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Abstract. A new approach to downscaling soil moisture
forecasts from the seasonal ensemble prediction forecasting
system of the ECMWF (European Centre for Medium-Range
Weather Forecasts) is presented in this study. Soil moisture
forecasts from this system are rarely used nowadays, al-
though they could provide valuable information. Weaknesses
of the model soil scheme in forecasting soil water content
and the low spatial resolution of the seasonal forecasts are
the main reason why soil water information has hardly been
used so far. The basic idea to overcome some of these prob-
lems is the application of additional information provided by
two satellite sensors (ASCAT and Envisat ASAR) to improve
the forecast quality, mainly to reduce model bias and increase
the spatial resolution. Seasonal forecasts from 2011 and 2012
have been compared to in situ measurement sites in Kenya to
test this two-step approach. Results confirm that this down-
scaling is adding skill to the seasonal forecasts.

1 Introduction

Proper knowledge of soil water content and distribution is
important for many applications in earth system sciences.
Soil moisture has a significant impact on near-surface param-
eters like temperature and humidity, low clouds and precipi-
tation by influencing the exchange of heat and water between
the soil and the lower atmosphere (Ferranti and Viterbo,
2006; Dharssi et al., 2011). Evapotranspiration, infiltration
and runoff depend on soil wetness, as does the sensible heat
flux from the surface and the heat stored in soils. Soils pro-
vide nutrients for the biosphere, and soil water is also impor-
tant in biogeochemical cycles (Zreda et al., 2012).

Unfortunately, soil water content is both difficult to mea-
sure and forecast. This is due to the high variability in soil
water content both in time and space, even over short dis-

tances (Western et al., 1999), which can hardly be captured
by point measurements. Nevertheless, ground-based meth-
ods can be applied over any depth, calibrated accurately,
and logged on any timescale (Western et al., 2002). Many
of the globally available ground-based soil moisture mea-
surements are thus collected, harmonized, and made avail-
able to users through the ISMN (International Soil Moisture
Network: http://ismn.geo.tuwien.ac.at; Dorigo et al., 2013).
Remote sensing, on the other hand, provides excellent spa-
tial coverage over large areas and spatial representativeness,
but the shallow measurement depth, the confounding influ-
ence of vegetation, the indirect nature of the method, and
relatively infrequent repeat cycles hamper the use of the
data (Western et al., 2002).

Due to the processes described above, the need for proper
soil moisture characterization in modelling is well under-
stood. Nevertheless, simplifications in the representation of
modelled land-surface processes in numerical models are un-
avoidable. They lead to systematic errors in the soil mois-
ture field, which is degrading forecast quality (Drusch and
Viterbo, 2007). Furthermore, deficiencies in the short-range
precipitation forecasts and representations of the seasonal
vegetation cycle (Balsamo et al., 2009) are intensifying the
forecasting problems. (Seasonal) soil moisture forecasts are
thus hardly used nowadays, although it could be valuable
information. Especially in hydrological applications, includ-
ing flood forecasting and drought monitoring, one is inter-
ested in the root zone soil moisture at the catchment or finer
scales, as its knowledge can improve estimates significantly
(Wagner et al., 2007). This in turn is necessary for agricul-
tural and food security issues as well as for disaster manage-
ment. To improve forecast representativeness and accuracy, a
new method to downscale seasonal soil moisture forecasts of
the ECMWF ensemble forecasting system, providing high-
resolution soil water forecasts, is presented in this paper.
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Data sources used for the investigation are described in
Sect. 2. Section 3 includes the calibration and downscaling
approach, and in Sect. 4 the results are presented. Conclu-
sions are drawn in Sect. 5, including an outlook on future
work and applications.

2 Data sources

Seasonal forecasts as well as reference forecasts of soil mois-
ture are generated at the ECMWF. Soil moisture measure-
ments are available from satellite platforms and in situ mea-
surement sites in the testing region, located in Kenya. In
the following subsections, the data sources are described
in detail.

2.1 ASCAT soil moisture data

The Advanced Scatterometer (ASCAT) is a C-band
(5.255 GHz) real-aperture radar operated by EUMETSAT
(European Organization for the Exploitation of Meteorolog-
ical Satellites). It is flown on the METOP satellites. Near-
real-time (about 2 h after sensing) ASCAT surface soil mois-
ture maps on 25 and 50 km spatial scales have been available
operationally since December 2008 (Wagner et al., 2010).
ASCAT data used for this study have been provided by Vi-
enna Technical University. The backscattered measurements
are used to estimate the surface soil moisture content (Wag-
ner et al., 2013; their Eq. 1), which is a number ranging be-
tween 0 (dry limit) and 1 (moist limit), usually expressed
in %. To convert it to volumetric soil moisture content (be-
ing comparable to ECMWF model output), the soil poros-
ity is necessary (Wagner et al., 2013; their Eq. 2). There are
no reliable porosity data for the target region in Kenya, so
this conversion is not possible without introducing an addi-
tional error source; model output and COSMOS (COsmic-
ray Soil Moisture Observing System) measurements are thus
converted to the index with values between 0 and 100 % to
make all data sets comparable. ASCAT data are stored as
time series for single grid points, so they were interpolated to
the ECMWF model grid (0.7◦ resolution) to be comparable.
To do this, an inverse distance weighting approach (Shepard,
1968) was used. ASCAT soil moisture is valid for surface
soil layers with approximate depths of 1–2 cm. Quality flags
for wetlands, snow cover, frozen soil and topographic com-
plexity (Scipal, 2005) have been considered. For the ASCAT
grid points investigated over the target region, none of the
flags had values which would have made it necessary to re-
ject measurements.

2.2 Seasonal forecast data from ECMWF

Seasonal forecasts used for this comparison are produced by
the seasonal ensemble prediction system (EPS) of ECMWF.
System 4 (Molteni et al., 2011), which was used in this
study, has been in operational use since 2011. For the at-

mospheric part of the forecasting system, the ECMWF In-
tegrated Forecasting System (IFS) is used, with a horizon-
tal resolution of about 0.7◦, and 91 vertical levels with a
model top at∼ 0.01 hPa. Soil processes are modelled by
H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface
Exchanges over Land; Balsamo et al., 2009, 2011). Data
output for soil moisture is provided daily for four vertical
soil levels: 0–7, 7–28, 28–100, and 100–289 cm. The sea-
sonal forecasts include 51 ensemble members. Forecast runs
are started at 00:00 UTC on the 1st of each calendar month,
with a lead time of 215 days (5160 h). Data have been ex-
tracted from the Meteorological Archival and Retrieval Sys-
tem (ECMWF, 2013a) for 4× 4 grid points in Kenya.

In order to compare ECMWF output and ASCAT data,
the ECMWF data unit has to be transformed from the orig-
inal volumetric soil water (m3 m−3) to an index with values
between 0 and 100 (saturation fraction or soil water index,
SWI). H-TESSEL differentiates between six different soil
types. Using these soil types, for each of the grid points the
SWI in % has been calculated for the combined 1st and 2nd
soil layer with

SWI =

(
0.25SWL1 + 0.75SWL2

SWLSAT

)
· 100, (1)

where SWLSAT (m3 m−3) is the saturation value for the grid
point (depending solely on the soil type); SWLi (m3 m−3)
is the forecasted volumetric soil water of theith layer at the
grid point.

2.3 Reference forecasts from ECMWF

The reference ensemble is created out of historical IFS anal-
yses of the operational high-resolution forecasting system at
ECMWF. This reference is used to find out if the seasonal
forecasting system has a prediction skill higher than that of a
climatological forecast. Soil moisture data from 00:00 UTC
runs for January 2001 to December 2012 from the two up-
per layers of the H-TESSEL soil scheme have been extracted
from the MARS archive to ensure a model climatology with
sufficient robustness for comparison. As the resolution of the
IFS deterministic run (0.125◦) is significantly higher than the
seasonal EPS one, the IFS grid points with locations cor-
responding to the 16 EPS grid points in Kenya have been
selected.

The analyses for all the years extracted have been com-
bined, and as a result, a 12-member poor-man ensemble for
each of the sixteen model grid points is available as a refer-
ence forecast. Equation (1) has been applied to this data set,
too.

2.4 COSMOS station data

To quantify the forecast quality of the ECMWF seasonal
forecasts, two in situ measurement sites in Kenya have been
used. They are part of COSMOS. The stationary cosmic-ray
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soil moisture probe measures the neutrons that are gener-
ated by cosmic rays within air and soil and other materi-
als, moderated mainly by hydrogen atoms located primar-
ily in soil water. The neutrons are emitted into the atmo-
sphere, where they mix instantaneously on a scale of hun-
dreds of metres. Their density is inversely correlated with
soil moisture (Zreda et al., 2012). Figure 1 shows the lo-
cation of the two probes which are operated by the Uni-
versity of Arizona. Data are freely available on a web page
(http://cosmos.hwr.arizona.edu), and have been downloaded
for the period 2011–2012. Measurements at the two stations
are representative of a soil layer with a vertical extent of 15–
30 cm (depending on the current soil water content), so on
average they are representative of the same soil depth as the
combined H-TESSEL layer 1 (0–7 cm) and layer 2 (7–28 cm)
data calculated in Eq. (1). The COSMOS stations measure
average soil water content within a diameter of a few hec-
tometers (Zreda et al., 2012). The correction to atmospheric
water vapour content described by Rosolem et al. (2013) has
been applied to the COSMOS level 3 (Zreda et al., 2012) soil
moisture data, which are provided in volumetric soil moisture
(m3 m−3). Afterwards they were transformed to relative val-
ues between 0 and 100 by taking the lowest (highest) value
in the measurement time series as 0 (100) and rescaling all
measurements between these two values.

Both COSMOS stations (KLEE: 36.867◦ E/0.283◦ N;
Mpala-North: 36.87◦ E/0.486◦ N) are within the same IFS
grid cell (0.7◦ resolution of the seasonal EPS), but the near-
est grid point which is used for the comparison is different
(37.1◦ E/0.0◦ N vs. 37.1◦ E/0.7◦ N). Unfortunately, no other
in situ measurement sites are available within eastern Africa,
where the satellite downscaling parameters (see Sect. 3) have
been available for this investigation.

3 The calibration and downscaling approach

To downscale seasonal soil moisture forecasts from the
global grid to a 1 km resolution with satellite data, a two-
step approach is necessary. In a first step, the forecast clima-
tology is calibrated, meaning that it has to be shifted to the
ASCAT climatology. This is done with a CDF-matching ap-
proach (Reichle and Koster, 2004). After this calibration, the
relationship between ASCAT and Envisat ASAR (Advanced
Synthetic Aperture Radar) can be applied to the seasonal soil
moisture forecasts in a second step to gain results on a 1 km
grid.

3.1 Step 1: calibration with CDF matching

To match ASCAT and ECMWF cumulative distribution
functions, for each global model grid point (within the se-
lected domain), the daily IFS/EPS forecast values of each en-
semble member are compared to the available ASCAT mea-
surements. As the forecasting model for each IFS/EPS mem-
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Figure 1. Location of COSMOS in situ soil moisture measurement
sites Mpala-North (M) and KLEE (K) (picture from Google Maps).

ber is the same, the number of ASCAT–IFS/EPS data pairs
can be increased by the factor of 51, which makes the re-
sults more robust from a statistical point of view. Data from
seven consecutive seasonal runs (starting dates 1 October
2011 to 1 April 2012) are compared. Based on these data
pairs, a polynomial regression analysis is applied to the data
set. Polynomials up to the ninth degree have been tested. It
was found that beside the linear regression, all polynomials
are reasonable for the bias correction. Comparing the mean
of ASCAT to the means of IFS/EPS before and after the CDF
matching, fourth-order polynomials for the correction turned
out to be the most proper ones (i.e. the corrected IFS/EPS
mean fits best to the ASCAT mean), followed by eighth- and
third-order polynomials. It was thus decided to use fourth-
order polynomials, as they take into account the most rele-
vant statistical moments of expectation, variance, skewness
and kurtosis. The CDF matching has been applied both to
seasonal (EPS) and reference (IFS) forecasts.

3.2 Step 2: applying the ASCAT–Envisat ASAR
relation

For the disaggregation of coarse-scale microwave mea-
surements, finer resolution satellite data acquired e.g. by
synthetic-aperture radars (Das et al., 2011) are applied (Wag-
ner et al., 2013). For 25 km ASCAT soil moisture data,
ASAR data acquired by the Envisat satellite are used. The
method exploits the fact that the temporal dynamics of the
soil moisture field is often very similar across a wide range of
scales, as these are often influenced by the same parameters
(e.g. precipitation). This phenomenon is usually referred to
as “temporal stability” (Vachaud et al., 1985), meaning that
the relationship between local-scale and regional-scale mea-
surements may be approximated by a linear model. To esti-
mate soil moisture on a 1 km scale from the 25 km ASCAT
soil moisture data,

m1km
s (t,x,y) = cASAR (x,y) + dASAR(x,y)m25km

s (t) (2)

is used (Wagner et al., 2013).
m1km

s is the estimated surface soil moisture content over
the 1 km area centered at the coordinates (x, y). m25km

s is
the calibrated ECMWF soil moisture at forecasting timet .
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Originally, m25km
s is the ASCAT soil moisture retrieval at

time t , but due to the calibration in step 1, this replacement
with ECMWF model forecast data can be justified. The co-
efficientscASAR anddASAR are the two scaling parameters
which are derived from long ASAR backscatter time series
using the methods described in Wagner et al. (2008). So far,
the coefficients have been available solely for Europe and
Australia. For the investigation described herein, they have
been calculated for eastern Africa, too.

Tests with the disaggregated ASCAT–ASAR product show
that it compares equally well to in situ measurements as
the 25 km ASCAT product (Albergel et al., 2010), but over-
all the added value of this product is not yet very clear,
given that the downscaling parameters are static; i.e., all
information about the temporal behaviour still comes from
the original 25 km ASCAT soil moisture product (Matgen
et al., 2012). Nevertheless, the product facilitates data han-
dling and interpretation of the soil moisture information on
much finer scales (through its advisory flags), making it thus
a valuable product from a practical point of view (Wagner
et al., 2013). This is likewise true for the ECMWF–ASAR
product which is shown in the following section. Comparing
the measurements at station KLEE (36.7 on average) to the
closest ASCAT grid point (50.8) and the downscaled ASCAT
soil moisture data at the four 1 km grid points surrounding the
in situ station (50.3, 50.7, 50.0, 51.6) shows that the down-
scaling changes the ASCAT measurements just slightly, im-
proving 3 out of 4.

4 Results

For the verification of the forecast quality, weekly mean val-
ues have been calculated both for COSMOS measurements
and seasonal soil moisture forecasts. Each ensemble mem-
ber has been averaged separately. This approach was cho-
sen for two reasons. First, possible outliers and unpredictable
scales in space and time are smoothened out due to this pro-
cedure. Second, it is mainly the trend which is of interest,
while daily values of seasonal forecasts should not be used
anyway (Molteni et al., 2011). However, anomalous weather
events can also be suppressed with this averaging (ECMWF,
2013b).

To calculate statistical measures, the mean of the weekly
values has been used for each of the seven seasonal fore-
casting runs investigated (October 2011 to April 2012). The
root mean squared error (RMSE; Wilks, 2006) and the Pear-
son coefficient of linear correlation (PCC; Wilks, 2006) have
been chosen as statistical indices.

Figure 2 shows the results for the seasonal forecast of
February 2012 validated at the KLEE station. The forecast-
ing period is characterized by dry soils at the beginning of the
period, followed by the rainy season starting in April. During
the wet season, the spread of measurements within a week
is clearly higher than during dry periods. In the forecasting

 

 

 

 

Figure 2. COSMOS soil moisture measurements(a) and forecasts
(b–g) for the period February–August 2012 for the KLEE station
in Kenya. Numbers on the abscissa indicate the number of weeks
since 1 February 2012. For the measurements(a), each boxplot con-
tains 168 values (24 hourly values× 7 days). For the forecasts, one
column represents all ensemble members, whereas the forecasts of
one week (one forecasted value every day) are averaged for each
member separately.(b) is the IFS reference climatology,(c) the
CDF-matched IFS reference climatology,(d) the CDF-matched and
downscaled IFS reference climatology,(e) the EPS ensemble fore-
cast,(f) the CDF-matched EPS ensemble forecast, and(g) the CDF-
matched and downscaled EPS ensemble forecast. Black dots in(b–
g) are the mean values of the COSMOS station for the forecasting
period.

plots (Fig. 2b–g), the weekly mean value of the COSMOS
station is marked with black dots.

The IFS climatological reference forecast (Fig. 2b) shows
the typical behaviour of the model soil, as H-TESSEL is
not able to reproduce very dry soils (Balsamo et al., 2009).
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During the dry season, the soil moisture content is thus over-
estimated in the reference ensemble, and as a consequence,
the seasonal cycle is not pronounced enough. This leads to
high values in RMSE (24.1), so the climatology is not appro-
priate for forecast purposes in this case.

Due to the CDF matching (Fig. 2c) and downscaling
(Fig. 2d), the tracing of the seasonal cycle can be improved,
but soils are still too wet in the model on average. Although
the spread is increased mainly due to the CDF matching,
moisture is still overestimated by the model for periods with
dry soils. Both RMSE and PCC are improved after the down-
scaling.

The ensemble forecast of 1 February 2012 (Fig. 2e) has
the same problem as the reference forecast, with the soil be-
ing too wet during the dry season. The seasonal cycle of soil
moisture is captured much better in this case, resulting in a
low RMSE (12.7), but also a low PCC (0.31). CDF match-
ing to the ASCAT climatology is improving the forecast
(Fig. 2f), although soil moisture is even underestimated at
the beginning of the forecasting period. Due to this underes-
timation, RMSE (12.9) is slightly worse compared to the raw
EPS forecast, but the seasonal cycle fits the measurements
better (PCC = 0.46). Downscaling to 1 km improves the fore-
cast (Fig. 2g) for this case. The dry soil at the beginning of
the forecasting period is still underestimated, but the wet sea-
son is predicted much better with the downscaled forecast
product. The good forecast quality for months six and seven
is still kept after this procedure. Both RMSE (8.1) and PCC
(0.73) can be clearly improved compared to the original EPS.

It can thus be summarized for this example that, both
for the climatological forecast and the seasonal forecast, the
downscaling approach improves the forecast quality.

The averaged results for all seven seasonal forecasts can
be seen in Fig. 3. In terms of the grid box size of the sea-
sonal forecasting model, both stations are situated close to-
gether. Nevertheless, the forecast quality is slightly different
for KLEE and Mpala-North. Concerning the PCC, downscal-
ing is improving the score for Mpala-North, both for clima-
tology and EPS forecasts. For the latter, the improvement
(from 0.40 to 0.58) is significant. Significance was tested
with the Wilcoxon–Mann–Whitney test available in statis-
tical program R. Furthermore, the EPS is better on average
than the reference ensemble, but is not significant (0.44 vs.
0.40). As shown in Fig. 2 for one case, the seasonal cycle
is represented well by the climatology for station KLEE, but
with a large wet bias. Due to this, PCC for the climatology
is very significantly better at KLEE, as the bias is neglected
for computing the correlation. The downscaling is improving
PCC compared to the original grid both for climatology and
EPS on average, but is not significant.

For the RMSE, the positive impact of the downscaling
approach is even clearer. Climatology is hard to beat at
Mpala-North, and the original seasonal forecast is signifi-
cantly worse on average than the reference forecast, but for
both systems, the downscaled product is very significantly
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Figure 3. Quality of the forecast expressed in RMSE (top block)
and PCC (bottom block) for stations KLEE (left) and Mpala-North
(right). The arrow in a box points upwards if the forecast (top row) is
better than the forecast (left column) on average for the seven fore-
casting runs. “↑” means that the improvement is not significant,
“
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Figure 2. COSMOS soil moisture measurements(a) and forecasts
(b–g) for the period February–August 2012 for the station KLEE
in Kenya. Numbers on the abscissa indicate the number of weeks
since 1 February 2012. For the measurements(a), each boxplot con-
tains 168 values (24 hourly values×7 days). For the forecasts, one
column is representing all ensemble members, whereas the fore-
casts of one week (one forecasted value every day) are averaged for
each member separately.(b) is the IFS reference climatology,(c) the
CDF matched IFS reference climatology,(d) the CDF matched and
downscaled IFS reference climatology,(e) is the EPS ensemble
forecast,(f) is the CDF matched EPS ensemble forecast and(g) is
the CDF matched and downscaled EPS ensemble forecast. Black
dots in(b–g) are the mean values of the COSMOS station for the
forecasting period.
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(right). The arrow in a box is pointing upwards if the forecast (top
row) is better than the forecast (left column) on average for the
7 forecasting runs. “↑” means that the improvement is not signifi-
cant, “TS2”
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Figure 2. COSMOS soil moisture measurements(a) and forecasts
(b–g) for the period February–August 2012 for the station KLEE
in Kenya. Numbers on the abscissa indicate the number of weeks
since 1 February 2012. For the measurements(a), each boxplot con-
tains 168 values (24 hourly values×7 days). For the forecasts, one
column is representing all ensemble members, whereas the fore-
casts of one week (one forecasted value every day) are averaged for
each member separately.(b) is the IFS reference climatology,(c) the
CDF matched IFS reference climatology,(d) the CDF matched and
downscaled IFS reference climatology,(e) is the EPS ensemble
forecast,(f) is the CDF matched EPS ensemble forecast and(g) is
the CDF matched and downscaled EPS ensemble forecast. Black
dots in(b–g) are the mean values of the COSMOS station for the
forecasting period.

 

 

KLEE MPALA 

IFS   

CDF 

IFS   

CDF 1 

EPS      

1            

EPS  

CDF 

EPS 

CDF 1 

IFS   

CDF 

IFS   

CDF 1 

EPS      

1 

EPS  

CDF 

EPS 

CDF 1 

RMSE   

IFS           

IFS CDF           

IFS CDF 1           

EPS           

EPS CDF           

PCC   

IFS           

IFS CDF           

IFS CDF 1           

EPS           

EPS CDF           
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(right). The arrow in a box is pointing upwards if the forecast (top
row) is better than the forecast (left column) on average for the
7 forecasting runs. “↑” means that the improvement is not signifi-
cant, “TS2” ➤ significant (75–89.9) and “N” highly significant (90–

100). IFS (EPS) is the reference climatology (seasonal forecast),
IFS (EPS) CDF is the bias corrected one and IFS (EPS) CDF 1 is
the bias corrected and downscaled climatology (forecast).
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” significant (75–89.9) and “N” highly significant (90–100). IFS
(EPS) is the reference climatology (seasonal forecast), IFS (EPS)
CDF is the bias-corrected one and IFS (EPS) CDF 1 is the bias-
corrected and downscaled climatology (forecast).

better, reducing the RMSE from 22.9 to 12.7 (for climatol-
ogy) and from 26.2 to 19.1 (for seasonal EPS). This is also
true for KLEE, whereas the EPS outperforms the reference
climatology for this station. The RMSE can be very signifi-
cantly reduced due to the downscaling from 24.5 to 22.2 (for
climatology) and from 15.6 to 11.9 (for seasonal EPS).

5 Conclusions and outlook

It can be concluded that the proposed downscaling approach
with the included calibration is working and is providing use-
ful results. This is demonstrated for two stations in Kenya.
The seasonal forecasting system (and also the reference en-
semble made up of high-resolution historical forecasts) has
known problems in representing dry soils, thus leading to an
unrealistic seasonal cycle. Using the information contained
in ASCAT soil moisture time series, the described weak-
ness can be partially overcome when calibrating the model
forecasts. This CDF matching is working well, even though
the soil layers which are compared are of different thick-
nesses (ASCAT: 1–2 cm, ECMWF: 28 cm), and has major
advantages over a calibration based on station measurements,
as ASCAT satellite soil moisture is available in sufficient
quality almost everywhere over land (except in rain forests,
deserts and polar regions). Furthermore, this approach is
computationally simple. Nevertheless, the polynomials have
to be recalculated if changes in the model physics or the
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satellite retrieval algorithm take place. The downscaling to
a 1 km grid with the ASCAT–Envisat ASAR relation is also
working well. Statistics show that the downscaling is improv-
ing both climatology and seasonal forecasts, whereas results
are highly significant for the RMSE. Concerning the fore-
cast quality of the model, it can be stated that the climatol-
ogy created out of high-resolution analyses is an ambitious
benchmark for the seasonal forecast performance.

An application for this approach might be in the early
warning of threats to food security in dry regions around
the world; this approach has thus been tested in eastern
Africa, although the data coverage of in situ measurements
is poor in this region. It would be especially interesting to
use the downscaled products in combination with crop mod-
els. Moreover, it is relevant to monitor soil moisture forecasts
to detect weaknesses in forecast quality, as this parameter is
still not well captured by weather forecasting models nowa-
days, although it is a relevant one, especially for convective
processes.

In a next step, it is planned to test the approach for other
climatic regions and more seasonal forecast runs. Especially
for dry climates, it would be interesting to combine the sea-
sonal soil moisture forecasts with drought indices. Further-
more, the variability on the 1 km grid should be investigated
in detail for further improvement of this promising method.
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