
average value is taken as representative of that time series.
We therefore obtain a unique value for the reference and a
distribution of values for the simulations represented with a
box plot.

Another validation criterion used is the comparison of the
dry- and wet-spell-length distributions. Each series is trans-
formed into a binary sequence with zeros corresponding to
dry days and ones to the wet days. Then, counting the num-
ber of days inside each dry and wet spell, we obtain the dis-
tributions of dry- and wet-spell lengths, which can be com-
pared using qq plots. This is an important indicator since it
determines, for example, the efficiency of the algorithm in
reproducing long droughts or wet periods.

Since DS works by pasting values from the TI to the SG,
it is straightforward to keep track of the original location of
each value in the training image. If successive values in the
TI are also next to each other in the SG, then a patch is identi-
fied. A multiple box-plot is then used to represent the number
of patches found in each realization as a function of the patch
length to keep track of the verbatim-copy effect.

The last group of indicators considered is the sample par-
tial autocorrelation function (PACF) (Box and Jenkins, 1976)
of the daily, monthly and annual rainfall. Given a time-
seriesXt , the sample PACF is the estimation of the linear

correlation index between the datum at timet and those at
previous time stepst − h, without considering the linear de-
pendence with the in-between observations. For a stationary
time series the sample PACF is expressed as a function of the
time lagh with the following formula:

ρ̂ (Xt , h) =Corr
[
Xt − Ê (Xt | {Xt−1, . . . , Xt−h+1}) ,

Xt−h − Ê (Xt−h| {Xt−h+1, . . . , Xt−1})
]
, (3)

whereÊ(Xt |{Xt−1, . . . , Xt−h+1}) is the best linear predictor
knowing the observations{Xt−1, . . . , Xt−h+1}. ρ(h) varies
in the range [0, 1], with high values for a highly autocor-
related process. This indicator is widely used in time series
analysis since it gives information about the persistence of
the signal. The autocorrelation function could be used in-
stead, but PACF is preferred here since it shows the autocor-
relation at each lag independently. In the case of daily rain-
fall, the partial autocorrelation is usually very low, while the
higher-scale rainfall may present a more important specific
time-lag linear dependence. As usually done in the absence
of any prior knowledge aboutXt , the 5–95 % confidence lim-
its of an uncorrelated white noise are adopted to assess the
significance of the PACF indexes. Since the time series used
in this paper are not necessarily stationary, any sample PACF
is computed from the standardized signalXs

t , obtained by ap-
plying moving average estimation̂mt and standard deviation
ŝt filters with the following formula:

Xs
t =

Xt − m̂t

ŝt
, m̂t = (2q + 1)−1

q∑
j=−q

Xt+j ,

ŝt =

[
(2q + 1)−1

q∑
j=−q

(
Xt+j − m̂t

)2

]−
1
2

,

q + 1 ≤ t ≤ n − q, (4)

where q = 2555 (15-year centered moving window). It is
important to note that this operation may exclude from
the PACF computation a consistent part of the signal
(q + 1≤ t ≤ n − q), especially on the higher timescale. In the
case of the data sets used, the annual time series is reduced
to less than 60 values for Alice Springs and Darwin: a barely
sufficient quantity, considering that the minimum amount of
data for a useful sample PACF estimation suggested byBox
and Jenkins(1976) is of about 50 observations.

4 Results and discussion

To evaluate the proposed technique, a group of 100 realiza-
tions of the same length as the reference is generated for each
of the three considered data sets to obtain a sufficiently sta-
ble response in both the average and the extreme behavior.
The setup used is the one presented in Sect.3 with the fixed
parameter values shown in Table2. The obtained results are
shown and discussed in the following section.

www.hydrol-earth-syst-sci.net/18/3015/2014/ Hydrol. Earth Syst. Sci., 18, 3015–3031, 2014



3022 F. Oriani et al.: Simulation of rainfall time series from different climatic regions

Darwin (reference)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 20 40 60 80 100
0

50

100

150

Darwin (simulation)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 20 40 60 80 100
0

50

100

150

Alice Springs (reference)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 20 40 60 80 100
0

50

100

150

Alice Springs (simulation)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 20 40 60 80 100
0

50

100

150

Sydney (reference)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 20 40 60 80 100
0

50

100

150

Sydney(simulation)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 20 40 60 80 100
0

50

100

150

Fig. 2. Visual comparison between the simulated and the reference daily rainfall [mm] time-series: 10-years

(left column) and 100-days (right column) random samples.
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Figure 2. Visual comparison between the simulated and the reference daily rainfall (mm) time series: 10-year (left-column panels) and
100-day (right-column panels) random samples.

4.1 Visual comparison

Figure 2 shows the comparison between random samples
from both the simulated and the reference time series. For
each data set, the generated rainfall looks similar to the

reference: the extreme events inside the 10-year samples are
reproduced with an analogous frequency and magnitude. The
annual seasonality, particularly pronounced in the Darwin se-
ries, is accurately simulated as well as the persistence of the
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Fig. 3. qq-plots of the empirical probability rainfall amount [mm] distributions: median of the realizations

(blue dots), 5th and 95th percentile (dashed lines). The bisector (solid line) indicates the exact quantile match.
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Figure 3. qq plots of the empirical probability rainfall amount (mm) distributions: median of the realizations (blue dots), 5th and 95th per-
centiles (dashed lines). The bisector (solid line) indicates the exact quantile match.

rainfall events, visible in the 100-day samples. These aspects
are evaluated quantitatively in the following sections.

4.2 Multiple-scale probability distribution

The qq plots of the rainfall empirical distributions are pre-
sented in Fig.3, where all the range of quantiles is consid-
ered. The distribution of the daily rainfall (computed on wet
days only) is generally respected, although some extremes
that are present only once in the reference and, in particular,
at the start or end of the time series, may not appear in the

simulation. It is the case of the Darwin series, with a mis-
match of the very upper quantiles. Moreover, being that the
DS is an algorithm based on resampling, the distribution of
the simulated values is limited by the range of the training
data set: this is shown in the Alice Springs and Sydney qq
plots, where the distribution of the last quantiles is clearly
truncated at the maximum value found in the reference. This
result is normally expected using this type of technique: the
DS algorithm is of course not able to extrapolate extreme
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Fig. 4. Box-plots of the average wet days probability, mean daily rainfall amount [mm] and its standard

deviation per month. The solid line indicates the reference.

Fig. 5. Box-plots of the average extremes per month [mm]. The solid line indicates the reference.
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Figure 4. Box plots of the average wet-day probability, mean daily rainfall amount (mm) and its standard deviation per month. The solid line
indicates the reference.

intensities higher than the ones found in the TI at the scale of
the simulated signal.

On the contrary, the distribution of the rainfall amount on
the solitary wet days is accurately respected, with some real-
izations including higher extremes than the reference. More
importantly, the annual and 10-year rainfall distributions are
correctly reproduced and do not show overdispersion. This
phenomenon, common among the classical techniques based
on daily scale conditioning, consists in the scarce represen-
tation of the extremes and underestimation of the variance
at the higher scale. This problem is avoided here because a
variable dependence is considered, up to a 5000-day radius
on the 365 MA auxiliary variable, that helps preserving the
low-frequency fluctuations. We also see that, at this scale, DS
is capable of generating extremes higher than those found in
the reference, meaning that new patterns have been gener-
ated using the same values at the daily scale. This results is
purely based on the reproduction of higher-scale patterns: the
acceptance threshold value chosen for the 365 MA auxiliary
variable allows enough freedom to generate new patterns al-
though maintaining an unbiased distribution. Nevertheless,
this approach is not meant to replace a specific technique
to predict long recurrence-time events at any temporal scale,

since it is not focused on modeling the tail of the probability
distribution.

4.3 Annual seasonality and extremes

Figure4 shows the principal indicators describing the annual
seasonality of the reference and the generated time series:
each different season is accurately reproduced by the algo-
rithm, with almost no bias. The probability of having a wet
day, usually imposed by a prior model in the classical para-
metric techniques, is indirectly obtained by sampling from
the rainfall patterns of the appropriate period of the year. This
goal is mainly achieved using the auxiliary variables tr1 and
tr2 as conditioning data (see Sect.3).

The simulation of the average extremes, shown in Fig.5,
also follows the reference rather accurately.

4.4 Rainfall patterns and verbatim copy

The statistical indicators regarding the dry/wet patterns
shown in Fig.6 demonstrate the efficiency of the proposed
DS setup in simulating long droughts or wet periods ac-
cording to the training data set: the dry- and wet-spell
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Fig. 4. Box-plots of the average wet days probability, mean daily rainfall amount [mm] and its standard

deviation per month. The solid line indicates the reference.

Fig. 5. Box-plots of the average extremes per month [mm]. The solid line indicates the reference.
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Figure 5. Box plots of the average extremes per month (mm). The solid line indicates the reference.

distributions are preserved and extremes higher than the ones
present in the TI are also simulated.

The verbatim-copy box plots show the distribution of the
time series pieces exactly copied from the TI as a function
of their size for the ensemble of the realizations: the num-
ber of patches decreases exponentially with their size. The
phenomenon is mainly limited to a maximum of a few 8-day
patches, with isolated cases of up to 14 days.

The 10-year rainfall moving sum, shown at the bottom of
Fig. 6, illustrates the low-frequency time series structure: the
quantiles of the simulations at each time step confirm that the
overall variability is correctly simulated, but the local fluc-
tuations do not match the reference. For example, the Dar-
win reference series shows a clear upward trend which is not
present in the superposed randomly picked DS realization.
Generally, the TI is supposed to be stationary or the nonsta-
tionarity should be at least described by an auxiliary variable.
If it is not the case, as for the Darwin time series, the algo-
rithm honors the marginal distribution of the reference, but it
does not reproduce a specific trend. This problem is treated
separately in Sect.4.6.

The minimum moving average on different window
lengths of up to 60 years (Fig.7) gives information about
the long-term structure of rainfall. The zero values are in ac-
cordance with the dry spell distribution shown in Fig.6; for
example, Alice Springs presents a zero-minimum moving av-
erage until 5 months, meaning that it contains dry spells of
this length. Alice Springs and Sydney show a very different
long-term structure: the former with long dry spells, the lat-
ter with a wider range of minimum values. Darwin presents

the peculiarities of both climates with a sharp rising from the
annual to the 60-year scale.

According to this indicator, the simulation of the long-
term structure is fairly accurate. The negative bias, lower than
0.5 mm, shows a modest tendency to underestimate the min-
imum moving average from the annual to the decennial scale
for wet climates such as Sydney and Darwin.

4.5 Linear time-dependence

The specific linear time-dependence of the generated and ref-
erence signals has been evaluated at different scales using the
sample PACF (Fig.8, Eq.4).

At the daily scale, the data show the same level of auto-
correlation at lag 1 and a low but significant linear depen-
dence until lag 3 for Alice Springs and Sydney, while Darwin
presents a longer tailing which asymptotically approaches
the confidence bounds of an uncorrelated noise. The DS sim-
ulation shows a tendency to a slight underestimation of the
lag 1 PACF, with a maximum error around 0.1 for Sydney.
Since the algorithm operates in a nonparametric way and im-
poses a variable time-dependence, the eventuality of modi-
fying the structure of the daily signal cannot be excluded a
priori, for this reason the PACF has been calculated up to the
20th lag, assuring that no extra linear-dependence has been
introduced.

At the monthly scale, the linear time-dependence struc-
ture is clearly related to the annual seasonality, with a nega-
tive autocorrelation around lag 6 and a positive one around
lag 12. The climate characterization is also evident: from
Alice Springs to Darwin we see a more marked seasonality
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Fig. 6. Main indicators describing the rainfall pattern: qq-plotsof the dry and wet spells [days] distributions,

verbatim copy box-plots as function of the patch size [days] and daily 10-years Moving Sum (MS) time-series

[mm] of the reference (black line), median, 5-th and 95-th percentile of the realizations (gray lines) and a

randomly picked simulation (dashed blue line).
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Figure 6. Main indicators describing the rainfall pattern: qq plots of the dry- and wet-spell (days) distributions, verbatim-copy box plots as
function of the patch size (days) and daily 10-year MS time series (mm) of the reference (black line), median, 5th and 95th percentiles of the
realizations (gray lines) and a randomly picked simulation (dashed blue line).

reflected in the PACF. The simulation follows the reference
fairly well, with a maximum error of approximately± 0.1.

At the annual scale, the limited length of the time series
leads to wider confidence bounds for the nonsignificant val-
ues (see Sect.3.2). The reference does not show a clear lin-
ear time-dependence structure which is not similarly repro-
duced by the simulation. Some more relevant discrepancies
are present in the Darwin series, showing a more discontin-
uous structure. However, using such a limited data set for

the timescale considered here, it is difficult to determine if
the reference PACF is really indicative of an effective linear
dependence.

4.6 Nonstationary simulation

Figure9 shows the Darwin time-series simulation preserving
the same nonstationarity contained in the reference by us-
ing the technique proposed in Sect.3.1. The 10-year moving
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Fig. 7. Minimum moving average of daily rainfall [mm] for different running window lengths (days, months

or years). The solid line indicates the reference.

Fig. 8. Sample Partial Autocorrelation Function (PACF) of the daily, monthly and annual rainfall signal: the

reference (solid line), 100 DS simulations (box-plots), and confidence bounds for the negligible autocorrelation

indexes (dashed lines).
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Figure 7. Minimum moving average of daily rainfall (mm) for different running window lengths (days, months or years). The solid line
indicates the reference.
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Figure 8. Sample PACF of the daily, monthly and annual rainfall signal. Reference (solid line), 100 DS simulations (box plots), and confi-
dence bounds for the negligible autocorrelation indexes (dashed lines).
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Fig. 9. Darwin daily rainfall non-stationary simulation: 10-years Moving Sum time-series (top) of the reference

(black line), median, 5-th and 95-th percentile of the realizations (gray lines) and a randomly picked simulation

(dashed blue line); main quantile-comparisons (center); main seasonal indicators and verbatim copy box-plot

(bottom).
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Figure 9. Darwin daily rainfall nonstationary simulation: 10-year moving sum time series (top panel) of the reference (black line), median,
5th and 95th percentiles of the realizations (gray lines) and a randomly picked simulation (dashed blue line); main quantile comparisons
(center panels); main seasonal indicators and verbatim-copy box plots (bottom panels).
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sum plot shows that the trend and low-frequency fluctuation
present in the reference are accurately simulated: the median
of the realizations follows the reference and a variability of
about 4 m between the 5th and 95th percentiles is present.
Regarding the other considered statistical indicators, the per-
formance appears to be essentially the same as for the sta-
tionary simulation: the only remarkable difference is a mod-
est positive bias in the maximum wet-period length.

The fact that, to impose the trend, the sampling is restricted
to a local region of the reference reduces the local variabil-
ity with respect to the stationary simulation. Consequently, a
modest increase of the verbatim-copy effect occurs.

This technique can be applied in cases where a specific
nonstationarity extended to high-order moments should be
imposed; e.g., exploring the uncertainty of a given past or
future scenario, where a simple trend or seasonality adjust-
ment is insufficient and an overly complex parametric model
would be necessary to preserve the same long-term behavior.

5 Conclusions

The aim of the paper is to present an alternative daily rainfall
simulation technique based on the direct sampling algorithm,
belonging to the multiple-point statistics family. The main
principle of the technique is to resample a given data set us-
ing a pattern-similarity rule. Using a random simulation path
and a nonfixed pattern dimension, the technique allows im-
posing a variable time-dependence and reproducing the refer-
ence statistics at multiple scales. The proposed setup, suitable
for any type of rainfall, includes the simulation of the daily
rainfall time series together with a series of auxiliary vari-
ables including a categorical variable describing the dry/wet
pattern, the 2-day moving sum which helps in respecting the
lag 1 autocorrelation, the 365-day moving average to con-
dition upon interannual fluctuations and two coupled theo-
retical periodic functions describing the annual seasonality.
Since all the variables are automatically computed from the
rainfall data, no additional information is needed.

The technique has been tested on three different climates
of Australia: Alice Springs (desert), Sydney (temperate) and
Darwin (tropical savannah). Without changing the simula-
tion parameters, the algorithm correctly simulates both the
rainfall occurrence structure and amount distribution up to
the decennial scale for all the three climates, avoiding the
problem of overdispersion, which often affects daily rainfall
simulation techniques. Being based on resampling, the algo-
rithm can only generate data which are present in the train-
ing data set, but they can be aggregated differently, simulat-
ing new extremes in the higher-scale rainfall and dry-/wet-
pattern distributions. The technique is not meant to be used
as a tool to explore the uncertainty related to long recurrence-
time events, but rather to generate extremely realistic repli-
cates of the datum, to be used as inputs in hydrologic models.

Reproducing the specific trend found in the data is also
possible by making use of an additional auxiliary variable
which simply restricts the sampling to a local portion of the
TI. In this way, any type of nonstationarity present in the TI is
automatically imposed on the simulation. The Darwin exam-
ple demonstrates the efficiency of this approach in reproduc-
ing 100 different realizations showing the same type of trend
and marginal distribution. This setup can be useful to simu-
late multiple realizations of a specific nonstationary scenario
regardless of its complexity.

In conclusion, the direct sampling technique used with
the proposed generic setup can produce realistic daily rain-
fall time-series replicates from different climates without the
need of calibration or additional information. The generality
and the total automation of the technique makes it a powerful
tool for routine use in scientific and engineering applications.
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