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Abstract. The need of understanding and modelling the 1 Introduction
space—time variability of natural processes in hydrological

sciences produced a large body of literature over the Iask simple way to understand the extreme variability of sev-

thirty years. In this context, a multifractal framework pro- . ) ,
eral geophysical processes over a practically important range

vides parsimonious models which can be applied to a Wlde-Of scales is offered by the idea that the same type of ele-

scale range of hydrological processes, and are based on the : .
. ; ; . mentary process acts at each relevant scale. According to this
empirical detection of some patterns in observational data

) . . : . idea, the part resembles the whole as quantified by so-called
i.e. a scale invariant mechanism repeating scale after scalg. . R ; : .

. : . Scaling laws”. Scaling behaviours are typically represented
Hence, multifractal analyses heavily rely on available data

. . - . ._as power laws of some statistical properties, and they are ap-
series and their statistical processing. In such analyses, hlgﬂ P brop y P

. . ) Phcable either on the entire domain of the variable of interest
order moments are often estimated and used in model identi- . . .
o I . ; . or asymptotically. If this random variable represents the state
fication and fitting as if they were reliable. This paper warns

" ; . : . . .~ of a system, then we have the scaling in state, which refers
practitioners against the blind use in geophysical time serie . L ; T o
. - LS . o marginal distributional properties. This is to distinguish
analyses of classical statistics, which is based upon indepe

: : S PN om another type of scaling, which deals with time-related
dent samples typically following distributions of exponentla_l random variables: the scaling in time, which refers to the de-
type. Indeed, the study of natural processes reveals scalin

. ) . . . pPendence structure of a process. Likewise, scaling in space
behaviours in state (departure from exponential d|str|but|on.8 P 9 P

tails) and in time (departure from independence), thus im_ls derived by extending the scaling in time in higher dimen-
) L . Lo ... sions and substituting space for time (e.g. Koutsoyiannis et
plying dramatic increase of bias and uncertainty in statisti-

cal estimation. Surprisingly, all these differences are com—al" 2011).
' b gy, The scaling behaviour widely observed in the natural

monly_unaccounted for n most mu|t|fra_1ct_a| analysgs of hy world (e.g. Newman, 2005) has often been interpreted as
drological processes, which may result in inappropriate mod- . : .

: : ) a tendency, driven by the dynamics of a physical system,
elling, wrong inferences and false claims about the prop-

. . : . - to increase the inherent order of the system (self-organized
erties of the processes studied. Using theoretical reasoning...- it ): this is often triggered by random fluctuations
and Monte Carlo simulations, we find that the reliability of Y): 99 y

multifractal methods that use high order moments3j is that are amplified by positive feedback (Bak et al., 1987).

uestionable. In particular, we suggest that, because of estl-n another view, the power laws are a necessity implied by
ques -np ' 99 ' . the asymptotic behaviour of either the survival and autoco-
mation problems, the use of moments of order higher than

: ) e variance function ribing, r ively, the marginal an
two should be avoided, either in justifying or fitting models. ariance function, describing, respectively, the marginal and

Nonetheless, in most problems the first two moments providéomt distributional properties of the stochastic process which

enough information for the most important characteristics omedels the physical system. The main question is whether
the digstribution P the two functions decay following an exponential (fast de-

cay) or a power-type law (slow decay). We assume the latter
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244 F. Lombardo et al.: Just two moments!

to hold in the form of scaling in state (heavy-tailed distribu- the following, are local time averages in boxes of sixe
tions) and in time (long-term persistence), which have also(notice that we use the so-called Dutch convention accord-
been verified in geophysical time series (e.g. Markonis andng to which random variables are underlined; see Hemel-
Koutsoyiannis, 2013; Papalexiou et al., 2013). According torijk (1996), and the additional notational conventions in
this view, scaling behaviours are just manifestations of en-Koutsoyiannis (2013)). This is the basis of the fixed-size box-
hanced uncertainty and are consistent with the principle ofcounting approach (see e.g. Mach et al., 1995).
maximum entropy (Koutsoyiannis, 2011). The connection of For multifractal processes, one usually observes a power-
scaling with maximum entropy constitutes also a connectionlaw scaling of the form
of stochastic representations of natural processes with sta- g
tistical physics. The emergence of scaling from maximumE[(QA)) ] o A—K@, (1)
entropy considerations may thus provide theoretical back-
ground in modelling complex natural processes by scalingwhere E[] denotes expectation (ensemble average)@ag
laws. is the moment scaling function, at least in some range of
In the literature, natural processes showing scaling bescalesA and for some range of ordegs Generally, the mul-
haviour are often classified as multifractal systems (i.e. mul-tifractal behaviour of a physical system is directly character-
tiscaling) that generalize fractal models, in which a singleized by the multiscaling exponenis(g), whose estimation
scaling exponent (the fractal dimension) is enough to de-+elies on the use of the sampjeorder moments at different
scribe the system dynamics. For a detailed review on the funscalesA and their linear regressions in log-log diagrams.
damentals of multifractals, the reader is referred to Schertzer A fundamental problem in the multifractal analysis of
and Lovejoy (2011). data sets is to estimate the moment scaling funckag)
Multifractal models generally provide simple power-law from data (Villarini et al., 2007; Veneziano and Furcolo,
relationships to link the statistical distribution of a stochas-2009). Considerable literature has been dealing with estima-
tic process at different scales of aggregation. All power lawstion problems in the context of so-called scaling multifrac-
with a particular scaling exponent are equivalent up to con-tal measures for at least three decades (see e.g. Grassberger
stant factors, since each is simply a scaled version of thend Procaccia, 1983; Pawelzik and Schuster, 1987; Schertzer
others. Therefore, the multifractal framework provides par-and Lovejoy, 1992; Ashkenazy, 1999; Mandelbrot, 2003; and
simonious models to study the variability of several naturalNeuman, 2010). Interestingly, Mandelbrot (2003) and Neu-
processes in geosciences, such as rainfall. Rainfall modelsyan (2010) recognize the crucial role played by time depen-
of multifractal type have, indeed, for a long time been useddence in estimating multifractal properties from finite length
to reproduce several statistical properties of actual rainfalldata. Nonetheless, in this work we remain strictly within the
fields, including the power-law behaviour of the moments framework of the standard statistical formalism, which is ac-
of different orders and spectral densities, rainfall intermit- tually a novelty with respect to the literature cited above. In
tency and extremes (see e.g. Koutsoyiannis and Langousishis context, we highlight the problematic estimation of mo-
2011, and references therein). However, published resultsnents for geophysical processes, because the statistical pro-
vary widely, calling into question whether rainfall indeed cessing of geophysical data series is usually based upon clas-
obeys scaling laws, what those laws are, and whether thegical statistics. The classical statistical approaches rely on
have some degree of universality (Nykanen and Harris, 2003several simplifying assumptions, tacit or explicit, such as in-
Veneziano et al., 2006; Molnar and Burlando, 2008; Molini dependence in time and exponentially decaying distribution
et al., 2009; Serinaldi, 2010; Verrier et al., 2010, 2011; Girestails, which are invalidated in natural processes thus caus-
et al., 2012; Veneziano and Lepore, 2012; Papalexiou et aling bias and uncertainty in statistical estimations. In many
2013). In fact, significant deviations of rainfall from mul- studies, it has been a common practice to neglect this prob-
tifractal scale invariance have also been pointed out. Theséem, which is introduced when the process exhibits depen-
deviations include breaks in the power-law behaviour (scal-dence in time and is magnified when the distribution func-
ing regimes) of the spectral density (Fraedrich and Larn-tion significantly departs from the Gaussian form, which it-
der, 1993; Olsson, 1995; Verrier et al., 2011; Gires et al.,self is an example of an exceptionally light-tailed distribu-
2012), lack of scaling of the non-rainy intervals in time seriestion. In their pioneering work on statistical hydrology, Wallis
(Veneziano and Lepore, 2012; Mascaro et al., 2013), differ-et al. (1974) already provided some insight into the sampling
ences in scaling during the intense and moderate phases pfoperties of moment estimators when varying the marginal
rainstorms (Venugopal et al., 2006), and more complex deviprobability distribution function of the underlying stochas-
ations (Veneziano et al., 2006; Marani, 2003). tic process. The main results of the paper agree well with
Multifractal signals generally obey a scale invariance thatthose found here, but its Monte Carlo experiments were car-
yields power law behaviours for multi-resolution quantities ried out under a classical statistical framework assuming
depending on their scala. These multi-resolution quanti- independent samples.
ties at discrete time stepg £ 1, 2,...), denoted bg;.A) in The purpose of this paper is to explore, at different
timescales, the information content in estimates of raw
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moments of processes exhibiting temporal dependence (sdamescale of averaging\ (Koutsoyiannis, 2010). The cli-
Sect. 2). In order for the true moments to be fully known a macogram of_<(/.A) can be calculated from the autocovariance
priori, we use synthetic examples in a Monte Carlo simula-functionc(z) of the continuous-time process as follows (see
tion framework. We explore processes with both normal ande,g_ Vanmarcke, 1983, p. 186; Papoulis, 1991, p. 299):
non-normal distributions including ones with heavy tails. We

show (Sect. 3) that, even in quantities whose estimates are

in theory unbiased, the dependence and non-normality affecVar | x
significantly their statistical properties, and sample estimates
based on classical statistics are characterized by high bias
and uncertainty. which shows that the climacogray{A) generally decreases
with A and fully characterizes the dependence structure of
X(t). The climacograny (A) and thec(t) are fully depen-
dent on each other; thus, the latter can be obtained by the
former from the inverse transformation (see Koutsoyiannis,
2013, for further details):

(A)
J

A
2
|=r@w=5 [ @-nemar, )
0

2 Local average process

Central to the development of robust multifractal models is
the concept of “local average” of a stochastic process. Practi
cal interest often revolves around local average or aggregates 1 (sz (T))
(temporal or spatial) of random variables, because it is sel<(7) = > 42
dom useful or necessary to describe in detail the local point-
to-point variation occurring on a microscale in time or space.Thus, the dependence structurex@f) is represented either
Even if such information were desired, it may be impossi- by the climacogramy (A) or the autocovariance function
ble to obtain: there is a basic trade-off between the accuracy(z). In addition, the Fourier transform of the latter, the spec-
of a measurement and the (time or distance) interval withintral density functions(w), wherew is the frequency, is of
which the measurement is made (Vanmarcke, 1983). For excommon use. Selection of an analytical model &6r) or
ample, rain gauges (owing to size, inertia, and so on) measure(w) is usually based on the quality of fit in the range of
some kind of local average of rainfall depth over time. More- observed (observable) valueswandw which, for reasons
over, through information processing, “raw data” are oftenmentioned above, does not include the “microscate*{ 0
transformed into average or aggregate quantities such as, e.gt w — oo) or in general the asymptotic behaviour. How-
sub-hourly averages or daily totals. ever, asymptotic stochastic properties of the processes are
Mathematically, lek(r) be a stationary stochastic process crucial for the quantification of future uncertainty, as well as

®)

in continuous time with meanu = E [X], and autocovariance
c(t) =CoVv[x(z), x(t + t)], wherer is the time lag. Consider
now the random proce§§A) obtained by local averagingt)
over the windowA at discrete time steps (=1, 2,...), de-
fined as

JjA

/ x@®)d; j=12,...,n,

(G-DA

()

1
@)
X =

wheren = T/A is the number of the sample steps>_<§3‘?) in
the observation perio@l,, and7T = | 7o /A | A is the obser-
vation period rounded off to an integer multiple &af The
relationship between the process&s and>_<§.A) is illustrated
in Fig. 1.

The mean of the procesﬁm is not affected by the aver-
aging operation, i.e.

il

Let us now investigate the climacogram of the proo_éé%,
which is defined to be the variance (or the standard devia
tion) of the time-averaged procezs‘féf) as a function of the

jA

]:% / E[{(t)]dt:,u.

(G-DA

@)
L)

©)
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for planning and design purposes (Montesarchio et al., 2009;
Russo et al., 2006). Any model choice does, of course, imply
an assumption about the nature of random variation asymp-
totically. Therefore, we may want this assumption (although
fundamentally unverifiable) to be theoretically supported.
In this context, Koutsoyiannis (2011) connected statistical
physics (the extremal entropy production concept, in par-
ticular) with stochastic representations of natural processes,
which are otherwise solely data-driven. He demonstrated that
extremization of entropy production of stochastic represen-
tations of natural systems, performed at asymptotic times
(zero or infinity) results in the Hurst—-Kolmogorov process
(HKp), else known as fractional Gaussian noise (Mandelbrot
and Van Ness, 1968).

HKp can be defined in continuous time by the following
autocovariance function (Koutsoyiannis, 2013):
c(t)=v(a/t)>?"; 05<H<1, (6)
which shows that autocovariance is a power function oflag
consequently, it can be shown that the spectral density func-
tion s(w) is also a power law of the frequenaywith expo-
nent 1-Z . The three nominal parameters of the HKp aye
o andH: the units ofe andv are [r] and [x]?, respectively,
while H, the so-called Hurst coefficient, is dimensionless.

Hydrol. Earth Syst. Sci., 18, 24355 2014
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mean aggregated
process at scale A
continuous-time process

Fig. 1. Sketch of the local average procgég) obtained by averaging the continuous-time procgssliocally over intervals of sizé\.

Substituting Eq. §) in (4) we obtain the climacogram of — Estimate the sample raw moments of different orders
the process_x;A) as q over a range of aggregation scales
( /A)g,zﬂ — Plot the sample;-moments against the scate in a
Vo H
Y (A) = TR @) log-log diagram.
— Fit least-squares regression lines (one for each order
Thus, the variance oji.A) is a power law of the averaging ¢) through the data points.
'22()9 A with exponent 2 — 2, precisely the same as that of _ Estimate the multiscaling exponents(q) as the

: . . ; slopes of regression lines (see H}.
The climacogram contains the same information as the au- P 9 ( 4

tocovariance functior(r) or the power spectrun w), be-  The classical estimator of thgh raw moment of the local
cause they are transformations of one another. Its relationshigyerage procesé™ is
with the latter is given by (Koutsoyiannis, 2013) -

1 q
Sif(TwA) d m = ;Z(QA)) . 9)

(8) =1
(TwA)?

High moments, i.eq > 3, mainly depend on the distribu-
It has been observed that, when there is temporal dependend@ tail of the process of interest. If we assume, for rea-
in the process of interest, the classical statistical estimatior;Ons Mentioned in Sect. 1, scaling in state, i.e. a power-type
of the climacogram involves bias (Koutsoyiannis and Mon- (e.g. Pareto) tal_l, then raw moments are _theorengally |nf|n|te
tanari, 2007), which is obviously transferred to transforma-Pyond a certain ordejmax. However, their numerical esti-
tions thereof, e.g:(t) or s(w). The bias in the climacogram mat.es from a .tlme' series by E@) (arg always f|n|tg, thus re-
estimation can be determined analytically and included in thesultlng_m '”f'mte b_la_ses froma pra_ctlcal perspective, k_)e(_:a_use
estimation itself (Koutsoyiannis, 2013). However, in the next the estimate is a finite nu_mber while the true value is |_nf|n|ty.
section we show how the problems of uncertainty in statis-EVEN P€lOWgmax, where it can be proved that the estimates
tical estimation may be extremely remarkable when using®"® unbiased, we show that the estimation of moments can

other uncontrollable quantities (e.g. high order moments) ta*€ Still problematic. It is easily shown, indeed, that the ex-

V(A)=/S(w)
0

justify or calibrate stochastic models. pected value of the moment estimator equals its theoretical
value E[@;A))q] = ,uff) for any timescale\, i.e.
3 Multifractal analysis 1& q
AV (A) — ;)
] -3 (47) ] @
]:

Multifractal analysis has been used in several fields in sci-
ence to characterize various types of data sets, which hav@hich can be used to derive the variance of the moment esti-
been investigated by means of the mathematical basis of mumator as follows:

tifractal theory. This is the basis for a series of calculations P P
that reveal and explore the multiple scaling rules, if any, fromVar [m_q(A)] =E [(mff)) } - E[m_q(A)]
data sets, in order to calibrate multifractal models. From a

practical perspective, multifractal analysis is usually based_ 1 {~ - EN( @) (@) )2 1
upon the following steps (Lopes and Betrouni, 2009). nZX;; [(if ) (il ) (M’l ) ’ (11)
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Fig. 2. Estimator variance of the mean of the local aver-
age proceng.Azl) standardized by the process variance, i.e.
Var[ngAzl)]Nar[g(/A:l)] =y(T)ly(1), plotted against the sample
sizen =T for A =1.

This quantity can be assumed as a measure of uncertainty in

the estimation of theth moment of the local average process
X Therefore, the estimaton,*’ is theoretically unbiased

([Secause of EqlL0) but involves uncertainty (quantified by

247

influences the reliability of moment estimates. For simplicity
and without loss of generality, we plot the ratio of Vgﬁ)]

to VarB;A)] for A = 1 against the scal&, which equals the
sample sizex for A = 1. As a consequence of Eq43f and
(7), the ratio is given by

var [m(lA:D] v(T) _ w2
= =n
Var [£;A:1)] y (D)

(14)

Notice that large values aff result in a much higher ratio
than in the iid case (which is given bynl/ and the con-
vergence to the iid case is extremely slow (see Fig. 2). In
essence, it can be argued that the greater the dependence in
time, the harder it is to estimate the moment; in the sense
that larger samples are required in order to obtain estimates
of similar quality.

3.2 Estimation of higher moments

Let us now investigate the behaviour of estimators of higher

Eqg.11), which is expected to depend on statistical propertiesprder momentsg > 1) when the underlying random process

of the instantaneous proceds) (i.e. marginal and joint dis-
tributional properties), the averaging scalgthe sample size
n, and the moment orde.

3.1 Estimation of the mean

The (unbiased) estimator of the common mgaof the local
average proces_éA) is given by Eq. 9) for g =1,
15~ @

=J
n =1

(1)

mi® = =xi", (12)

whereT is the largest timescale of averaging multiplesof
in a given observation periof}, (Fig. 1).

As a consequence of Egd) @nd (L2), the variance of the
estimator above can be expressed as follows:

(A) (T)
Var[m1 ]:Var[il ]

T
2
=y(T)=ﬁ/(T—r)c(t)dt. (13)
0

Therefore, the estimatgn(lA) is a function of the dependence

structure of the continuous-time (instantaneous) proxess
and the rounded observation peridd Note that the uncer-

exhibits dependence in time and when changing the process
marginal distribution; this can be done by Monte Carlo sim-
ulation. Specifically, we use the Gaussian distribution and
three one-sided distributions whose tails are sub-exponential,
i.e. heavier than the former (as observed in several geophys-
ical processes). All synthetic time series are generated in a
way to have similar dependence structures based on the HKp,
which are therefore governed by the Hurst coefficignt

In this study, we estimate the performanceytif moment
estimators for four different common tail types (ordered from
heavier to lighter): the Pareto, the log-normal, the Weibull
and the Gaussian tails (see e.g. El Adlouni et al., 2008; and
Papalexiou et al., 2013). The Pareto is the only power-type
distribution, while the remaining three are of exponential
type with all their moments finite. Specifically, we use the
Pareto type Il distribution, defined in [B¢), with survival
function

-1/«
fPII(X)ZP{)_C>x}=<l+K%> ,

(15)
whereg > 0 is the scale parameter, and- 0 the shape pa-
rameter. The latter, also known as the tail index, controls the
asymptotic behaviour of the tail, which is given by/<; as

the value ofc increases the tail becomes heavier and conse-

tainty in the estimation of the sample mean is independent ofjuently extreme values occur more frequently. Moreover, the

the timescale of averagingy while it depends on the obser-
vation periodT'.

shape parameterunequivocally defines the ordghax =1/«
beyond which thegth moments are theoretically infinite, i.e.

Considering now the HKp, the autocovariance function is E[(X;A))q] = oo for g > 1/k; in our study we assume= 0.2,

given by Eqg. 6). Hence, the climacogram(T') takes the
form of Eq. (7). In Fig. 2, we show how the temporal de-
pendence (governed by the Hurst coefficigintor the HKp)

www.hydrol-earth-syst-sci.net/18/243/2014/

and thusymax = 5.
The log-normal distribution, also defined in (&), is very
commonly used in geosciences and has the survival function

Hydrol. Earth Syst. Sci., 18, 24355 2014
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The results of the Monte Carlo simulation experiment are
BN depicted in Figs. 3—6. Specifically, Fig. 3 shows the proba-
Fun (x) = }erfc (In (({) ﬂ)) ’ (16) bility distribqtion of the ngtural logarithm of th_e ratio gth
2 B moment estimates to their expected values (i.e. the theoret-
ical values, following Eg10). It can be noticed that the in-
where erf¢x) = 1—erf(x) =2/ [ exp(—t?)dt is the  formation content of the sample moments strongly decreases
complementary error functior, > 0 is the scale parameter, when increasing the order(i.e. the distribution is less con-
andk > 0 is the shape parameter that controls the behavioutentrated around 0): only low moments have reasonably low
of the tail (notice some differences from the more typical no-variation, all others vary within several orders of magnitude
tational convention in the literature; see Forbes et al. (2011(notice that the horizontal axis is logarithmic and spans more
p. 131) for further details). Despite all its moments being the-than 10 orders of magnitude!). Despite the sample raw mo-
oretically finite, the log-normal distribution is very similarin - ment being an unbiased estimator of the true (population)
shape to a power-type distribution (Pareto), in the sense thataw moment, the probability distribution of the statistical es-
the two distributions appear almost indistinguishable fromtimator is very broad and skewed. This is particularly the case
each other for a large portion of their body (Mitzenmacher, for high moments. Note that the averaging scalaas neg-
2004). Therefore, log-normal is regarded as a heavy-tailedigible influence on the statistical characteristics of low mo-

distribution. ment estimators, while it slightly regularizes the behaviour
Another widely used distribution is the Weibull distri- of higher moment estimators.
bution, again defined in [050). Its survival function is a In addition, in Fig. 4 we show the empirical frequency
stretched exponential function (obtained by inserting a frac-distribution of the sample fifth moment estimated from log-
tional power law into the exponential function), i.e. normal time series averaged locally over different timescales
N A. Again here the bias is theoretically zero, but the most
Fw(x) = exp(— (E) ) @an probable value of the moment estimate (the mode) is very

different from its expected value. For example whee= 1

whereg > 0 is the scale parameter, and the stretching expo{Upper-left panel in Fig. 4), the mode of the distribution of
nent O< « < 1 (shape parameter) actually modifies the shapeméA: ) (green line) is almost two orders of magnitude less
of the exponential distribution so as to obtain a heavier tail.than the expected value (red line) and the probability of cal-
Consequently, the Weibull distribution can be regarded as #ulating from a unique sample a value equal to the mode is
generalization of the exponential distribution, which is re- much greater (almost one order of magnitude) than the prob-
covered withk = 1. The case witl > 1 (compressed expo- ability of obtaining the expected value itself. Recall that the
nential function, i.e. a tail lighter than the exponential one) expected value of the sample moment equals the true value
has less practical importance, with the notable exception opf the moment, because of unbiasedness, but according to
«x = 2, which gives the Rayleigh distribution, closely related the distributions in Fig. 4 we can hardly expect the moment

to the Gaussian distribution. estimate from a unique sample to be close to this expected
value. Increasing the averaging scalereduces the differ-
3.3 Monte Carlo simulation ence between the mean and the mode. Nonetheless, this dif-

. ference is still remarkable at large scales (see e.g. lower-right
As the log-normal model has been the most common in mU"paneI in Fig. 4).
tifractal literature, we start our study from this model. For = The large difference between the mode and the expected
the Monte Carlo simulation we use the model introduced byy e of the moment estimators is not the only problem. An-
Lombardo et al. (2012), which follows a disaggregation ap-gther problem is the high estimation uncertainty. In order to
proach. In that respect it resembles the discrete multifractajstrate the uncertainty in the moment estimation, Fig. 5
cascade models, yet it is not affected by uncontrollable nonshgws semi-logarithmic plots of the prediction intervals of
stationary issues that are typical in these multifractal casype sample moments, calculated from the Monte Carlo simu-
cades. The model starts the generation from the coarsest scalgions, against the moment order, for various scale3he
and then disaggregates into finer scales applying a specifiggarithmic scale on the vertical axis highlights the huge vari-
scale-dependent exponential transformation to the HKp in gpjjity of estimates when the order increases. Note that the
way to preserve part of its scaling properties. For the Montémean of raw moments (i.e. the true expected value) moves
C_arlo explebrlment we ggnerate 30000 time series with samplg|oser to the upper prediction limit for ordegs> 3, thus
sizen =2 = 1024, unit mean, standard deviatior=1.29  making the use of high moments unreliable. Furthermore,
andH = 0.85. Later we will compare with the other models Fig. 6 depicts log-log diagrams of the prediction intervals
in adlfferent setting, i.e. gg.gregatlng rqtherthan disaggregatyf the sample moments against the scale of averaging
ing, using the same statistical properties (note $h&t1.29 oy various orders;. In addition to the observations made

is the standard deviation of the Pareto type Il with unit mean,yjt, respect to Fig. 5, Fig. 6 shows that the increase of
and tail indexx = 0.2).
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Fig. 4. The epdf of the sample fifth moment estimated from log-normal time series averaged locally over different tinzescales

the averaging scala has little influence on the variability sample size from? to 214 (the ensemble consists of 10 000

of the moments, meaning that the sample size reduction i$0g-normal time series for each sample size generated by the
somewhat compensated by the time averaging. Neverthelesmodel of Lombardo et al., 2012). It can be noticed that the
it is clear that larger samples provide better estimates thasample size should be increased more than one order of mag-
smaller. For example, Meneveau and Sreenivasan (1991) pratitude to obtain roughly a 10 % improvement over the results
pose a criterion of statistical convergence for the momentgresented in Fig. 5 foA = 1.

of local average processes, and find that data records of size In the second part of the Monte Carlo simulation experi-
107 may be sufficiently long to ensure statistical convergencement we use a different approach, first generating at the finest
for gth order moments. However, this is not immediately scale and then aggregating into coarser scales. In this case
straightforward in case of highly correlated data series, asve generate 30000 synthetic time series from the four dis-
we show in Fig. 2. To further investigate this issue account-tributions described in Sect. 3.2 above (ordered from heavier
ing for the criterion of convergence above, in Fig. 7 we showto lighter tail type: Pareto, log-normal, Weibull with shape
the trend of the interquartile range (IQR) of the prediction parameter smaller than 1 and Gaussian) with characteristics
intervals for the third 4 = 3) moment when increasing the same as those in the previous experiment. In this case we

www.hydrol-earth-syst-sci.net/18/243/2014/ Hydrol. Earth Syst. Sci., 18, 24355 2014



250 F. Lombardo et al.: Just two moments!

A=2 10 A=4 10 A=8

A=16 A=32 A=64 A=128
10" 10" 10" 10"
//
10 10 ~ 10 —~ 10
= el /// /// Py
= ol e ' Eet s > e
= - 3 - — e —
== = s il L —
10° 10° 10° 10°
1 2 3 4 5 &6 1 2z 3 _4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
q q q q
‘ mean mode —s—min — —max —— 2.5% Q 97.5%Q|

Fig. 5. Semi-logarithmic plots of the prediction intervals of the sample moments versus thegdiaevarious timescalea, where “Q”
stands for quantile.

=1 . = =3
10 a 10° g 10 g
s e e —5—_—__‘—5—_ E5—:—_1‘—7—__
2 o1 T 10’} =
M
10 10° 10

mean mede —— min — — max 25%Q 97.5%Q ‘

Fig. 6. Log-log plots of the prediction intervals of the sample moments versus thesdatevarious orderg.

investigate how the classical estimators of raw moments be- It is emphasized that the vertical axes in Fig. 8 span more
have when varying the tail type of the marginal distribution than 10 orders of magnitude yet the prediction limits do not
of the underlying stochastic process. To accomplish this aimnecessarily bracket the true value of the moment. Particularly
in Fig. 8 we plot on a semi-logarithmic scale the prediction for the Pareto distribution the true (population) values of the
intervals of the sample moments against the moment ordefifth and sixth moments are infinite while their statistical es-
(assumingA = 1), for the four distributions. It can be seen timates are finite and the entire graph does not provide any
that the tail type significantly influences the reliability of mo- hint that these high moments differ so essentially from the
ment estimators. The heavier the distribution tail, the morelower ones. Another important conclusion drawn from Fig. 8
uncertain the sample moments are. This is especially the cagse that the prediction limits in the case of the Gaussian dis-
for high moments, because they depend enormously on theibution are dramatically narrower than in all other cases.
distribution tail and non-normality affects significantly their As the Gaussian distribution has been dominating in classi-
statistical properties. Analogous considerations apply to ageal statistical applications and perhaps in statistical thinking,
gregated series (i.& > 1). this fact may explain why the multifractal applications were
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1 \ wherem is the temporal mean of the data series. The scal-
ing behaviour of the process is characterized by the moment
M I scaling functionk (¢) as follows:
g T E[(em)T]xak@, (19)
%0'7’ i If K(q) linearly increases witl, then the process is said to
"ol | be “simple scaling”, otherwise it exhibits a “multiple scal-
ing” behaviour.
055 L In Fig. 9, we graphically show how uncertainty in sample
10 10 . . . . .
sample size moments is reflected in the uncertainty in the estimates of

scaling exponents. It can be noticed that the funciaig)
shows a non-linear behaviour for the log-normal series, thus

. ) suggesting a multifractal behaviour. Analogous considera-
tervals for the third moment versus the sample sifer the log- 99 9 9

normal series generated by our downscaling model (Lombardo epons gpply to the S.e”es. generated by the other Monte Carlo
al., 2012). experiments described in Sect. 3.3 above (not reported here).

The prediction intervals in Fig. 9 spread out widely while
increasing the moment ordegr which is consistent with an
. . . . enhancement of uncertainty. We clarify that we used the ra-
misled to ngglgct the huge uncgrtamty of high moment esu'tios of moment estimates in all calculations to compute.
mates and its impact on modelling. Nonetheless, recalling that we assumed the unit ensemble
meanu =E[x(¢)] =1 in all our Monte Carlo experiments, we
found (not shown here) the same numerical results if using
raw moments without taking any ratios. This is to stress that
Since the ultimate aim of a multifractal analysis is to study ratios of moments do not seem to play any significant role in
the scaling of raw moments, we have carried out some adghe estimation of multiscaling exponents in our case.
ditional numerical investigations on the generated samples | may be useful to add here some theoretical aspects.
by simply taking an average slope of linear regressions ofrne theory of multifractals depends on the fact that raw mo-
sample moments at different scalasin log-log diagrams  ments obey power laws as the scale- 0 (or equivalently
(actually, this is commonly the case when dealing with real, _, o) (Falconer, 1990; Gneiting and Schlather, 2004), and
world data). Despite being not really crucial to the focus gq jt depends on taking limits which cannot be achieved
of our work (which aims to answer the question about howin, reality. For most experimental purposes, the multifractal
many raw moments we can estimate reliably), we believe ithahaviour of a process(r) is usually found by estimating
is worth exploring the variability in the estimates of the mo- e gradient of a grapﬁof log(E{(»))?]) against log. over
ment scaling functiork (¢), when using the statistical tools 5, “appropriate” range of scales, where empirical points are
which we cautioned against. To accomplish this purpose, We&losely matched by a straight line of sloigq). Being the
use the log-normal synthetic series generated by the downgtter an asymptotic slope, it is difficult to find the “appro-
scaling model of Lombardo et al. (2012). priate” range of scales to estimak&(q), because we could

In order to estimate an empirical exponent functioty)  pe misled by some artificial slopes which do not indicate
describing the scaling of raw moments over a range ofihe multifractal behaviour of the underlying process (see e.qg.
timescales, we should define the following non—dimensionalKoutsoyianniS, 2013). In addition, we should emphasize that
quantities commonly used in the literature (e.g. de Lima andpe empirical moment scaling functicki(¢) varies across
Grasman, 1999; Serinaldi, 2010). The scale ratiso that  gcgles for ergodic processes. The simple proof for this is
A = 1 for the largest scale of intere&tnax, i.€.2 = Amad/A. given in the Appendix A in the special caseqo& 2.
In our case, we assume thaimax=[r/8] =128, where the Furthermore, we show in Appendix B that the theoretical

sample size: = 1024, so that sample moments can be esti-moment scaling functioitr(¢) for the model by Lombardo
mated from at least eight data values, while the generic age a1, (2012) is given by

gregated scal@ is bounded in [1, 128]. Similarly, we form

Fig. 7. Semi-logarithmic plot of the interquartile range (IQR) (stan-
dardized with respect to the IQR far= 210) of the prediction in-

3.3.1 Empirical moment scaling function

the non-dimensional proceséh) dividing the local average Kth(¢) =q(¢—1 (1—H), (20)
of the continuous-time proceg§) by its mean at the largest
scaleAmax (or equivalentlya = 1); then whereH is the Hurst coefficient. Based on these findings, the
empirical results in Fig. 9 do not seem to agree well with their
Amax Amax theoretical counterparts. For example, in our cdse 0.85,
X(T) X(T) A for ¢ = 4 the theoretical value should & (g) =1.8, while
e(\)=—2 ~ L CoA= X (18)  the estimated mean value is abdutg) = 0.5 in the scale
E[&EAmaX)] mn A range of our Monte Carlo experiments. Hence, not finding
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Fig. 9. Prediction intervals of the moment scaling functiiig)

versus the ordey for the log-normal series generated by the down-

scaling model (Lombardo et al., 2012).

stated) naive consideration that statistical estimates represent
the true properties of a process.

Using theoretical reasoning and Monte Carlo simulations
we find that the reliability of multifractal methods which use
high order momentsx 3) is questionable. In particular, we
highlight the problems in inference from time series of geo-
physical processes. The classical statistical approaches, often
used in geophysical modelling, are based upon several sim-
plifying assumptions, tacit or explicit, such as independence
in time and exponential distribution tails, which are invali-
dated in natural processes. Indeed, the study of natural pro-
cesses reveals scaling behaviours in state (departure from ex-
ponential distribution tails) and in time (departure from inde-
pendence). While the multifractal models are based on these
scaling behaviours per se, they may have failed to explore
their statistical consequences with respect to the implied dra-

the “appropriate” range of scales, in addition to estimationmatic increase of uncertainty.

problems reported in our work, may lead to remarkable un-

derestimation of the moment scaling function.

4 Conclusions

The following list briefly summarizes the main findings of
our analyses.

— As natural processes are characterized by dependence
in time, while classical statistics typically assumes in-
dependence, much larger samples are required in order
to obtain estimates of similar reliability with classical

During recent decades, there has been a growing interest in
multifractal analyses especially for the study of hydrological
processes, particularly in rainfall modelling. Indeed, the mul-
tifractal framework provides parsimonious models to study
the variability of several natural processes in geosciences,
such as rainfall. Models following this approach require the
scaling of the sample moments of different ordgrahich is
used in model identification and fitting. A common problem
with the application of multifractal models, which in some
cases may have led to incorrect results, is their disconnec-
tion from stochastic methodology and reasoning, and the (un-

Hydrol. Earth Syst. Sci., 18, 243255, 2014

statistics.

Estimators of high moments whose distribution ranges
over several orders of magnitude cannot support infer-
ence about a natural behaviour nor fitting of models.

The most probable value of sample high moments (the
mode) can strongly differ (by orders of magnitude)
from its expected value (i.e. the true value), thus mak-
ing the statistical estimate problematic even in the case
of unbiasedness.
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— The calculation of numerical values of high order mo- cording to Egs.18) and (L9) we could write
ments is misleading as the theoretical moments may

o . . . 2
tend to infinity for high orders, while the sample esti- Amax 2
y 9 p <)_€J( )) ~ 3 K@ (E I:EEAmax)iI) = 2K@,2 (A1)

mates are always finite. Even smaller order momentsE
can be very uncertain.
. ] ) wherep is the mean of the process. On the other hand, we
— Even if the generated process is multifractal, the sam+now that
ple estimates of thg moments from a unique sample

can provide misleading results. E[(L;A)>2j| — (A + 42, (A2)

Hence, we have shown that distribution tails heavier than

the exponential one and temporal dependence result in enoWherey(A) is the variance of the local average process at the

mously increased uncertainty and/or infinite biases from atsr::aleA' see thr}@' vage assoumeAthat the r;)rocesls_ IS ;};ggoldm,
practical perspective in raw moments. This paper warnsp ?3(‘;\;9 must have (A) — 0 asA — oo (Papoulis, '

practitioners against the blind use in geophysical time se . _
ries analyses of classical statistical tools, which neglect de- alseecallmg thath = Amay/2, from Egs. (A1) and (A2) we

pendence and heavy tails in distributions. Ossiander an
Waymire (2000) already caution against using high moments x5 5 Amax 5
in multifractal estimation, but their particular focus is on * X =Y {—— ) T#"
discrete multiplicative cascade models. Indeed, they demon-

strate that the estimators of multiscaling exponents converg®ividing both sides by:? and taking the logarithms, we ob-
almost surely to the structure function of the cascade gentain
erators as the sample becomes large for all moment orders | Armax 2.1
within a certain critical interval, whose upper bound is con- K@ = g(y (T)/“ + )
sistent with our results. -

Ignorance of increased uncertainty and inattentive use of ) o

high order moments may result in inappropriate modelling,c'€arly then, as. — 0 (i.e. as the scale grows to infinity

wrong inferences and false claims about the properties of thé* — ©©), the numerator> 0 and the denominator> co.
processes. Evidently, the first two moments need to be useg®: K (2) =0 asymptotically. Note that we have not made any

in all problems as they define the most important characteris@SSUmption about the dependence structure or the marginal
tics of the distribution, marginal (the first two moments) and Probability of the process; the only assumption is that the
joint (the second moment). Even for these two lowest mo-Process is ergodic. In summary,_for scales tendlng to infinity
ments it is important to always study their uncertainty and €K (2) should tend to zero, while for scales tending to zero
this only can be done in connection with a mode! fitted for the € K (2) will take nonzero values.

process of interest (as it is not possible to define uncertainty
without specifying a model for the marginal distribution and A
dependence). The third moment is often useful as a measure

of skewness but we should always be aware of its uncertaintyyq show that in the model by Lombardo et al. (2012) the the-
however using the third moment is th the qnly way to iden- yretical moment scaling function is given by EQQ), we
tify and assess the skewness of a distribution. For exampl_eﬁrst recall that, if the local averagé® is log-normally dis-

in parameter estimation of three-parameter distributions, it ributed itsg-order raw moment is given by (Kottegoda and
is better to avoid the method of moments and use other ﬁt—ROSSO '2008 p. 216)

ting methods such as maximum likelihood, L-moments, etc.
Moments of order- 3 should be avoided in model identifica- a4 1,
tion and fitting because their estimation is problematic. If we [(% ) ] = eXp<q“|n(x§A)) 54 Vln(x;“)> ’ (B1)
have to use them, then it is imperative to specify their uncer-
tainty and involve this uncertainty in any type of modelling where the two parameters can be determined in terms of the
and inference. meanu = EQ(E.A)] and the variance (A) =Var[Q<(/A) )] of the

local average process as follows: '

(A3)

logA (%)

ppendix B

: 1 Y (A)
Appendix A uln(x<_A>) =logu — > log ( 2 + 1) , (B2)
=]
To show that the empirical moment scaling functi&iig)
varies across scales for ergodic processes it suffices to con- y (A)
; - =lo +1 (B3)
sider the special case of second-order momenis 2). Ac- Vm@“) =109 2 :
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