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Abstract. It is well known in the hydrometeorology litera-
ture that developing real-time daily streamflow forecasts in a
given season significantly depends on the skill of daily pre-
cipitation forecasts over the watershed. Similarly, it is widely
known that streamflow is the most important predictor in es-
timating nutrient loadings and the associated concentration.
The intent of this study is to bridge these two findings so
that daily nutrient loadings and the associated concentration
could be predicted using daily precipitation forecasts and
previously observed streamflow as surrogates of antecedent
land surface conditions. By selecting 18 relatively undevel-
oped basins in the southeast US (SEUS), we evaluate the
skill in predicting observed total nitrogen (TN) loadings in
the Water Quality Network (WQN) by first developing the
daily streamflow forecasts using the retrospective weather
forecasts based on K-nearest neighbor (K-NN) resampling
approach and then forcing the forecasted streamflow with a
nutrient load estimation (LOADEST) model to obtain daily
TN forecasts. Skill in developing forecasts of streamflow,
TN loadings and the associated concentration were com-
puted using rank correlation and RMSE (root mean square
error), by comparing the respective forecast values with the
WQN observations for the selected 18 Hydro-Climatic Data
Network (HCDN) stations. The forecasted daily streamflow
and TN loadings and their concentration have statistically
significant skill in predicting the respective daily observa-
tions in the WQN database at all 18 stations over the SEUS.
Only two stations showed statistically insignificant relation-
ships in predicting the observed nitrogen concentration. We
also found that the skill in predicting the observed TN load-
ings increases with the increase in drainage area, which in-

dicates that the large-scale precipitation reforecasts corre-
late better with precipitation and streamflow over large wa-
tersheds. To overcome the limited samplings of TN in the
WQN data, we extended the analyses by developing retro-
spective daily streamflow forecasts over the period 1979–
2012 using reforecasts based on the K-NN resampling ap-
proach. Based on the coefficient of determination (R2

Q-daily)
of the daily streamflow forecasts, we computed the potential
skill (R2

TN-daily) in developing daily nutrient forecasts based

on theR2 of the LOADEST model for each station. The
analyses showed that the forecasting skills of TN loadings
are relatively better in the winter and spring months, while
skills are inferior during summer months. Despite these lim-
itations, there is potential in utilizing the daily streamflow
forecasts derived from real-time weather forecasts for devel-
oping daily nutrient forecasts, which could be employed for
various adaptive nutrient management strategies for ensuring
better water quality.

1 Introduction

Anthropogenic interventions of biogeochemical cycles have
resulted in increased nutrient loadings in streams over the
past few decades (Galloway et al., 1995; Caraco and Cole,
1999). Continuous concerns about water quality degradation
have resulted in the development of active water quality man-
agement programs such as total maximum daily load alloca-
tion (TMDL) as well as establishment of policy instruments
related to water quality trading. Of particular interest is the
total nitrogen (TN) loadings, whose contribution from the
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land surface to the North Atlantic Ocean has increased from
5 to 20-fold in comparison to the pre-industrial/natural level
(Howarth et al., 1996). Nitrate levels have tripled in major
rivers over the northeastern US since the 1900s, while ni-
trate concentration has doubled in the Mississippi River basin
since 1965 (Turner and Rabalais, 1991; Howarth et al., 1996;
Vitousek et al., 1997; Goolsby and Battaglin, 2001).

Excess nitrogen results in overproduction of phytoplank-
ton, which in turn causes anoxic conditions and eutrophi-
cation in lakes and coastal regions (Vitousek et al., 1997;
Pinckney et al., 1999). Such eutrophication, due to natural
and anthropogenic nitrogen sources, is an important water
quality degradation issue, which ranges from small streams
(Duff et al., 2008) to large water bodies such as the Gulf of
Mexico (e.g., Bricker et al., 1999; Alexander et al., 2000;
Rabalais et al., 2002; Alexander and Smith, 2006). There
have been several efforts to reduce nitrogen loadings to
streams but such programs are often too costly. For exam-
ple, the North Carolina Department of Energy and Natural
Resources (DENR) have spent several billion dollars in nu-
trient management of Falls Lake in the Neuse River to con-
trol total nitrogen loadings under permissible range (North
Carolina DENR). But availability of data on total nitrogen
is limited, with concentration being measured on a non-
continuous basis. Studies have tried to overcome these lim-
itations by using the long available records of streamflow,
since both instream nutrient concentration and loadings pri-
marily depend on streamflow variability (Borsuk et al., 2004;
Paerl et al., 2006; Lin et al., 2007) and antecedent flow con-
ditions (Vecchia, 2003; Alexander and Smith, 2006). Vari-
ous nutrient simulation models have been developed to es-
timate loadings using semi-distributed hydrologic models
(e.g., WASP, HSPF, SWAT, GWLF) or statistical models
(e.g., LOADEST). Both types of models are typically imple-
mented under a simulation mode by using observed meteoro-
logical forcings to estimate nitrogen loadings. Similarly, con-
siderable progress has been made in developing daily stream-
flow forecasts using statistical models, e.g., parametric mod-
els (Rajagopalan and Lall, 1999; Anderson et al., 2002; Salas
and Lee, 2010), and semi-distributed watershed models (e.g.,
Clark and Hay, 2004; Mcenery et al., 2005; Georgakakos et
al., 2010). Developing daily streamflow forecasts over a large
region using semi-distributed models requires intensive spa-
tial data (e.g., topography, land cover, soils) and computa-
tional resources, hence, we employed a semi-parametric ap-
proach in this study. In particular, we employed the K-nearest
neighbor (K-NN) semi-parametric scheme to develop daily
streamflow forecasts contingent on updated climate forecasts
since it can capture non-linear relationships that are typically
observed in daily streamflow data (Salas and Lee, 2010).
The K-NN scheme has been widely used in hydrologic stud-
ies (Rajagopalan and Lall, 1999; Prairie et al., 2006; Sharif
and Burn, 2006). Although daily streamflow forecasts could
be developed with reasonable skill, there is a gap in link-
ing those forecasts to the development of daily nutrient load-

ing forecasts. Furthermore, several studies have utilized an-
tecedent streamflows as surrogates of initial catchment con-
ditions (e.g., Chiew and McMohan, 2002; Piechota et al.,
2001; Wang et al., 2009) including 3-day average stream-
flow conditions (Majumdar and Kumar, 1990; Srinivas and
Srinivasan, 2000; Cigizoglu, 2003). In our analysis, the max-
imum auto-correlation between observed streamflow and the
previous-day streamflow occurred with a lag of 3 days for the
selected sites (figure not shown). Given that skillful forecasts
of daily nutrient loadings could be utilized in improving in-
stream water quality, we intend to investigate the potential in
forecasting daily nutrient loadings conditional on daily pre-
cipitation forecasts and previously observed streamflow as
surrogates of antecedent moisture conditions for 18 water-
sheds that are minimally affected by anthropogenic interven-
tions over the southeast US (SEUS).

The manuscript is organized as follows: Sect. 2 details the
data sources for daily streamflow, observed daily total nitro-
gen samplings and retrospective daily precipitation forecasts
that were utilized in the study. Following that, we describe
the methodology behind the development of daily streamflow
and nutrient loading forecasts. Section 4 provides the results
on the skill in predicting the observed nutrient loadings over
the selected 18 watersheds. Finally, in Sect. 5, we summarize
the salient findings and conclusions arising from the study.

2 Data description

This section outlines the streamflow, Water Quality Network
(WQN), and retrospective weather forecasts associated with
the development of total nitrogen forecasts over the SEUS.

2.1 HCDN streamflow database

Given that the intent of the study is to associate daily nutri-
ent loadings with daily precipitation forecasts, we focus our
analysis on 18 undeveloped basins over the SEUS from the
Hydro-Climatic Data Network (HCDN) database (Slack et
al., 1993). Figure 1 shows the location of 18 HCDN stations
and Table 1 provides the list of the 18 stations considered
in this study along with their drainage areas. Daily stream-
flow records in the HCDN basins is purported to be relatively
free of anthropogenic influences such as upstream storage
and groundwater pumping and the accuracy ratings of these
records are at least “good” according to United States Geo-
logical Survey (USGS) standards. Since the streamflow data
(Q) in the HCDN database is available only up to 1988, we
extended records up to 2009 based on the USGS historical
daily streamflow database.

2.2 Weather forecasts database

We employed retrospective weather forecasts from the Na-
tional Oceanic and Atmospheric Administration (NOAA)
to forecast daily streamflow at multiple sites in the SEUS
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Table 1.Baseline information for the 18 selected stations. Percentage land use area under urban and agriculture are calculated based on the
2001 USGS NLCD data. Values in the parentheses in the last column show the total number of daily total nitrogen loadings and concentration
samplings available for each station.

Station Station Drainage % Area under % Area Number of years
index number Station name area (km2) agriculture under urban (# of daily obs.)

1 2047000 Nottoway River near Sebrell, VA 3732.17 16.9 5.0 17 (95)
2 2083500 Tar River at Tarboro, NC 5653.94 28.9 8.0 22 (152)
3 2126000 Rocky River near Norwood, NC 3553.46 28.7 22.8 14 (65)
4 2176500 Coosawhatchie River near Hampton, SC 525.77 23.9 6.8 13 (100)
5 2202500 Ogeechee River near Eden, GA 6863.47 23.5 5.0 20 (141)
6 2212600 Falling Creek near Juliette, GA 187.00 0.6 2.4 14 (56)
7 2228000 Satilla River at Atkinson, GA 7226.07 20.4 7.6 20 (123)
8 2231000 St. Marys River near Macclenny, FL 1812.99 3.8 5.9 14 (108)
9 2321500 Santa Fe River at Worthington Springs, FL 1489.24 12.3 6.4 21 (82)
10 2324000 Steinhatchee River near Cross City, FL 906.50 0.8 4.8 19 (92)
11 2327100 Sopchoppy River near Sopchoppy, FL 264.18 0.0 1.0 22 (125)
12 2329000 Ochlockonee River near Havana, FL 2952.59 28.6 6.9 22 (133)
13 2358000 Apalachicola River at Chattahoochee, FL 44547.79 22.5 9.8 23 (152)
14 2366500 Choctawhatchee River near Bruce, FL 11354.51 19.6 5.6 21 (119)
15 2368000 Yellow River at Milligan, FL 1616.15 17.6 6.5 21 (123)
16 2375500 Escambia River near Century, FL 9885.98 12.5 4.8 22 (145)
17 2479155 Cypress Creek near Janice, MS 136.23 0 0.9 16 (54)
18 2489500 Pearl River near Bogalusa, LA 17023.99 15.2 6.8 12 (57)

4 
 

 16 

Figure 1. Locations of 18 water quality monitoring stations and grids of forecasted precipitation 17 

from NOAA’s reforecast model. 18 

 19 

 20 

  21 

Figure 1. Locations of 18 water quality monitoring stations and
grids of forecasted precipitation from NOAA’s reforecast model.

(Hamill et al., 2004, 2006). NOAA’s Earth System Research
Laboratory/Physical Science Division (ESRL/PSD) refore-
cast project provides daily precipitation forecasts from the
Global Forecast System (GFS) model, which was formerly
called the Medium-Range Forecast Model (MRF). The GFS
has 28 sigma (pressure) levels and a T62 spatial resolution
(∼ 200 km grid size), which represents physical processes
to estimate atmospheric forcings such as winds, tempera-
ture, precipitation, and geopotential heights at different pres-

sure levels (Hamill et al., 2006). Fifteen ensemble forecasts
are obtained by initializing different atmospheric states of
the GFS model every day. The control run is initialized by
the National Center for Environmental Prediction (NCEP)-
National Center for Atmospheric Research (NCAR) reanal-
ysis data (Kalnay et al., 1996), while the other 14 ensemble
members use a set of 7 bred pairs of initial conditions (Toth
and Kalnay, 1997), which are re-centered each day on the re-
analysis initial condition. In this study, we make use of daily
precipitation reforecasts from the GFS model consists of 15
ensemble members, up to 15 days in advance, starting from
1979 to present. We considered the ensemble mean of daily
precipitation forecasts in order to forecast daily streamflow
and daily total nitrogen loadings for the selected watersheds.

2.3 Water Quality Monitoring Network (WQN)
database

The USGS provides national and regional descriptions of
stream water quality conditions in the Water Quality Mon-
itoring Network (WQN) across the nation (Alexander et al.,
1998). The WQN database is comprised of water quality data
from the USGS monitoring networks for large watersheds
(National Stream Quality Accounting Network, NASQAN)
as well as watersheds that are minimally developed (Hy-
drologic Benchmark Network, HBN). We used the observed
daily concentrations of total nitrogen (TN) for the 18 sta-
tions in the SEUS from the WQN database. By selecting
watersheds from the HCDN database, we basically ensure
that the streamflow is minimally affected by anthropogenic
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Figure 2. Schematic diagram illustrating the overall approach to
forecast daily streamflow and total nitrogen loadings conditioned
on the predictors (gray boxes), daily weather forecasts and daily
average streamflow values for previous 3 days, based on Kernel-
nearest neighbor (K-NN) resampling approach.

influences; however, water quality data is influenced by the
land use type. Based on the USGS National Land Use Classi-
fication Data (NLCD) of 2001, we calculated the percentage
area under agricultural and urban (Table 1) land use. From
Table 1, we can see the distribution with seven, six and five
watersheds having 20–30, 10–20 and 0–10 % of area under
agriculture, respectively. On the other hand, the urban land
use is less than 10 %, with the exception being station #3
(23 %). TN loadings for these stations are available over a
period of 12–23 years, with samplings being available on av-
erage 5 to 6 times per year (Table 1). For additional details
regarding the WQN database, see Alexander et al. (1998). We
next provide details on the methodologies behind the devel-
opment of streamflow and total nitrogen loadings forecasts
for the selected watersheds.

3 Streamflow and total nitrogen forecasting models

The overall schematic diagram of the daily streamflow and
nutrients forecasting methodology is shown in Fig. 2. Daily
streamflow forecasts using weather forecasts have been pur-
sued by many studies (Day, 1985; Wang et al., 2011; Yang
et al., 2014), but efforts to use those streamflow forecasts to
develop nutrient forecasts are very limited.

3.1 Daily streamflow forecasts

To develop daily streamflow forecasts, we first identified the
grid points of large-scale 1-day ahead forecasted precipita-
tion (referred to as FP hereafter) that exhibit significant cor-
relation with daily streamflow from the HCDN database (Ta-
ble 2). The correlation was considered statistically significant
when it was greater than 1.96/sqrt(n-3), wheren denotes the

Table 2.Station ID, number of selected PCs, and cumulative eigen-
values for large-scale precipitation grids from the NOAA’s GFS
model, which provides 1-day ahead precipitation forecasts (grid
numbers are shown in Fig. 1).

# of Cumulative eigen-
Station Selected grids selected value of

ID (total # of selected grids) PCs selected PCs

1 5, 7, 12, 19–21 (6) 4 0.962
2 5, 7, 12 (3) 2 0.905
3 4–5, 11–13, 18–20 (8) 4 0.948
4 11–13, 18–20, 27 (7) 3 0.909
5 17–18, 24–27 (6) 3 0.922
6 9–12, 16–19, 23–26 (12) 4 0.903
7 24–26, 31–33 (6) 3 0.918
8 17–19, 24–26, 31–33 (9) 4 0.918
9 17–19, 24–26, 31–33 (9) 4 0.918
10 16–19, 23–26, 30–33 (12) 5 0.921
11 16–18, 23–25, 30–32 (9) 4 0.930
12 16, 30–32 (4) 3 0.975
13 23–25, 30–32 (6) 3 0.934
14 18, 22–25, 30–32 (8) 4 0.938
15 18, 22, 24 (3) 2 0.912
16 22, 29–31 (4) 3 0.977
17 15–17, 22–24, 29–31 (9) 4 0.929
18 17, 22–24, 30–31 (6) 3 0.932

number of days over the 1979 to 2009 period. This helps us to
identify the neighboring grid points that modulate the stream-
flow of a particular watershed.

Given that the selected large-scale FP grids are inter-
correlated with each other, the principal component analysis
(PCA) was applied to select the first few principal compo-
nents which explained over 90 % variability in the precipi-
tation data. PCA, also known as empirical orthogonal func-
tion (EOF) analysis, transforms the correlated variables to
orthogonal uncorrelated principal components (See details
in Oh and Sankarasubramanian, 2013). The number of prin-
cipal components varies from 2 to 5 among different sites
(Table 2). These principal components (PCs) of 1-day ahead
FP, as well as daily streamflow over the 3 days prior to the
forecasting date, were selected as the predictor for the semi-
parametric statistical model. For example, to forecast stream-
flow on a particular day, WQN data was observed on a given
day, e.g., 14 March in a given year, and predictors were then
the 1-day ahead FP issued on 13 March and the 1-day aver-
age daily streamflow from 11 to 13 March in that year. Thus,
the number of predictors varies from 3 to 6 (i.e., the number
of selected PCs shown in Table 2 and one predictor for the
1-day average streamflow). The streamflow over the previ-
ous 3 days could be considered as a surrogate for antecedent
soil moisture conditions. Then, the nearest neighbor resam-
pling method was employed to predict daily streamflow for
that particular day in which WQN was observed.
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3.2 K-nearest neighbor (K-NN) resampling
approach

After obtaining the predictors, PCs of the FP grids and 1-
day average streamflow, we utilized the K-nearest neigh-
bor (K-NN) resampling method proposed by Lall and
Sharma (1996). A similar application of the K-NN re-
sampling approach was employed for developing monthly
streamflow forecasts conditional on climatic predictors
(Souza et al., 2003; Devineni et al., 2008). The K-NN ap-
proach resamples daily (or monthly data) from historical
data to generate values that were observed in the past. Typ-
ically, the K nearest neighbors are identified between pre-
dicted time series and the historical series based on the Eu-
clidean distance. Then a weighing function (e.g., Lall and
Sharma, 1996) is generally assigned such that more weights
are given to the nearest neighbors, while less weights are
given to the farthest neighbors to estimate the predicted time
series. Finally, multiple ensembles are generated to estimate
the conditional mean of the time series.

In the K-NN scheme, we used the Mahalanobis distance
instead of the Euclidean distance, since the selected predic-
tors – PCs of the principal components and the streamflow
over the past observations – could be correlated. Therefore,
for forecasting the streamflow for a given day observed in the
WQN data, all the neighbors were chosen based on the histor-
ical time series of 1-day ahead FP and previous 1-day average
streamflow for that day over the period 1979 to 2009, leav-
ing out the daily predictors and predictands over the entire
forecasting year (i.e., 365 days). This implies that in order to
forecast streamflow for a given day, 30 historical years are
available (excluding the forecast year) for identifying simi-
lar conditions. Since this is a small sample size for identi-
fying neighbors, we also considered daily streamflow over
the 3 previous days, resulting in a total 120 neighbors, to de-
velop streamflow forecasts for a given day. The Mahalanobis
distance for all 120 neighbors were estimated using Eq. (1)
(Mahalanobis, 1936):

Di,j =

√
(Xi − Xj )T S−1(Xi − Xj ), (1)

where Xi and Xj = (X1,X2, . . . ,X120) are the multivari-
ate vectors containing predictor variables at the conditioning
time step,i andj denote the rest of the time periods that are
considered for identifying the neighbors, withT representing
the transpose operation andS−1 denoting the inverse of the
predictor (Xj ) covariance matrix. The matrix,X· = [x1·x2·]
denotes the multivariate vector, withx1· andx2· denoting the
1-day averaged streamflow before the forecasted day and the
PCs of 1-day ahead FP. The first 50 nearest neighbors and
their corresponding daily streamflow values were selected
based on Mahalanobis distance,Di,j , to develop an ensemble
of daily streamflow forecasts. These daily streamflow values
from the 50 neighbors were used to draw 500 ensembles that
represent the conditional distribution with the density/weight

represented by each member,j , by the kernel in Eq. (2):

wj =
1/j

K∑
k=1

1/k

, i = 1,2, · · · ,K, (2)

whereK = 50 (the number of neighbors), andwi represents
the probability with which neighbor is resampled in con-
stituting the 500-member ensemble. Finally, the forecasted
streamflow for each day is calculated as the conditional mean
of these 500 realizations obtained from the 50 neighbors. The
ensemble mean of daily streamflow forecasts are specifically
obtained for the days on which WQN data is available, so
that the ensemble mean of daily streamflow forecasts could
be used for developing forecasts of total nitrogen loadings,
whose details are described in the next section.

3.3 Daily nitrogen loadings and concentration forecasts
development

Daily nitrogen loadings forecasts are developed by forc-
ing the daily streamflow forecasts with the Load Estimation
(LOADEST) program. The LOADEST model can be em-
ployed with the observed or predicted daily streamflow time
series at any given site. Streamflow forecast developed us-
ing large-scale precipitation forecasts and previous 3-day av-
erage streamflow using the non-parametric model is forced
with the LOADEST model to develop nutrient forecasts.
LOADEST is a statistical model that estimates daily loadings
based on the observed daily streamflow and the centered time
(dtime) of the year of the observation (Runkel et al., 2004).

ln(Lj ) = a0+ a1 ln(Qj ) + a2lnQ2
j + a3sin(2πdtime)

+ a4cos(2πdtime) + ε̂j . . ., (3)

whereLj denotes the observed daily loadings from the WQN
database with “j ” denoting the day of observation,Qj is the
observed daily flow and dtime is the centered time which is
a function of the observation’s number of days (from 1 Jan-
uary) in the calendar year,a0− a4 denote the model coef-
ficients andε̂j is the estimated residual for the model. The
expression dtime is centered to avoid multi-collinearity and
dtime also represents the seasonality in loadings pattern. For
a detailed expression on dtime, see Cohn et al. (1992).

The LOADEST model allows the user to select the best fit-
ting regression model from 11 predefined regression models
using the Akaike information criterion (AIC) (Akaike, 1981).
Five regression models that include a linear time trend are not
appropriate, since we are employing observed streamflow to
estimate simulated loadings for HCDN watersheds. There-
fore, the simulated nutrient loadings based on the remaining
regression models (i.e., model forms 1, 2, 4 and 6 as defined
in Runkel et al., 2004) in the LOADEST program do not have
any time trend. Equation (3) represents the model form 6.
Model form 1 (2) considers only the first two (three) terms
in the right-hand side (RHS) of Eq. (3), whereas model form
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3 considers all the terms except the third term in the RHS
of Eq. (3). For further details on model forms, see Runkel et
al. (2004). Table 3 shows the goodness of fit statistics (co-
efficient of determination (R2) and AIC) in predicting the
observed daily loadings in the WQN database (Table 1) and
the coefficients of the best fitting regression model for total
nitrogen for the selected 18 stations.

From Table 3, we infer thatR2 ranges from 0.83 to 0.97,
indicating good fit of the observed daily loadings over 18 sta-
tions. Using these parameters, we next estimate the forecasts
of daily loadings using the ensemble mean of daily stream-
flow forecasts developed using the retrospective weather
forecasts. Strictly speaking, these parameters should have
been obtained by leaving out the observed WQN loadings on
the day of the forecasting. Since we have more than 50 ob-
servations at each site (Table 1), the regression coefficients
and model forms did not change substantially. Hence, we
used the parameters of the regression coefficients given in Ta-
ble 3 to estimate the forecasted total nitrogen loadings. These
forecasted loadings are divided by the forecasted streamflow
to estimate the forecasts of total nitrogen concentrations for
the 18 selected watersheds. The forecasted daily streamflow
and total nitrogen loadings and concentration are respectively
compared with the observed streamflow and the observed
WQN daily loadings based on the Spearman rank correla-
tion and root mean square error (RMSE) in predicting the
observed information.

4 Results and analysis

In this section, we present skill in predicting variability (rank
correlation) and accuracy (RMSE) of observed streamflow
and WQN loadings using the forecasted daily streamflow ob-
tained using the K-NN approach.

4.1 Skill in forecasting daily streamflow

We first summarize the performance of the daily streamflow
forecasts for only those days when TN loadings are mea-
sured (Fig. 4a). Based on that, we infer that all the stations
show statistically significant correlations, with 8 sites show-
ing correlations greater than 0.8 (Fig. 3a). Similarly, RMSE
(in cfs per unit area) is less than 1 for all states except stations
#11, 17 and 18 (Fig. 3b). These errors primarily occur due to
the inability of the model to predict high values as indicated
by very high residuals. For instance, RMSE for station #17
drops from 3.56 to 0.55 by excluding only one extreme ob-
servation recorded on 2 October 1981 (not shown here). The
RMSE for station #11 (#18) are adjusted to 0.73 (0.29) by
dropping one (two) high flow value(s). Although this condi-
tional bias is not observed at all the stations, we infer that the
daily streamflow forecast model has poor skill in predicting
high flow values. We defer this issue for further discussion at
the end of this section. Given this evaluation in predicting ob-

Figure 3. (a) Rank correlation and(b) RMSE (cfs per unit area)
between observed daily streamflow and forecasted daily stream-
flow for those days with TN loadings being available in the WQN
database.

served streamflow on days with WQN data, we next evaluate
the performance of daily nitrogen loadings and concentration
forecasts for the 18 stations.

4.2 Skill in forecasting total nitrogen loadings and
concentration

Using the ensemble mean of the daily forecasted streamflows
as a predictor in the LOADEST model, we estimate the fore-
casted TN loadings for those days in which measurements
are available in the WQN database. Figure 4a (b) shows
rank correlation (RMSE) between forecasted daily loadings
and observed loadings for the 18 stations. Daily loadings of
TN forecasts exhibit statistically significant relationships be-
tween observation and forecasts at all the stations, with cor-
relation coefficients being greater than 0.8 in nine stations.
We also infer that the correlation is higher in coastal regions
as opposed to the inland watersheds. Similar to the skill of
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Table 3. Performance of LOADEST model in predicting the observed TN loadings from the WQN database. Models with linear time
components (Model no.: 3,5, 7–9) are not considered.

Station R2 AIC Model Coefficients of selected LOADEST model
index (daily) (daily) no.

a0 a1 a2 a3 a4

1 0.948 0.892 4 6.768 1.114 −0.283 −0.069
2 0.966 −0.131 4 8.122 0.980 0.108 −0.018
3 0.966 0.496 4 8.863 1.066 −0.195 0.090
4 0.956 0.905 6 4.446 1.013 0.026 0.238−0.036
5 0.916 0.837 4 7.721 1.069 −0.084 −0.317
6 0.853 2.094 1 2.647 1.095
7 0.968 0.518 6 7.521 1.005 −0.025 −0.083 0.103
8 0.963 0.250 6 6.428 1.088 −0.075 −0.027 0.187
9 0.986 −0.219 6 5.690 1.086 −0.037 −0.078 0.059
10 0.979 0.279 6 5.549 1.241 −0.069 −0.096 0.071
11 0.979 0.516 6 4.351 1.139 −0.043 0.187 0.007
12 0.923 0.585 1 7.341 0.846
13 0.902 0.193 4 10.563 0.981 0.074 0.165
14 0.835 0.423 4 9.077 0.931 −0.145 −0.042
15 0.834 1.085 6 7.238 1.123 −0.131 −0.004 0.176
16 0.873 0.758 4 8.868 1.039 0.147 0.032
17 0.912 1.233 4 4.555 1.188 0.206 0.328
18 0.899 0.853 1 10.193 1.047

daily streamflow forecasts, loadings forecasts produce high
RMSE in some stations, despite their ability to predict the
observed variability. This failure in forecasting TN loadings
is primarily due to the inability to estimate high flow events
as discussed in Sect. 4.1.

Further extending our analysis, we estimated TN concen-
tration from the LOADEST model utilizing the forecasted
streamflow and loadings and then compared the forecasted
TN concentration with the observed concentrations available
in the WQN database (Fig. 5). Though the forecasted con-
centration is smaller compared to the correlation reported for
streamflow and loadings, the correlation is statistically sig-
nificant at all stations except stations #6 and #18. Given that
concentration is the ratio of loadings to the streamflow, the
error in predicting both loadings and streamflow result in re-
duced skill. We are not reporting the RMSE since the trend
is similar to Figs. 4 and 5.

4.3 Factors affecting the skill in forecasting TN loadings

In order to understand what factors control the skill in fore-
casting the TN loadings utilizing the weather forecasts, we
plotted the rank correlation against basin area (Fig. 6). Rank
correlation in forecasting streamflow (Fig. 6a) and TN load-
ings (Fig. 6b) are statistically significant for all the stations
and the skill increases as the drainage area increases, which
is consistent with previous findings (Bloeschl and Sivapalan,
2013). This is primarily due to the fact that retrospective
weather forecasts being available over large spatial scales,

the developed streamflow and TN loadings forecasts modu-
late better with the observed streamflow and WQN loadings.

To gain further understanding on how the developed model
estimates the observed streamflow and nutrients, we present
the performance of daily streamflow and TN forecasts for
the sites that have the best and worst skill under each case
(Fig. 7). For quantifying the performance of streamflow, we
considered the continuous daily streamflow records available
from USGS instead of comparing the performance on the
days with WQN data. From streamflow forecasts for the site
with best skill (Fig. 7a), we understand that overall perfor-
mance is good, but the K-NN resampling approach based on
daily streamflow forecasts consistently underestimates high
flow events. This underestimation/error in streamflow fore-
casts partially arises from the errors in the precipitation fore-
casts also. We discuss this issue in detail in the next sec-
tion. From Fig. 7b, the site performs poorly in forecasting
flows above 8000 cfs. It is important to note that for the same
site we observed significant correlation in predicting both
the streamflow and the loadings on those days with WQN
data being present. Thus, evaluating the performance of the
K-NN resampling model over the entire time series of ob-
served records provides a more confirmatory evaluation of
the model. The primary reason the K-NN resampling model
performs poorly at site 3 (Rocky River near Norwood, NC) is
due to the limited correlation between the observed precip-
itation and the forecasted precipitation during the summer
months (figure not shown). Thus, the error resulting from K-
NN resampling arises from both errors in the precipitation
forecasts and in estimating the initial conditions as well as
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Figure 4. (a) Rank correlation and(b) RMSE between observed
TN loadings and forecasted TN loadings for those days with TN
loadings being available in the WQN database.

from the model itself. Even if one uses physically based dis-
tributed models (e.g., Sacramento model), the skill of stream-
flow forecasts is heavily dependent on the skill of precipita-
tion forecasts as well as the season of forecasting.

Figure 7c shows the performance of the TN loading
forecasts obtained using the streamflow forecasts with the
LOADEST model. Even here, the same issue is highlighted
with the limited ability of the forecasts in predicting the nutri-
ents on days with high flows, resulting in underestimated TN
loadings. But the model estimates the variability of the ob-
served nutrients very well. Figure 7d shows the performance
of TN loadings for a station with the worst skill. The skill
of the streamflow forecasts resulting from the K-NN resam-
pling approach in predicting the observed daily streamflow
recorded at USGS stations is marginal with an average daily
correlation of 0.6. Given that theR2 of the LOADEST model
is 0.912 for the selected station (Table 3), the poor perfor-
mance primarily results from the inability of the streamflow
forecasts, which partly arises from the resampling model as
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Figure 5.Correlation between observed TN concentration and fore-
casted TN concentration for those days with TN loadings being
available in the WQN database.
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Figure 6. Role of basin scale and drainage area in forecasting ob-
served(a) streamflow and(b) TN loadings provided in the WQN
database for the 18 stations.
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Figure 7.Comparison of observations and forecasts of streamflow (a andb) and TN loadings (c andd) for the stations with best (Streamflow:
Ogeechee River near Eden, GA, TN: Tar River at Tarboro, NC) and worst forecasting skill (Streamflow: Rocky River near Norwood, NC,
TN: Cypress Creek near Janice, MS).

well as from the skill of the precipitation forecasts. Thus,
to develop nutrient forecasts, it is important that the skill
of daily precipitation and streamflow forecasts should be
good and also the load estimation model should have very
high skill in predicting the observed nutrients. Given that
these basins are virgin, it could be argued the predominant
source of nutrient loadings arise from the non-point sources
whose primary transport is the streamflow. Thus, to develop
a broader understanding of what could be achieved in fore-
casting daily nutrients in virgin basins, one could look at the
skill in predicting daily streamflow forecasts using the ret-
rospective weather forecasts for the selected 18 stations. We
summarize this information under the discussion in the next
section by summarizing the skill of daily streamflow fore-
casts under each month for the selected 18 stations.

4.4 Discussion

The intent of this study is to develop daily forecasts of to-
tal nitrogen (TN) loadings and its concentration in 18 HCDN
watersheds that are minimally impacted by anthropogenic in-

fluences over the southeastern US. Given that these water-
sheds experience virgin flow, our hypothesis is that most of
the nutrient transport at daily timescales could be explained
based on observed streamflow. For this purpose, we related
the observed daily streamflow and loadings using the LOAD-
EST model (Table 3), which showed significant skill in pre-
dicting the daily variability in TN loadings purely based on
observed streamflow. Given that the predominant driver of
streamflow in watersheds under the rainfall–runoff regime is
precipitation, we utilized the retrospective 1-day ahead pre-
cipitation forecasts from the reforecasts database of Hamill
et al. (2004) and daily streamflow over the previous 3 days
(as a surrogate for soil moisture storage) for developing daily
streamflow forecasts on the days with recorded WQN ob-
servations. The forecasted ensemble average of the stream-
flow obtained using the K-NN resampling model was used
within the LOADEST model to estimate the forecasted daily
TN loadings and the concentrations. We observed the cor-
relation between observed TN loadings and the forecasted
TN loadings as being significant in almost all the stations.
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Figure 8. Box plot showing rank correlations between observed
daily streamflow and forecasted streamflow aggregated over each
month from 1979 to 2009. Each plot includes 558 correlations (18
stations× 31 years). The solid line represents the statistically sig-
nificant (95 %)R2 corresponding to the null hypothesis thatR2

equals zero.

But the forecasted concentration showed reduced skill, since
it accounted for the errors in both loadings and stream-
flow. Though one could improve the streamflow forecasts
developed using the K-NN resampling approach by consider-
ing physically distributed hydrologic models and by explic-
itly considering additional input variables (e.g., temperature
forecasts, humidity), we certainly captured the first-order in-
formation on the daily streamflow variability by utilizing
the retrospective precipitation forecasts and employed that
for assessing the potential in developing nutrient forecasts.
Another advantage with the streamflow forecasts using the
K-NN approach is in specifying the conditional distribution
of flows. Thus, one could use the conditional distribution of
streamflows with the LOADEST model to develop the con-
ditional distribution of loadings, which could be used to es-
timate the probability of violating the concentration at the
daily timescale.

It is important to note that all the skill reported in Figs. 3–
6 consider the ability to predict those days when the WQN
observations are available. The primary difficulty in assess-
ing the potential for developing nutrient forecasts at daily
timescale is the discontinuous nutrient samplings recorded
in the WQN database. Oh and Sankarasubramanian (2012)
addressed this issue by computing the coefficient of determi-
nation (R2) of the winter TN loading forecasts as a product
of theR2 in forecasting the seasonal streamflow and theR2

of the LOADEST model for the winter season. Similarly, we
express the skill of TN forecasts (Eq. 4) at daily timescale as
a product of theR2 of streamflow (Q) forecasts developed
from the K-NN approach for each day in the calendar year
and theR2 of the LOADEST model reported in Table 3.

R2
TN-daily = R2

(LOADEST) ∗ R2
Q-daily. . . (4)

R2
Q-daily is computed between the observed daily streamflow

over the period 1979–2010 and the computed ensemble mean
of the streamflow forecast from the K-NN resampling ap-

proach. Since the skill of daily streamflow forecasts differ
substantially depending on the season, we plot theR2

TN-daily
as a box plot for each month (Fig. 8). Basically, Fig. 8 pools
the daily correlation,R2

TN-daily, for a given month across the
18 stations. For instance, in January, we expect 31× 18 daily
correlations and the box plot simply summarizes the skill in
predicting daily TN for that month over the southeast US.
About 75 % of theR2

TN-daily at daily level are at a statistically
significant level over the period January to May and also
from November to December (Fig. 8). Daily TN forecasts
show relatively better skills in predicting observed TN vari-
ability during the winter and spring. On the other hand, the
skill of R2

TN-daily is poor during the summer and fall seasons.
It is well known that retrospective precipitation forecasts
have lower skill during the warm season (Hamill et al., 2004).
One of the possible reasons of relatively poor skill during
summer and fall is that weather phenomena during these sea-
sons depend greatly on local-scale processes, while large-
scale models do not have the ability to capture it (Hamill et
al., 2006). Thus, the poor skill ofR2

TN-daily primarily arises
from the skill in forecasting precipitation during the summer
and fall seasons. Additionally, the role of temperature dur-
ing the summer season is also much higher with enhanced
evapotranspiration. However, considering temperature as an
additional predictor did not result in a substantial increase in
theR2

Q-daily for the summer season. Perhaps if one considers
a physically based hydrologic model, the skill in predicting
daily streamflow could improve during the summer season.
We plan to investigate this in future work in assessing the
potential for developing nutrient forecasts, with streamflow
forecasts being derived from a physically based distributed
hydrologic model. Thus, the potential skill (R2

TN-daily) in pre-
dicting daily nutrients is statistically significant for the winter
and spring season in almost all the stations. One could uti-
lize this to develop adaptive nutrient management strategies
for controlling the point sources (e.g., waste water treatment
plants) so that the downstream TN concentration does not
exceed the desired/EPA standards.

Given that consideration of both forecasted precipitation
and 3-day average streamflow prior to the forecasting day
exhibit significant skill in predicting the observed TN load-
ings from the WQN database, we investigated the role of
each predictor in contributing to the overall skill reported
in Figs. 3–5. This analysis will also provide information on
the role of basin storage, i.e., 3-day average streamflow, in
contributing to the forecast skill. For this purpose, we de-
veloped the streamflow forecasts using only one predictor
and then used that streamflow forecast to estimate the TN
loadings. Figure 9 quantifies the role of each predictor, 3-
day average streamflow prior to forecasting day (Q) and 1-
day ahead precipitation forecasts (FP), in contributing to the
skill, correlation and RMSE, in forecasting TN loadings for
all the 18 sites. It is important to note that the correlation and
RMSE were obtained by forecasting for the actual day for
which the samples are available in a given site in the WQN
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Figure 9. The role of different predictors, 3-day average daily
streamflow prior to forecasting day (Q) and 1-day ahead precip-
itation forecasts (FP), in forecasting the observed TN loadings is
expressed as(a) correlation coefficient and(b) RMSE between the
observed TN and the forecasted TN loadings for the 18 selected
sites.

database. Figure 9 clearly indicates that the combination of
both 3-day average streamflow and 1-day ahead precipitation
forecasts as predictors result in improved correlation and re-
duced RMSE in estimating daily TN loadings at all the sites.
Comparing the skill obtained using only one predictor, 3-day
average streamflow or forecasted precipitation, we infer that
for most of the watersheds, the skill obtained using 3-day
average streamflow (prior to the forecasting day) alone as
a predictor provides better skill in comparison to the skill
obtained using forecasted precipitation alone as a predictor,
with the exception being stations 6, 8 and 18. On an aver-
age, in most of the basins, 3-day average streamflow prior to
the forecasts alone can explain around 25 % (average corre-
lation across all the sites is 0.52) of the variability in the ob-
served nutrients. Several studies have shown that antecedent
moisture/flow conditions also play a critical role in influenc-
ing the nutrient loadings from the watershed (Vecchia, 2003;
Alexander and Smith, 2006). This analysis further confirms
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Figure 10. Role of the type of land use and percentage area under
agriculture in influencing the forecast skill, which is expressed as
the correlation coefficient between the observed TN loadings and
the forecasted TN loadings for the 18 selected watersheds.

the critical role of basin storage, both streamflow and nu-
trients, in influencing the forecast skill. On the other hand,
forecasted precipitation alone can explain on average 20 %
(average correlation across all the sites is 0.45) of the vari-
ability in the observed TN loadings in the WQN database.
Thus, including both of them as a predictors in the proposed
modeling framework results in overall improvement.

We also investigated how the type of land use influences
the skill in forecasting TN loadings. Figure 10 shows the
scatter plot between the forecast skill, correlation coeffi-
cient between the observed TN loadings and the forecasted
TN loadings, and the percentage area under agriculture for
each watershed. This indicates basins with higher percent-
age of agricultural land exhibits higher skill in forecasting
the TN loadings. Basins with increased agricultural activity
could potentially experience increased fertilization applica-
tion, which could increase the streamflow-induced transport.
This indicates the role of basin nutrient storage in influenc-
ing the forecast skill. Similar analyses on urban land use did
not reveal any relationship with the skill. Thus, analyses from
Figs. 9 and 10 show that both antecedent moisture conditions
and in-basin nutrient storage influence the forecast skill for
the selected 18 stations over the SEUS.

5 Summary and conclusions

We developed a semi-parametric statistical model, which uti-
lizes 1-day ahead precipitation forecasts from the reforecasts
from the NOAA GFS climate model (Hamill et al., 2004)
and daily streamflow over the previous 3 days as predictors
in order to develop daily streamflow forecasts, which in turn
was used to implement a load estimation model, LOADEST,
for estimating daily nutrients. For each day, conditioned on
the previous day’s streamflow and 1-day ahead forecasted
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precipitation, 50 nearest neighbors over a 3-day window
were selected based on the Mahalanobis distance and then
observed daily streamflow corresponding to those 50 neigh-
bors were resampled to constitute 500 ensemble members to
develop a daily streamflow forecast. It is important to note
that to develop a forecast for a given day in a year, the entire
year’s predictors and predictand were left out for identifying
the 50 nearest neighbors. Finally, the conditional mean of
this daily streamflow ensemble was forced in the LOADEST
model to obtain daily forecasts of TN loadings and concen-
tration for days with recorded WQN observations. Skill in
developing forecasts of streamflow, TN loadings and the as-
sociated concentration were computed using rank correlation
and RMSE by comparing the respective forecast values with
the WQN observations for the selected 18 HCDN stations.
The forecasted daily streamflow and TN loadings and their
concentration exhibit statistically significant skill in predict-
ing the respective daily observations in the WQN database at
all the 18 stations over the SEUS.

The study also found that the skill in predicting the ob-
served TN loadings is higher for large watersheds, indicat-
ing the large-scale precipitation forecasts from the reforecast
database better correlate with precipitation and streamflow
over large watersheds. Analyses also showed that compared
to the forecast precipitation, the 3-day average streamflow
prior to the forecasting period played a dominant role in con-
tributing to the skill of the forecast. We also observed the
skill in forecasting TN loadings is higher for basins hav-
ing a higher percentage of the area under agriculture. These
findings confirm that basin storage, streamflow and nutri-
ents play a critical role in influencing the skill of the fore-
cast. Further, to overcome the limited samplings of TN in
the WQN data, we extended the analyses by developing ret-
rospective daily streamflow forecasts over the period 1979–
2012 using reforecasts based on the K-NN resampling ap-
proach. Based on the coefficient of determination (RQ-daily2)

of the daily streamflow forecasts, we computed the potential
skill (R2

TN-daily) in developing daily nutrient forecasts based

on theR2 of the LOADEST model for each station. The anal-
yses showed that the forecasting skills of TN loadings are rel-
atively better in winter and spring months, while skills are in-
ferior during summer months. These findings are consistent
with other studies (Devineni and Sankarasubramanian, 2010;
Sinha and Sankarasubramanan, 2013) which show that large-
scale precipitation forecasts derive their skill from ENSO
climatic modes in the SEUS. One possible reason for this
poor skill in summer is due to the dominance of local-scale
processes during the summer season. Other possible reasons
could be due to the limitations in the methodology. We re-
sampled neighbors to develop daily streamflow ensemble,
which of course will not have members beyond the max-
imum observation over the selected 50 neighbors. Further,
air temperature can play a dominant role during the sum-
mer and fall seasons, resulting in enhanced evapotranspira-

tion and reduced baseflow from the watershed. Despite these
limitations, there is potential in utilizing the daily stream-
flow forecasts for developing daily nutrient forecasts, which
could be employed for various adaptive nutrient management
strategies for ensuring better water quality.

Though the watersheds considered under this study have
experienced moderate agricultural activity, extending the
above modeling framework for basins experiencing signifi-
cant urbanization will require additional information. For in-
stance, as the basin gets urbanized, it is natural to expect the
point TN loadings from waste water treatment (WWT) plants
to influence the downstream loadings and concentration. Un-
der such situations, it would be useful to consider the dis-
charges from the WWT plants as predictors in developing the
model. One could also use the TN forecast to control point
loadings so that the downstream TN concentration is within
the prescribed standard.

For basins experiencing significant non-point pollution
from agriculture, one could use information from remote
sensing satellites that quantify the chlorophyll concentration
could be also be considered as nutrient storage in the river
reach and water bodies (Jones et al., 2005). Thus, adequate
monitoring of changes in basin land use and nutrient con-
ditions could provide additional information in developing
a TN forecasting model for watersheds experiencing signifi-
cant human interference.
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