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Abstract. This paper examines the potential of different al-
gorithms, based on the Kalman filtering approach, for as-
similating near-surface observations into a one-dimensional
Richards equation governing soil water flow in soil. Our spe-
cific objectives are: (i) to compare the efficiency of different
Kalman filter algorithms in retrieving matric pressure head
profiles when they are implemented with different numerical
schemes of the Richards equation; (ii) to evaluate the per-
formance of these algorithms when nonlinearities arise from
the nonlinearity of the observation equation, i.e. when sur-
face soil water content observations are assimilated to re-
trieve matric pressure head values. The study is based on a
synthetic simulation of an evaporation process from a homo-
geneous soil column. Our first objective is achieved by im-
plementing a Standard Kalman Filter (SKF) algorithm with
both an explicit finite difference scheme (EX) and a Crank-
Nicolson (CN) linear finite difference scheme of the Richards
equation. The Unscented (UKF) and Ensemble Kalman Fil-
ters (EnKF) are applied to handle the nonlinearity of a back-
ward Euler finite difference scheme. To accomplish the sec-
ond objective, an analogous framework is applied, with the
exception of replacing SKF with the Extended Kalman Fil-
ter (EKF) in combination with a CN numerical scheme, so
as to handle the nonlinearity of the observation equation.
While the EX scheme is computationally too inefficient to
be implemented in an operational assimilation scheme, the
retrieval algorithm implemented with a CN scheme is found
to be computationally more feasible and accurate than those
implemented with the backward Euler scheme, at least for
the examined one-dimensional problem. The UKF appears
to be as feasible as the EnKF when one has to handle non-

linear numerical schemes or additional nonlinearities arising
from the observation equation, at least for systems of small
dimensionality as the one examined in this study.

1 Introduction

Soil water in the vadose zone exerts a large control on the
water and energy balance of land-atmosphere systems over a
wide range of space-time scales (e.g. Milly and Dunne, 1994;
Entekhabi et al., 1996; Vrugt et al., 2001, 2003; Rodriguez-
Iturbe and Porporato, 2005). With the increasing availability
of near-surface data from remote and ground-based sensors,
unique opportunities emerge to predict the soil water dynam-
ics (McLaughlin, 2002; Vereecken et al., 2008). A key chal-
lenge is to identify the best approaches for efficiently inte-
grating these data with the soil water dynamic models, in
order to achieve more reliable and purposeful predictions.
Hence, data assimilation has become a relatively important
area of investigation, aiming at an efficient integration of
remote-sensing techniques, ground-based sensors and soil
water dynamic models (Hoeben and Troch, 2000; Heathman
et al., 2003; de Lannoy et al., 2007; Matgen et al., 2010).

The physics of isothermal flow in unsaturated soils is com-
monly modelled with the Richards equation (Jury et al.,
1991). Three standard forms of the unsaturated flow equa-
tion can be found in literature: (i) the “h-based form” and
(ii) the “θ -based form”, whether the dependent variable is
matric pressure head,h [L], or soil water contentθ [L3 L−3],
respectively; (iii) the “mixed form” when both the dependent
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variables are employed. The water retentionθ(h) and the hy-
draulic conductivityK(θ) [L T−1] functions provide consti-
tutive relationships between those two variables and the hy-
draulic conductivityK, allowing for conversion of one form
of the equation to the other one.

A primary source of numerical difficulty when dealing
with the Richards equation is its strongly nonlinear nature.
The standard numerical approximations that are applied to
the spatial domain are the finite difference method and the
finite element method. For any Euler method other than the
fully explicit forward method, nonlinear algebraic equations
result and some linearization and/or iteration procedure must
be implemented to solve the discrete equations (Celia et al.,
1990).

The Kalman Filter (Kalman, 1960) is a sequential data as-
similation technique, largely employed in hydrological appli-
cations to merge observations arising from different sources,
such as remote-sensing instruments or ground-based sensors,
with dynamic models (McLaughlin, 2002), and it can be con-
sidered as the most general estimator for linear dynamic sys-
tems (Vereecken et al., 2008). The Kalman Filter “optimally”
weights the a priori model state predictions at a given time
with the measurements available at the same time, according
to a least squares approach, in order to provide a posteriori
estimates of the state system evolution.

Although the standard Kalman Filter (SKF) was originally
formulated for an optimal estimation of linear state space
models with Gaussian uncertainties, more KF algorithms
have been developed to handle nonlinear models. The Ex-
tended Kalman Filter (EKF), which relies on the linearization
of model using first order approximation of Taylor series,
was the first variant designed for dealing with nonlinear mod-
els. Katul et al. (1993) and Entekhabi et al. (1994) applied the
EKF for the estimation of the vertical soil moisture profile
with nonlinear numerical schemes of the Richards equation.
Walker et al. (2001) compared SKF and direct insertion as-
similation schemes within a synthetic study similar to that
adopted by Entekhabi et al. (1994), but employing a linear
explicit finite difference scheme of the Richards equation.

Further developments of the Kalman Filter have been
suggested to overcome drawbacks of the EKF, which have
been reported in case of strong nonlinearities and high di-
mensional applications (e.g. Reichle et al., 2002b; van der
Merwe, 2004).

Evensen (1994) proposed the Ensemble Kalman Filter
(EnKF), based upon Monte Carlo generations of an ensemble
of states to approximate the propagation of the state predic-
tion error statistics through the nonlinear model. The EnKF
is relatively easy to implement and it can efficiently deal
with high dimensional applications. It has become a pop-
ular choice for data assimilation in traditional hydrological
applications like the estimation of streamflow (Moradkhani
et al., 2005; Clark et al., 2008; Weerts and El Serafy, 2006;
Xie and Zhang, 2010), land surface energy fluxes (Dunne and
Entekhabi, 2006; Pipunic et al., 2008) and soil moisture (Re-

ichle and Koster, 2003; Reichle et al., 2007; De Lannoy et al.,
2007). It has also been applied in subsurface models based on
the numerical solver of the Richards equation (Das and Mo-
hanty, 2006; Huang et al., 2007; Camporese et al., 2009).

A method less commonly applied in hydrological studies
is the Unscented Kalman Filter (UKF) developed by Julier et
al. (1995) and Julier and Uhlmann (1997, 2004), also based
on propagating an ensemble of sample states, but chosen in
a deterministic way. Compared with the EnKF, the UKF is
also expected to be less computationally efficient for sys-
tems of large dimensionality and its implementation is less
straightforward. The results of Luo and Moroz (2009, 2010)
suggest that in small scale applications the UKF could per-
form slightly better than the EnKF in response to the rela-
tively large biases and spurious modes of Monte Carlo ap-
proximations. To our knowledge, the UKF has not been im-
plemented yet for retrieving soil water state profiles with a
soil water transport model based on a numerical solution of
the Richards equation.

The assimilation of near-surface information into the
Richards equation can be treated by two alternative ap-
proaches: (i) using a Standard Kalman Filter (SKF), pro-
viding an optimal estimate of the mean and error variance
of the state variable for a linear numerical solver of the
Richards equation, or (ii) using a non-standard KF, such as
the EKF, the UKF and the EnKF, which supplies an ap-
proximate solution of the first two moments of the state
variable, but with a nonlinear numerical scheme. Examin-
ing the advantages and limitations of these two alternative
approaches can be relevant to identify the best strategy for
implementing assimilation algorithms in operational soil hy-
drological studies. Nonlinear numerical schemes outperform
linear schemes, since they allow us to achieve numerical sta-
bility and accuracy with much larger time-steps than linear
schemes (e.g. Haverkamp et al., 1977; Paniconi et al., 1991).
However, the larger computational effort required for the ap-
plication of linear schemes might be compensated by ap-
plying SKF analytic estimators for the propagation of the
first two moments of the state profiles, with minor compu-
tational costs than the corresponding non-standard Kalman
Filter algorithms.

We are not aware of previous studies that have explic-
itly examined the relative efficiency of these alternative
approaches.

The general aim of this paper is to compare the effi-
ciency of soil water state profile retrieval algorithms involv-
ing standard and non-standard Kalman Filter methods ap-
plied respectively to linear and nonlinear numerical schemes
of the Richards equation. These analyses are conducted by
repeating the same synthetic experiment implemented by En-
tekhabi et al. (1994) and Walker et al. (2001), simulating an
evaporation process from a homogeneous soil column.
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Two scenarios are examined in this paper. The first con-
cerns the assimilation of surface matric head for retrieving
matric head profiles withh-based numerical schemes of the
Richards equation. Under this scenario, the following re-
trieval algorithms are compared: SKF applied to both the
explicit and Crank–Nicolson linear numerical schemes; the
UKF and EnKF applied to a nonlinear numerical scheme.

The second scenario differs from the first as the assimi-
lated surface variable is the soil water content instead of the
matric head. In this case, in order to handle the nonlinearity
arising from the discrepancy between the observed and the
retrieved variables, the SKF is replaced by the EKF in com-
bination with the Crank-Nicolson linear numerical scheme,
while the explicit numerical scheme is excluded from the
comparison study.

The paper is structured as follows: Sect. 2 illustrates the
Kalman Filter algorithms employed in this study; Sect. 3
presents the different numerical schemes of the Richards
equation; Sect. 4 describes the results of the numerical ex-
periments; Sect. 5 is devoted to the conclusions.

2 Kalman filtering

The Kalman Filter is a recursive filter that estimates the state
of a dynamic system from a series of noise corrupted mea-
surements. Its basic theory has originally been designed for
linear systems (Kalman, 1960), but several variants have sub-
sequently been proposed for studying the dynamics of non-
linear systems.

In the most general case, the dynamic system and the mea-
surements are described by two sets of equations, discretised
in the time domain (e.g. van der Merwe; 2004):

xk = Fk−1,k (xk−1, uk) + νk−1 (1)

yk = Hk (xk) + ηk (2)

whereFk−1,k is the dynamic system model that propagates
the state vectorx in time, assuming discrete time stepsk; uk

represents the current exogenous input vector, which is as-
sumed to be known;Hk is the measurement model, which de-
scribes how the current measurements vectoryk is related to
the current statexk. The dynamic system model is assumed
to be corrupted by a zero mean additive Gaussian noiseνk−1
with covarianceQk−1. Similarly, the measurement model is
assumed to be corrupted by a zero mean additive Gaussian
noise vectorηk with covarianceRk.

With respect to the more general Bayesian theory, the sys-
tem statexk evolves over time according to a hidden Markov
process, with a conditional probability densityp(xk|xk−1)

fully specified byFk−1,k and by the process noise distribu-
tionp(νk−1). The observationsyk are conditionally indepen-
dent given the state and are generated according to the condi-
tional probability densityp(yk|xk), which is fully specified
by Hk and the observation noise distributionp(ηk).

The Kalman Filter provides a posteriori estimates of the
first two moments of the state distribution:

– the mean statêxk =E[xk], corresponding to the esti-
mated state;

– the covariance of the state distribution
Pk =E

[(
xk − x̂k

) (
xk − x̂k

)T ], which is equiva-

lent to the error covariance matrix, i.e. a measure of the
accuracy of the estimated state.

The two moments are computed according to two different
phases: a prediction phase and an update phase. During the
prediction phase, an a priori estimate of the statex̂−

k and its
covariance matrixP−

k are provided based on the information
available at time steptk−1.

The update phase is activated as the measurementsyk be-
come available. In this phase, an a posteriori state estimatex̂k

is provided by a linear combination of the a priori estimate
x̂−

k and the measurement innovation vector, equal to the dif-
ference between the actual measurementsyk and the a priori
prediction of the measurementsŷ−

k :

x̂k = x̂−

k + K k

(
yk − ŷ−

k

)
. (3)

In Eq. (3), the innovation vector is weighted through the ma-
trix K k, expressed as a function of the cross covariance ma-
trix of the state prediction error and the observation predic-
tion errorPxy,k, and the auto-covariance matrix of the pre-
dicted measurementPyy,k:

K k = Pxy,k

[
Pyy,k + Rk

]−1
. (4)

The a posteriori error covariancePk is estimated as follows:

Pk = P−

k − K k

[
Pyy,k + Rk

]
KT

k . (5)

Equation (5) represents an expression of the system covari-
ance alternative to the common onePk = P−

k − K k Hk P−

k

(Julier and Uhlmann, 2004; van der Merwe, 2004). This last
relationship explicitly presumes that the measurement opera-
tor Hk is linear, hence represented by a matrixHk. We prefer
using the more general expression as in Eq. (5), since we also
examine the case of nonlinear measurement operators in this
study.

2.1 Standard Kalman Filter (SKF) and Extended
Kalman Filter (EKF)

The SKF involves linear dynamic system and measurement
operators and thus the operatorFk−1,kandHk are described
by matrices, indicated asFk−1,k andHk, respectively. The a
posteriori statêxk is the optimal estimate in this case, with
the minimum mean square error. The system covarianceP−

k ,
the cross-covariance matrix between the error inx̂−

k and the
error in ŷ−

k , Pxy,k, and the covariance of the predicted mea-
surements,Pyy,k, can be computed by the following closed
linear relations:
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P−

k = Fk−1,k Pk−1FT
k−1,k + Qk−1 (6)

Pxy,k = P−

k HT
k (7)

Pyy,k = Hk P−

k HT
k . (8)

The Kalman gain can been then computed with Eq. (4), the a
posteriori state estimatêxk with Eq. (3) and the a posteriori
error covariancePk with Eq. (5).

If the observation operatorHk in Eq. (2) is nonlinear (a
scenario analysed in this work), SKF is not applicable and
a different algorithm has to be adopted to linearizeHk. If
one adopts the EKF linearizing strategy, the Kalman gain and
the a posteriori estimate of the covariance matrix take the
following forms:

K k = P−

k CT
k

(
Ck P−

k CT
k + Dk Rk DT

k

)−1
(9)

Pk = (I − K k Ck) P−

k (10)

whereCk = ∂H(x, ηk)/∂x|x̂−

k
is the Jacobian matrix ofHk

with respect to the state vectorx computed at the a priori es-
timatex̂−

k , andDk = ∂H(x̂−

k , η)/∂η|η=0 is the Jacobian ma-
trix of Hk with respect to the noise vectorη at the mean value
η = 0.

2.2 Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (UKF) belongs to a wider
group of approaches known as Sigma Point Kalman Fil-
ters (van der Merwe, 2004). The UKF is based on the Un-
scented Transformation, originally introduced by Julier and
Uhlman (1997, 2004) as an effective method for capturing
the nonlinear propagation of the first two moments of the
state distribution through a minimal set of deterministically
chosen sample points.

For a state vector of dimensionN , the UKF, in its
basic mode, obtains a set of sigma points, consist-
ing of 2N + 1 vectors and their associated weights,

S=
{
X i, µ

(j)
i ; i = 0 . . . 2N; j ∈ (m, c)

}
, completely

capturing the actual mean and covariance of the random
variablex. The vectors are weighted according to the respec-
tive mean (m) and covariance (c) weightsµ

(j)
i . A selection

of sigma points fulfilling this requirement is defined as
follows:

X 0 = x̂; X i = x̂ +

(√
γ P
)

i
, i = 1, . . . , N;

X i = x̂ −

(√
γ P
)

i
, i = N + 1, . . . , 2N

µ
(m)
0 =

γ − N

γ
; µ

(c)
0 =

γ − N

γ
+

(
1 − ρ2

+ β
)
;

µ
(m)
i = µ

(c)
i =

1

2γ
, i = 1, . . . , 2N. (11)

The parameterγ controls the spread of the states around the
mean, and it is calculated asγ =ρ2(N + κ), with κ ≥ 0 to en-
sure semi-positive definiteness of the covariance matrix and

0≤ ρ ≤ 1. A good default choice isκ = 0 andρ small enough
to limit the spread of the sample states. The parameterβ is
introduced as a second control on the magnitude of the co-
variance weights. Details about the proper choice ofκ, ρ

andβ can be found in van der Merwe (2004). The symbol(√
γ P
)
i

is theith column (or row) of the root square matrix
γ P, which can be regularly computed by Cholesky decom-
position (e.g. Press et al., 1992).

The 2N + 1 sigma point vectors are assembled in the fol-
lowing matrix:

X k−1 =

[
x̂k−1 x̂k−1 +

√
γ Pk−1 x̂k−1 −

√
γ Pk−1

]
.

(12)

As part of the prediction step, each sigma point vector is
propagated through the dynamic state model:

X −

k = Fk−1,k (X k−1, uk) . (13)

The a priori estimate of the state mean is computed as the
weighted average of the transformed points:

x̂−

k =

2N∑
i=0

µ
(m)
i X −

k,i . (14)

The a priori estimate of the state covariance is computed as
the weighted outer product of the transformed points plus the
Gaussian noise covarianceQk:

P−

k =

2N∑
i=0

µ
(c)
i

(
X −

k,i − x̂−

k

) (
X −

k,i − x̂−

k

)T

+ Qk. (15)

One alternative to incorporate the effect of the process noise
on the observed sigma-points, is to augment the number of
these sigma-points withN additional vectors derived from
the matrix square root of the process noise covariance, and
recalculating the various weightsµi accordingly. We opted
to redraw the states, thus keeping the dimensionality of the
problem equal to 2N + 1, although this option has the draw-
back that it discards the odd moments information captured
by the propagated original sample states (van der Merwe,
2004):

X −

k =

[
x̂−

k x̂−

k +

√
γ P−

k x̂−

k −

√
γ P−

k

]
. (16)

The observation equation is applied to this set of state
vectors:

Yk = Hk

(
X −

k

)
. (17)

The forecast cross covariance between state predictions er-
rors and observation predictions errors,Pxy,k, and the fore-
cast error covariance matrix of the observation predictions,
Pyy,k, are computed as follows:
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y−

k =

2N∑
i=0

µ
(m)
i Yk,i (18)

Pxy,k =

2N∑
i=0

µ
(c)
i

(
X k,i − x̂−

k

) (
Yk,i − ŷ−

k

)T
(19)

Pyy,k =

2N∑
i=0

µ
(c)
i

(
Yk,i − ŷ−

k

) (
Yk,i − ŷ−

k

)T
(20)

whereŷ−

k is a weighted mean of the predicted measurements
Y k,i .

The Kalmangaincan be then straightforwardly computed
with Eq. (4), while the a posteriori estimate of the state mean
x̂k and the covariance matrixPk can be computed respec-
tively with Eqs. (3) and (5).

In case of linear systems, the solution provided by UKF
converges to that of SKF as the size of the sigma points en-
semble increases (van der Merwe, 2004).

2.3 Ensemble Kalman Filter (EnKF)

The EnKF uses an ensemble of randomly chosen model tra-
jectories, from which the necessary error covariances are es-
timated (Evensen, 2003). Similarly to the UKF, this method
does not approximate the nonlinear process and observa-
tion models: it rather uses the true nonlinear models and it
approximates the distribution of the state random variable.
Moreover, it does not explicitly transform error information
with a dynamic equation for computing the state error covari-
ance matrix.

The EnKF propagates an ensemble of state vectors and
each of these propagated vectors represents one realization of
generated model replicas. Given an ensemble ofL members,
the dynamic model is applied to each member as follows:

x−

k,i = Fk−1,k

(
xk−1,i, uk

)
+ νk−1,i i = 1 . . . L (21)

wherex−

k,i is the ith forecast ensemble member at timek

andxk−1,i is the updated ensemble member atk − 1. Vec-
tor νk−1,i is the ith column of aN × L matrix of pertur-
bations generated according to a Gaussian distribution with
zero mean and covarianceQk. In this study the current ex-
ogenous input vector is assumed to be unperturbed, to keep
the analogy with the other two methods.

The sample mean and covariance can be evaluated accord-
ing to the expressions:

x̂−

k =
1

L

L∑
i=1

x−

k,i (22)

P−

k =
1

L − 1

L∑
i=1

(
x−

k,i − x̂−

k

) (
x−

k,i − x̂−

k

)T

. (23)

In practice, the calculation of the approximate covarianceP−

k

is not required. The Kalman gainK is obtained with Eq. (4)
after computing the following covariances:

Pxy,k =
1

L − 1

L∑
i=1

(
x−

k,i − x̂−

k

) (
y−

k,i − Hk

(
x̂−

k

))T

(24)

Pyy,k =
1

L − 1

L∑
i=1

(
y−

k,i − Hk

(
x̂−

k

)) (
y−

k,i − Hk

(
x̂−

k

))T

(25)

wherey−

k,i =Hk(x
−

k,i) represents theith observation predic-
tion at discrete timek.

An ensemble ofL perturbed observations vectorsyk,i

is derived by summing perturbationsηk,i(ηk,i ∈ N(0, Rk),
i = 1 . . . L) to the nominal termyk. The update step for
the forecasted state ensemble members is then defined as
follows:

xk,i = x−

k,i + K k

(
yk,i − Hk

(
x−

k,i

))
. (26)

After the analysis ensemble is generated, it is propagated for-
ward, and a new assimilation cycle starts.

The EnkF algorithm does not entail to explicitly up-
date and store the state error covariance matrix, differently
from the SKF and the UKF algorithms, where the state er-
ror covariance has to be explicitly updated to represent the
change in forecast error covariance as an observation be-
comes available.

The ensemble forecast step of both UKF and EnKF algo-
rithms can be parallelized by running each ensemble mem-
ber on a separate processor of a parallel computer (or clus-
ter). This can result in a significant computational advantage
for the application of these two algorithms, whose computa-
tional effort is highly dependent on the size of the respective
ensembles.

The optimal ensemble size is uncertain for the EnKF and
it is generally heuristically chosen. Moreover, it is still not
clear how the ensemble size should scale with the system di-
mension to achieve adequate estimates (Reichle et al., 2002a;
Camporese et al., 2009). In case of linear systems, the so-
lution of EnKF converges to that of SKF as the ensemble
size increases (Evensen, 2003). For small ensemble size the
EnKF is susceptible to systematic underestimation of the en-
semble error covariance, caused by spurious long-range cor-
relations (Houtekamer and Mitchell, 1998; Papadakis et al.,
2010).

On the contrary, the UKF relies on a deterministically cho-
sen set of samples to capture the statistical moments of the
nonlinear model accurately, and the number of samples is
univocally defined by the system dimension. However, the
identification of this set of sample requires the calculation
of the matrix square root of the state covariance matrix (see
Eq. 11), which can be a computationally intensive process.

3 Soil water transport model

The soil water dynamics along the vertical direction is mod-
elled using the Richards equation (Jury et al., 1991) in the
h-based form:
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C(h)
∂h

∂t
=

∂
[
K(h)

(
∂h
∂z

+ 1
)]

∂z
(27)

wheret is the time,z denotes the position along vertical axis
(with upward orientation and zero reference value at the sur-
face),h [L] is the matric pressure head [L],K(h) [L T−1]
is the hydraulic conductivity function, andC(h) [L−1] is
the differential water capacity function, obtained from the
derivativeC(h) = dθ(h)/dh of the water retention function
θ(h) [L3 L−3].

The water retention and hydraulic conductivity functions
are modelled according to the van Genuchten-Mualem model
(van Genuchten, 1980):

θ(h) = θr + (θs − θr)
[
1 + |αh|

n
]−m (28)

K(θ) = Ks

(
θ − θr

θs − θr

)λ
{

1 −

[
1 −

(
θ − θr

θs − θr

)1/m
]m}2

(29)

where θs [L3 L−3] is the saturated soil water content,θr
[L3 L−3] is the residual soil water content,Ks [L T−1] is the
saturated hydraulic conductivity, whileα > 0 [L−1], n > 1
[−], m [−] and λ [−] are empirical parameters. Following
a common assumption, parameterm [−] is defined by the
relationm = 1− 1/n andλ [−] is set equal to 0.5.

Equation (27), combined with the boundary conditions,
can be solved by adopting a numerical scheme, which is for-
mally equivalent to a state-space representation of the system
model discretised in the time domain, as the one described
by Eq. (1). Depending on the type of numerical scheme em-
ployed, the system model can be linear or nonlinear.

For this specific system,ν(t) represents the state noise
affecting the dynamic behaviour. According to Katul et
al. (1993) the zero mean state noise assumption describes
reasonably well the dynamic characteristics of the soil wa-
ter flow in field conditions.

The measurement model could be reduced to a simple lin-
ear relation if matric pressure head is directly measured at
given soil depths. If soil water content is measured, the ob-
servation equation is described by a nonlinear model corre-
sponding to the soil water retention function (see Eq. 28).
Different observation equations are required to assimilate
other sources of measurements, such as those originated by
near-surface remote sensing.

Below we illustrate three numerical schemes largely em-
ployed for integrating the Richards equation.

3.1 Explicit finite difference scheme (EX)

The Explicit finite difference scheme (EX) is the most ba-
sic numerical technique for solving differential equations.
However, it may suffer from instability, which may make
the method inappropriate or impractical. This method, also
recognised as forward Euler finite difference scheme, is the
one employed by Walker et al. (2001).

This numerical scheme provides an estimate of the matric
headhi

k of theith node at thekth time-step as function of all
other quantities at the preceding time-step according to the
following discrete form of Eq. (27):

hi
k =

1tk−1

Ci
k−1

K
i−1/2
k−1

1zi 1zu
; 1 −

1tk−1

Ci
k−1

K
i−1/2
k−1
1zu +

K
i+1/2
k−1
1zl

1zi
;

1tk−1

Ci
k−1

K
i+1/2
k−1

1zi 1zl

) hi−1
k−1

hi
k−1

hi+1
k−1

 +
1tk−1

Ci
k−1

K i−1
k−1 − K i+1

k−1

21zi
.(30)

The subscripti for the node number is increasing down-
ward. The soil column is divided in compartments of fi-
nite thickness1zi . All nodes, including the top and bot-
tom nodes, are in the centre of the soil compartments, with
1zu = zi−1

− zi and1zl = zi
− zi+1. This represents a small

difference with respect to the work of Walker et al. (2001),
who considered nodes at the compartment extremes, pos-
itive upwards.K i−1/2

k and K
i+1/2
k denote respectively the

upward and the downward spatial averages of the hydraulic
conductivity computed as arithmetic means.1tk−1 indicates
the time interval1tk−1 = tk − tk−1.

For nodesi = 1 andi =N the discrete forms at time-stepk
are:

h1
k =

1tk−1

C2
k−1

K
11

2
k−1

1z21zl
; 1 −

1tk−1

C2
k−1

K
1
2
k−1

1zl +
K

2 1
2

k−1

(z2−z3)

1z2
;

1tk−1

C2
k−1

K
21

2
k−1

1z2
(
z2 − z3

)
 h1

k−1
h2

k−1
h3

k−1


+

1tk−1

C2
k−1

K1
k−1 − K3

k−1

21z2
− 1zl

 qtop

K
1
2
k−1

+ 1

 (31)

hN
k =

1tk−1

CN−1
k−1

K
N−1−

1
2

k−1

1zN−1
(
zN−2 − zN−1

) ; 1 −
1tk−1

CN−1
k−1

K
N−1−

1
2

k−1

(zN−2−zN−1)
+

K
N−

1
2

k−1
1zu

1zN−1
;

1tk−1

CN−1
k−1

K
N−

1
2

k−1

1zN−11zu


 hN−2

k−1
hN−1

k−1
hN

k−1

 +
1tk−1

CN−1
k−1

KN−2
k−1 − KN

k−1

21zN−1
+ 1zu

 qbot

K
N−

1
2

k−1 + 1

 .(32)

The symbolsqtop andqbot indicate the top and bottom bound-
ary conditions, herein assumed to be of Neumann type.

The forecasting equation of the system statexk, coinciding
with the matric pressure head(xi

k =hi
k), can be obtained by

combining the discrete equations written for allN nodes in
the following linear state-space form:
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x̂−

k = Ak−1 x̂k−1 + gk−1 (33)

whereAk−1 is the matrix obtained by assembling the terms
multiplying the state vector at time-stepk − 1 of Eqs. (30)–
(32) andgk−1 results from the combination of the terms on
the right end of Eqs. (30)–(32).

According to this formulation, the system covariance is
updated by the expression:

P−

k = Ak−1Pk−1AT
k−1 + Qk−1. (34)

Once the a priori state mean,x̂−

k−1, and state covariance,
P−

k−1, have been computed using Eqs. (33)–(34), the results
of Eqs. (7)–(8) can be used for determiningK in Eq. (4), and
then obtaining the a posteriori estimatesx̂k andPk by means
of Eqs. (3) and (5), respectively.

3.2 Crank-Nicolson finite difference scheme (CN)

The Crank-Nicolson implicit finite difference scheme (CN)
has been widely implemented for solving the Richards equa-
tion (e.g. Haverkamp et al., 1977; Santini, 1980; Romano et
al., 1998). The CN scheme is numerically stable, but sensi-
tive to spurious oscillations when the ratio of the time step to
the square of the space step is large.

The discrete representation of this relationship for inter-
mediary nodes yields: −K

i−1/2
k−1

21zi 1zu
;

Ci
k−1

1tk−1
+

K
i−1/2
k−1
1zu +

K
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1zl
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hi+1
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 +
K i−1

k−1 − K i+1
k−1

21zi
. (35)

For nodesi = 1 andi =N the discrete forms at time-stepk + 1
are: C1
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1tk−1
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(36)(
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21zN 1zu
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. (37)

As in the previous algorithm, an explicit linearization ofK

andC is implemented, by taking their values at the previous

time-stepk − 1. Then, a linear state-space representation of
the dynamic system can be easily derived by combining the
set of Eqs. (35)–(37) written for each node and accounting
for the boundary conditions:

x̂−

k =
(
B′

k−1

)−1 A′

k−1 x̂k−1 +
(
B′

k−1

)−1
g′

k−1. (38)

This equation represents the dynamic state space model ob-
tained with the CN scheme, analogously to Eq. (33) obtained
with the explicit scheme.A′

k−1 andB′

k−1 are tri-diagonal ma-
trices obtained by assembling the terms in the first parenthe-
ses on the right and left hand-sides of Eqs. (35)–(37), respec-
tively. The termg′

k−1 is a vector obtained by assembling the
terms on the right end of Eqs. (35)–(37).

The a priori estimate of the covariance matrix is calculated
as follows:

P−

k =
(
B′

k−1

)−1 A′

k−1Pk−1

[(
B′

k−1

)−1 A′

k−1

]T
+ Qk−1. (39)

As for the explicit scheme, once the a priori system state and
covariance have been determined, the current valuesx̂k and
Pk can be straightforwardly calculated with Eqs. (3)–(8).

3.3 Nonlinear implicit finite difference scheme (NL)

The backward Euler’s finite differences (implicit) nonlinear
(NL) scheme guarantees numerical stability for time steps
considerably larger than those employed in the CN scheme,
which explains its wide application in simulation models.

In this study we adopt the NL scheme of the Richards
equation introduced by Celia et al. (1990) and further im-
plemented by the SWAP model (van Dam, 2000).

The NL scheme has to be iteratively solved, as it includes
C andθ values at the current time-stepk to account for the
strong nonlinearity of the differential water capacityC:−K
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;
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The discrete forms for nodesi = 1 andi =N at time-stepk
are:C1
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Table 1. Summary of assimilation algorithms adopted in combi-
nation with different numerical schemes and different types of ob-
served variables.

Finite difference scheme

Observed EX CN NL NL
variable

h SKF1 SKF1 UKF3 EnKF4

θ – EKF2 UKF3 EnKF4

1 SKF = standard Kalman Filter;2 EKF = extended Kalman
Filter; 3 UKF = unscented Kalman Filter;4 EnKF = ensemble
Kalman Filter.

where indexp denotes the iteration step.
The dynamic state space model then assumes the form:

B′′

k−1,k x̂−

k = A′′

k−1,k x̂k−1 + g′′

k−1,k. (43)

A′′

k−1,k is a diagonal matrix, withAi,i
k−1,k =Ci

k/1tk−1, ob-
tained by assembling the terms multiplying the state vector at
time-stepk − 1 in Eqs. (40)–(42).g′′

k−1,k is a vector obtained
by assembling the three terms on the right end of Eqs. (40)–
(42). B′′

k−1,k is the tri-diagonal matrix obtained by assem-
bling the terms in the first parentheses on the left hand-side
of Eqs. (40)–(42).

This type of numerical scheme requires the implementa-
tion of non-standard Kalman Filters for the a priori prediction
of x̂−

k−1 andP−

k−1. Equation (43) is employed for propagat-
ing an ensemble of sample states with both the UKF and the
EnKF. In the case of the UKF, the a priori system state,x̂−

k−1,
and covariance,P−

k−1, are calculated as a weighted contribu-
tion of each propagated state, according to Eqs. (14)–(15). In
the case of the EnKF, the statistics of the predicted states are
computed with Eqs. (22)–(23).

4 Synthetic study

A synthetic study is performed to evaluate the relative merits
of different Kalman Filter algorithms for retrieving matric
head profiles by assimilating near surface soil matric head or
water content measurements.

As pointed out above, the types of Kalman Filter that
can be applied depend on the numerical scheme employed.
The Standard Kalman Filter (SKF) can be implemented
with explicit (EX) and Crank-Nicolson (CN) finite difference
schemes, as long as the measurement model is linear. In this
study, we employ theh-based form of the Richards equation
and thus a linear measurement model occurs if the measured
variable is also the matric pressure headh.

Walker et al. (2001) showed the efficiency of a standard
Kalman Filter (SKF) in assimilating near surface matric pres-
sure head measurements with an explicit finite difference
scheme (EX) as compared with direct insertion of the ob-
servation values. Following Walker et al. (2001), we first

compare the SKF applied to a Crank-Nicolson finite differ-
ence scheme (SKF-CN), with the SKF applied to an explicit
finite difference scheme (SKF-EX). Then we analyse the rel-
ative performances of the Unscented Kalman Filter based on
the implicit nonlinear finite difference scheme (UKF-NL),
the Ensemble Kalman Filter also implemented with the im-
plicit numerical scheme (EnKF-NL) and the SKF-CN assim-
ilation algorithm.

As an alternative to the UKF or the EnKF, the EKF could
be also employed in conjunction with a nonlinear numerical
scheme of the Richards equation. However, the EKF, based
on an explicit linearization of nonlinear equations, is less ef-
ficient in state retrieving as compared with UKF (van der
Merwe, 2004) and EnKF (e.g. Reichle et al., 2002b). Further
discussions about the limitations and the flaws of the EKF
can be found in other studies (e.g. Julier et al., 1995; van der
Merwe, 2004).

If soil water content is the measured variable, the SKF-
CN as such is not applicable, and a nonlinear KF is required
to overcome the nonlinearity of the measurement modelHk

defined by the soil water retention function. In this case we
adopt an Extended approach (EKF-CN), using Eqs. (9)–(10)
for computing the Kalman gain and the a posteriori estimate
of the covariance matrix, respectively.

The final analysis of this work involves the comparison
between the EKF-CN, the UKF-NL and the EnKF-NL al-
gorithms, when the soil moisture content is the observation
variable.

Table 1 summarizes the assimilation schemes examined in
this paper.

The numerical experiment is arranged following Walker
et al. (2001), to facilitate the comparison with this previ-
ous study. The essential information of the implemented nu-
merical experiment is summarized in Table 2. Soil column
depth is 100 cm, discretised in 27 nodes and the true initial
matric pressure head profile is uniformly equal to−50 cm.
The boundary conditions are: constant evaporative flux of
5.78× 10−6 cm s−1 at the top surface and no flux at the
bottom.

All assimilation scenarios are initialised with the same
poor guess of the initial matric pressure head profile, as-
sumed to be uniformly equal to−300 cm, thus 250 cm less
than the true initial uniform profile.

Matric pressure head profiles are then retrieved by assimi-
lating 4 different observation sets, consisting of hourlyh data
generated in top nodes, down to depths of 0.5, 1.5, 4.5 and
10 cm, respectively. These depths are slightly different from
those adopted by Walker et al. (2001), because of the small
differences in the soil column discretisation, as illustrated in
Sect. 3.1. The NL scheme of the soil water transfer model
illustrated above has been used to generate a set of soil water
content and matric head profiles, representative of the true
dynamic process to be retrieved. The assimilated values are
true values of either matric heads or soil moisture contents,
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Table 2. Parameters and conditions employed in the synthetic generation of matric pressure head profiles and for the initialization of the
assimilation algorithms.

Soil depth 100 cm
Number of nodes 27
Soil hydraulic parameters θs = 0.54 cm3 cm−3

θr = 0.2 cm3 cm−3

α = 0.008 cm−1

n = 1.8 (−)
Ks = 2.9× 10−4 cm−1

Top evaporative flux 5.79× 10−6 cm s−1

Bottom flux 0 cm s−1

Initial uniform h profile −50 cm
Poor guess of initial uniformh profile −300 cm

Initial state covariance matrix Pi,j
=

{
103cm2 if i = j ; i, j = 1 . . . n_nodes
0 if i 6= j

Measurement noise variance matrix Ri,j
=

{
0.02yi if i = j ; i, j = 1 . . . n_obs
0 if i 6= j

perturbed with a random error of zero mean and a standard
deviation of five percent of the absolute true values.

Employing a reference true dynamic scheme generated
with a numerical scheme (NL in this case) different from
that employed in the assimilation process (e.g. EX or CN)
is formally equivalent to introducing a non-additive model
error as further source of uncertainty in the system dynam-
ics. However, we verified that the choice of the numerical
scheme to be employed for generating the reference true dy-
namic process is not relevant for the comparison of the re-
trieved state profiles, since the profiles predicted with the
three different numerical schemes are very similar to each
other (herein not shown for the sake of brevity). Indeed, start-
ing from the same initial conditions, the different numerical
schemes (EX, CN and NL) can predict the evolution (a pri-
ori prediction) of the state profile with negligible numerical
differences, as the time stepping adopted within each numer-
ical scheme can be adjusted to guarantee numerical stability
and achieve relatively similar numerical accuracy. This has
been already proved by several previous studies, also applied
for simulating infiltration fronts (e.g. Haverkamp et al., 1977;
Paniconi et al., 1991; Kavetski et al., 2002), which from a nu-
merical perspective is even more challenging than simulating
an evaporation experiment, as the one examined in this study.

The EnKF has been implemented with an ensemble size of
50 members. We could verify that an ensemble size greater
than 50 did not add much accuracy to the data assimilation
algorithm, as also shown by Camporese et al. (2009) for the
same case study. Moreover, by using 50 members for the ex-
amined case study, the dimensionality of the EnKF-NL as-
similation algorithm is similar to that of the UKF-NL algo-
rithm (2N + 1 = 55).

The default initial state variance is set equal to 103 cm2,
rather than 106 cm2 as assumed by Walker at al. (2001), since
using an extremely high initial state variance causes practical

difficulties in the implementation of the UKF and the EnKF,
as discussed later.

The amount of system noise variance is implemented in
a different way. Walker et al. (2001) defined it equal to a
five percent of the change in system states for each time
step for the diagonal elements matrix, and zero for those
off-diagonal. Entekhabi et al. (1994) considered an initial di-
agonal matrix accounting for the five percent of the prece-
dent state. We adopted a diagonal system noise variance ac-
counting for the five percent of the previous a posteriori state
change, in order to avoid any ambiguity in the amount of er-
ror being incorporated, given that the time steps are variable
in dependence of the chosen numerical scheme. The mea-
surement noise covariance was set equal to two percent of
the observations (either matric pressure head or soil mois-
ture content) for the diagonal elements, and zero for all other
elements, as also assumed by Walker et al. (2001).

4.1 Assimilating matric pressure heads

In Fig. 1, the profiles retrieved by assimilating daily matric
pressure heads with the SKF-EX, SKF-CN, UKF-NL and
EnKF-NL algorithms, are respectively compared with the
true profiles as well as with the “guess” profiles. The “guess”
profile, also referred to as “open loop” profile, is the one
obtained without assimilating any near-surface observations,
i.e. the system is simply propagated from the initial uniform
conditions using the known boundary conditions.

All algorithms exhibit convergence rates of the retrieved
matric head profiles to the true ones faster than that shown
by Entekhabi et al. (1994), who implemented the EKF with
a finite element scheme of the Richards equation for an anal-
ogous synthetic study.

The retrieved profiles tend to converge to the true ones
slightly faster as the observation depth increases. For clarity,
Fig. 1 illustrates only the results for the extreme observation
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Figure 1. Retrieved profiles by assimilating daily observations of matric pressure heads 1 

involving nodes within the top 0.5 cm (open circle) and 10.5 cm (diamond) compared with the 2 
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Figure 1. Retrieved profiles by assimilating daily observations of matric pressure heads involving nodes within the top 0.5 cm (open circle)
and 10.5 cm (diamond) compared with the “true” profile (closed circle) and “guess” profile (dashed line), for different combinations of
Kalman Filters and numerical schemes:(a–c)SKF-EX; (d–f) SKF-CN;(g–i) UKF-NL; (j–l) EnKF-NL.

depth scenarios considered in this work (i.e. observations
at the nodes located within the top 0.5 and 10.5 cm, re-
spectively), since the solutions for the other depth scenarios
are bounded by those corresponding to these two extreme
scenarios.

The two sets of profiles retrieved by using the SKF algo-
rithm, respectively coupled with the explicit (Fig. 1a–c) and
the Crank-Nicolson (Fig. 1d–f) numerical schemes, are prac-
tically identical. However, the explicit scheme requires time
steps markedly smaller in order to guarantee numerical accu-
racy and stability. SKF-EX with a time step of 1 s demands
about 30 times more CPU time than SKF-CN with a time step

of 60 s. The round off errors do not visibly impact the per-
formance of the linearized approaches. Another favourable
aspect of the CN numerical scheme is that it is particularly
stable and thus it can be employed to assess the state profile
even for a decreased precision of the model equation.

The profiles retrieved with UKF-NL and EnKF-NL are
also very similar to each other, apart from the slight ir-
regularities of the EnKF-NL profiles resulting from sample
means (Eq. 22) obtained with a relatively small ensemble
size. These irregularities tend to be smoothed as the ensemble
size increases. Alternatively, they can be reduced by adopt-
ing specific sampling strategies both for the initial ensemble
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Figure 2. Evolution of theK13,1 during the assimilation process
with different assimilation algorithms.

and the measurement noise. These sampling strategies aim
at generating ensembles with full rank and an improved con-
ditioning with respect to what can be obtained with a pure
random sampling, i.e. with a better representation of the er-
ror covariance matrix for a given ensemble size (Evensen,
2004).

The differences between the profiles retrieved with linear
and nonlinear approaches are relatively high after the first
update. UKF-NL and EnKF-NL first updates impact only
slightly the medium and bottom nodes of the retrieved pro-
file. Instead, using SKF-EX and SKF-CN a significant por-
tion of the profile nodes is affected. These results are mainly
related to differences in the prediction of the covarianceP−

prior to the update. The first order approximation of the EX
and CN schemes induces a smoothing of the a priori covari-
anceP− with respect to the NL scheme, which in turns also
determines larger Kalman gain coefficients relating the state
errors at middle depths to the observations at the top nodes,
as illustrated in Fig. 2.

The generic Kalman gain coefficientKi,j is an index of
the correlation between the state errors at the depth of the
retrievedith node and the observation at the depth of the as-
similatedj th node. Figure 2 shows the time variation of the
K13,1, i.e. theK coefficient associated to the retrieval of the
node at a depth of 48.5 cm (at about the middle of the soil
column) by assimilating the top node observation. SKF-EX
and SKF-CN exhibit patterns ofK13,1 different from those
of UKF-NL and EnKF-NL, with values much larger on the
first day of assimilation.

One of the key differences between EnKF or UKF and
SKF is in the way the error covariance is propagated: while
SKF propagates a single state vector (corresponding to the
mean state) and, analytically, its error covariance, EnKF and
UKF propagate an ensemble of state vectors, with error co-
variance resulting from the distribution of the states across
the ensemble. However, the differences between the profiles

retrieved after the first update cannot be ascribed to the dif-
ferent strategies adopted by the examined algorithms in the
propagation of the error covariance. EnKF and UKF, if ap-
plied to the EX and CN numerical schemes, would yield re-
sults close to those obtained with the SKF. Actually, in the
limit of many simulations (i.e. by taking a large amount of
members for the EnKF and a large amount of sigma points
for the UKF), the corresponding EnKF and UKF estimates
(state and error covariance) would tend to those provided by
the SKF, which are statistically the optimal solutions for lin-
ear systems, provided that no model errors occur, the entering
noise is white and the noise covariances are known.

Moreover, the differences between the profiles retrieved
after the first update cannot be ascribed to discrepancies be-
tween the a priori state profilêx−

k predicted by the differ-
ent numerical schemes, since these discrepancies are negli-
gible. Starting from the same initial poor guess, linear (EX,
CN) and nonlinear numerical (NL) schemes predict the evo-
lution of the state profile (a priori prediction) with very small
differences.

In the UKF-NL and EnKF-NL algorithms, the nonlin-
ear implicit differential scheme of the Richards equation is
solved for each sample to predict its state evolution, while the
update phase is activated only as the observation is available.
In this numerical experiment, the NL differential scheme is
resolved with an hourly time-step, thanks to its high numer-
ical stability and accuracy, demanding a CPU time equal to
almost 50 % that required for the CN scheme, which is imple-
mented with a time step of 200 s. However, the nonlinear data
assimilation approaches (UKF-NL and EnKF-NL) consume
almost 50 % more CPU time than the SKF-CN, because of
the cost of the ensemble propagation. The EnKF-NL is just
slightly more efficient than the UKF-NL in terms of compu-
tational costs.

The effects of the system noise variance and of the initial
state covariance deserve some comments.

Walker (1999) found that the performance of the retrieval
algorithm is not particularly sensitive to the system noise
variance. However, this result should be interpreted keeping
in mind that Walker (1999) assumed the system noise vari-
ance to be equal to five percent of the state change. Instead,
in the present study, the system noise variance has a more
important role, as it is assumed to be equal to five percent of
the previous state, similarly to Entekhabi et al. (1994).

As also shown by Walker (1999) in a sensitivity analysis
for the same experimental setup, the convergence time tends
to decrease as one takes higher initial state covariance values.
With a value of 104 cm2 applied to the diagonal elements of
the initial state covariance, the retrieved profiles perfectly co-
incide with the true ones on third day of assimilation, regard-
less of the observation depth. Instead, as shown by Fig. 1,
with a value of 103 cm2 applied to the diagonal elements of
the initial state covariance, perfect coincidence is achieved on
the third day of assimilation only with an observation depth
of 10.5 cm.
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Figure 4. Retrieved profiles after(a, d) 2 days;(b, e) 4 days, and(c, f) 6 days using SKF-CN and UKF-NL, respectively, by assimilating
matric pressure head observations every two days involving the nodes within the top 0.5 cm (open circle), 1.5 cm (square), 4.5 cm (triangle)
and 10.5 cm (diamond), as compared with the “true” profile (closed circle) and “guess” profile (dashed line).

The choice of high initial state variance can actually de-
termine some difficulties in the implementation of the UKF
and EnKF algorithms. In both these algorithms, the distribu-
tion of the sample states logically depends on the magnitude
of the variance. Taking a very large initial variance, with-
out any correlation structure, could lead to sample profiles
which are physically improbable, and consequently the sta-
bility of the assimilation process could degenerate. In case
of the UKF, this issue can be overcome by shrinking the
sample state distribution around the mean state with the scal-
ing parameterρ, which controls the weights attributed to the
sample state distribution (Eq. 11). Figure 3 shows different

UKF-NL a priori estimates of the state meanx̂−

k , computed
after 1 h with Eq. (14), by adopting parameterρ respectively
equal to 0.05, 0.3 and 0.8, and initial variances respectively
equal to 103 and 104 cm2 for the diagonal elements of the
state covariance matrix. As a reference state profile for the
comparative analysis of the different a priori estimates, Fig. 3
shows the corresponding central state profile (X0 of Eq. 11)
propagated through the dynamic model (Eq. 13) on the same
simulation time. The a priori mean state estimation using the
smaller initial state variance value is practically insensitive to
the value ofρ, while this prior mean is highly affected byρ
when using the higher initial state variance. Takingρ = 0.8,
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with a uniform initial profile−300 cm and state variance of
104 cm2, leads to a set of sample profiles exhibiting positive
matric heads for perturbed nodes. All positive matric heads
were changed to zero before propagating the state through
the dynamic model, thus favouring a shift of the predicted
prior mean state towards smaller matric heads as compared
with the central state. Withρ equal to 0.05 and 0.3 the satu-
rated region is not sampled, but the predicted prior means are
shifted towards larger matric heads with respect to the central
state.

In practical applications, particularly those where the fre-
quency of the observations is small, the evolution of the mag-
nitudes of the state variance is unpredictable. Thus, the co-
efficients selected for designing the sigma point sampling
strategy could turn out to be inadequate during the assimi-
lation process. To overcome this issue, some other UKF ap-
plications adapt the value of the coefficients to guarantee the
physical coherence of the sample states.

Figure 4 shows the profiles retrieved by assimilating ma-
tric head observations once every two days with the SKF-CN
and the UKF-NL. In both cases the initial state covariance
employed has been set equal to 103 cm2. To guarantee a per-
formance of the UKF-NL comparable with that of SKF-CN,
the parameterρ has been specifically tuned. Results show
that the SKF-CN is able to retrieve the true profile already at
the fourth day, i.e. at the second assimilation, practically for
any observation depths. However, the profile retrieved with
an observation depth of 0.5 cm exhibits positive matric heads
in the upper 40 cm on the second day of assimilation. Sat-
isfactory results with the SKF have also been obtained (not
shown here) by assimilating observations once every three
days and four days, except for the case when the observa-
tions are limited to the top node. SKF failed only for larger
observation time-intervals, as the extremely negative pres-
sure heads of the predicted states at the top nodes altered the
singularity of the matrix operators. To achieve results similar
to those obtained with SKF, specific tunings of the assimila-
tion scheme are required with the UKF.

However, an aspect favouring the application of the UKF
or the EnKF is the possibility to straightforwardly imple-
ment nonlinear state variable transformations. When the
states are very far from the observations, the filtering pro-
cess imposes severe gradients in the profiles, causing the es-
timation of temporary meaningless profiles. This could be
partially avoided by making a transformation of the state
(e.g. logarithmic), which implies at the same time a nonlin-
ear transformation of the dynamic equation. This transforma-
tion, scarcely affecting results (not shown) in case of UKF or
EnKF, should be treated by linearizing an already linearized
equation in the case of an Extended Kalman Filter, therefore
with a drastic reduction of the efficiency of the assimilation
algorithm.

4.2 Assimilating of soil water content observations

The analysis has also been extended to examine the case of
assimilating soil water content observations, instead of ma-
tric pressure heads.

The CN numerical scheme has been coupled with the EKF
in order to handle the nonlinearity of the soil water retention
function. Thus, the profiles retrieved with the EKF-CN al-
gorithm have been compared with those retrieved with the
UKF-NL and the EnKF-NL algorithms. An approach alter-
native to EKF-CN could have been to combine the SKF-CN
algorithm for estimating the a priori mean state and covari-
ance matrix of the state distribution, and apply the UKF just
for the update phase when the soil moisture content observa-
tion becomes available, in order to address the nonlinearity
of the water retention curve.

The EKF-CN algorithm entails the Jacobian matrices of
the observation equation for computing the Kalman gain and
the a posteriori error covariance, according to Eqs. (9)–(10).
In this case study, matrixDk is the identity matrix, while the
non-zero coefficients ofCk coincide with the specific wa-
ter capacity values computed at the of the observation nodes
with respect to the a priori estimatêx−

k . Provided that the
VGM model equations are continuous over the entire range
of matric heads, the specific water capacity can be analyt-
ically derived. Thus the computation of the Kalman gain
(Eq. 9) and of the a posteriori error covariance (Eq. 10) is
very easy to be implemented and does not represent a signif-
icant increase of the overall computational load. Ultimately,
the computational effort in the implementation of EKF-CN
is not significantly different from that of SKF-CN for the ex-
amined system.

Figure 5 is designed to compare the matric head profiles
retrieved with the EKF-CN, UKF-NL and EnKF-NL, anal-
ogously to Fig. 1, but assimilating soil water content ob-
servations instead of matric heads. The performances of the
EnKF-NL and the UKF-NL algorithms are very similar to
each other in terms of accuracy of the retrieved profiles, anal-
ogously to what observed with the same algorithms applied
for assimilating matric pressure heads. The EnKF-NL is just
slightly less onerous in terms of computational costs. More-
over, the profiles retrieved with the EKF-CN algorithm are
markedly different from those obtained with the NL-based
ones, particularly on the first day of assimilation. The EKF-
CN algorithm requires a CPU time about twice smaller than
the EnKF-NL and UKF-NL algorithms, because more time is
required to ensure the convergence of the iterative numerical
schemes implemented in the EnKF-NL and UKF-NL algo-
rithms for each ensemble member.

The effect of the observation depth is more evident when
taking soil water content instead of matric head as observa-
tion variable. For an observation depth of 10.5 cm (diamonds
in Figs. 1 and 5), the convergence rate of the retrieved pro-
files towards the true ones by assimilating soil water con-
tent is very similar to that obtained by assimilating pressure
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Figure 5. Retrieved profiles by assimilating daily observations of soil moisture contents involving nodes within the top 0.5 cm (open circle)
and 10.5 cm (diamond) compared with the “true” profile (closed circle) and “guess” profile (dashed line), for different combinations of
Kalman Filters and numerical schemes:(a–c)EKF-CN; (d–f) UKF-NL; (g–i) EnKF-NL.

heads. The profiles retrieved with an observation depth of
0.5 cm (open circles in Fig. 5) converge towards the true ones
much more slowly than those retrieved with an observation
depth of 10.5 cm, particularly for the UKF-NL and EnKF-
NL schemes, for which the convergence is far from being
reached even on the third day.

The differences between the matric head profiles retrieved
by assimilating soil water contents instead of matric heads
are entirely related to the nonlinearity of the observation
equation, represented by the water retention function, which
produces a deformation of the Kalman gain matrix with re-
spect to that derived by assimilating matric heads, influenc-
ing both the state and the error covariance updates. This ef-
fect can be more easily interpreted by comparing the state
profiles respectively retrieved with EKF and SKF, which
show differences that are directly related to the lineariza-
tion of the observation equation (first order approximation)
by means of the specific water capacity.

The effect of this first order approximation is expected to
be dependent on the soil properties. Coarser textured soils ex-
hibit large gradients in the specific water capacity functions

for near-saturated conditions and thus are more vulnera-
ble to biased predictions of the linearized observation equa-
tion. This effect can be exacerbated in dynamic processes
involving infiltration, which impose limited correlation be-
tween nodes located at the opposite ends of the infiltra-
tion front, particularly in applications with real data, where
model errors due to the uncertainty in the soil parameters are
unavoidable.

It is important to point out that the results obtained by as-
similating soil water content values, are subjected to the as-
sumption that the parameters defining the soil water retention
at the observation points coincide with those employed for
simulating the soil water dynamics along the entire soil col-
umn, which is considered homogenous. However, in realistic
circumstances, the retrieval algorithm should account for the
model simplifications and system heterogeneity, particularly
for the large spatial variability of the soil hydraulic properties
(Pringle et al., 2007; Chirico et al., 2010). The “optimal” pa-
rameters defining the soil water retention at the observation
points are in principle different from the “optimal” parame-
ters defining the soil water dynamics along the soil column.
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These “optimal” soil hydraulic parameters are to be consid-
ered as effective values at the scale of the observation or of
the modelled system, respectively (Vereecken et al., 2007).

5 Conclusions

When designing a Kalman Filter algorithm for assimilating
near surface data into the Richards equation, it would be de-
sirable to choose the Kalman Filter considering the numerical
scheme employed for solving the Richards equation and the
type of assimilated variable.

It is well known that the nonlinear (NL) numerical scheme
is computationally more efficient than the linearised Crank-
Nicolson (CN) numerical scheme and for this reason the NL
scheme is preferred by the most popular soil water dynam-
ics simulation models. However, in some circumstances the
larger computational effort required for the application of lin-
ear schemes is compensated by applying SKF analytic esti-
mators for the propagation of the first two moments of the
state profiles, with minor computational costs than the corre-
sponding non-standard KF algorithms, without losing accu-
racy of the predictions.

In this study we verified this possibility by assimilating
surface matric head or soil water content observations for re-
trieving matric head profiles of a homogeneous soil column
subjected to a surface evaporation flux.

When assimilating matric heads, the standard Kalman Fil-
ter (SKF) combined with a Crank–Nicolson (CN) linear nu-
merical scheme of theh-based form of the Richards equa-
tion, provides estimates of the matric head profiles converg-
ing faster to the true solution and with minor computational
costs than the ensemble Kalman Filter (EnKF) or the un-
scented Kalman Filter (UKF) with a NL scheme.

The SKF-CN algorithm takes advantage of both the stabil-
ity of the CN numerical scheme and the linearity of the op-
erators in the dynamic system model. An explicit numerical
scheme, although being also linear, is unfeasible for practical
applications, as it demands computational time-steps of the
order of a few seconds.

The SKF-CN becomes unfeasible for large scale appli-
cations, due to the computational issues attached to an ex-
plicit formulation of the covariance propagation using the
SKF (Reichle et al., 2002a; Reichle, 2008; Camporese et al.,
2009). However, even large scale applications can often be
reduced to a set of independent low-dimensional spatial sys-
tems. Reichle and Koster (2003) compared the results of an
Ensemble Kalman Filter (EnKF) applied to a 1-D model to
those obtained with EnKF applied to a 3-D model to estimate
soil moisture in the root zone, finding that, although the 3-D
approach produced more accurate results, in particular for
intermediate assimilated data volumes, the 1-D EnKF satis-
factorily performed with a lower demand of computational
time. Using either a low volume of assimilated data or a high
number of them, the differences were not very pronounced.

The relative gain of using the 1-D EnKF over the straight
model (with no assimilation) can be larger than the relative
gain of using the 3-D EnKF over the 1-D EnKF, at least
for those circumstances where horizontal error correlations
have a marginal role (Hoeben and Troch, 2000; Reichle and
Koster, 2003).

In order to make the SKF-CN applicable, the form of the
Richards equation should be chosen according to the assimi-
lated variable, so that the type of variable describing the ob-
servations is equal to that describing the states or it is at least
a linear transformation of it. However, this strategy is not al-
ways possible, as for example it occurs when the assimilation
algorithm has to be implemented with closed on-hand model
software, such as HYDRUS (Vogel et al., 1996), with a pre-
defined nonlinear numerical scheme.

Another case is when the observed variable is soil water
content while the Richards equation has to be in theh-based
form in order to handle both saturated and unsaturated flows
in the vadose zone, thus imposing a nonlinear observation
equation in the state-space description of the dynamic sys-
tem. In this case, the SKF can be replaced with the Extended
Kalman Filter to handle the nonlinearity of the observation
equation. With regards to the numerical evaporation test ex-
amined in this study, we could verify that, when assimilating
surface soil moistures for retrieving matric head profiles, the
Extended Kalman Filter combined with the Crank-Nicolson
(EKF-CN) also provides state profiles converging faster to
the true profiles than the UKF-NL or EnKF-NL numerical
schemes, with less computational efforts. However, we also
argued that the linearization of the observation equation em-
bedded in EKF does not ensure accurate solutions for all cir-
cumstances, particularly for coarser textured soils and when
sharp space-time gradients of the state vector are involved in
the retrieving process.

We also compared the EnKF with the UKF, both as poten-
tial alternatives to the EKF, whose flaws and limitations for
nonlinear models have been largely discussed in the literature
(e.g. Julier et al., 1995; van der Merwe, 2004). The UKF has
been less commonly applied in hydrological studies and, to
our knowledge, previous studies illustrating the implemen-
tation of the UKF with a numerical scheme of the Richards
equation have not been published.

Differently from the SKF, both UKF and EnKF sampling
strategies can lead to state profiles with low physical mean-
ing, particularly with large state covariances.

The computational efforts for implementing EnKF-NL
and UKF-NL are directly linked to the corresponding sizes of
the state ensemble propagated during the retrieving process.
For the UKF, the size of the propagated ensemble is deter-
ministically set equal to 2N + 1, whereN is the system di-
mension. The optimal ensemble size for EnKF is not known
a priori and it has been often calibrated, making it dependent
on both the type of examined process and the system dimen-
sion (Reichle et al., 2002a). However, UKF also requires the
calibration of a scaling parameter affecting the spread of the
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sample state distribution around the central state, which can
play a critical role in the overall retrieving process.

At least for the numerical evaporation test examined in this
study, as far as the system dimension is almost half the en-
semble size involved in EnKF, the two algorithms are almost
equivalent in terms of computational costs. The UKF can be
even more competitive than the EnKF, if the dimensionality
on the nonlinear problem is much smaller than 50, which is
the ensemble size generally required to gain accurate solu-
tions in this type of applications (Camporese et al., 2009).

While dealing with different types of filters applied to non-
linear systems, it is important to keep in mind that the phys-
ical model affects the ensemble generation and the uncer-
tainty analysis, which can be relevant for skewed ensem-
ble distributions (Drécourt, 2004), as observed by Reichle et
al. (2002a) for very dry or wet soil conditions. Ultimately, as
these Authors uphold, the “best” approach for a given data
assimilation problem will be application dependent.

This study focussed on retrieving state profiles, while as-
suming that parameters are known. However, in most prac-
tical circumstances, significant uncertainties arise from the
identification of the soil hydraulic parameters. The following
two companion papers (Medina et al., 2013a, b) explore the
capability of a dual Kalman Filter approach for simultaneous
retrieval of states and parameters in the Richards equation,
by examining synthetic and experimental data, respectively.
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