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Abstract. Floods and droughts frequently affect the Ama-
zon River basin, impacting transportation, agriculture, and
ecosystem processes within several South American coun-
tries. Here we examine how sea surface temperature (SST)
anomalies influence interannual variability of terrestrial wa-
ter storage anomalies (TWSAs) in different regions within
the Amazon Basin and propose a statistical modeling frame-
work for TWSA prediction on seasonal timescales. Three
simple semi-empirical models forced by a linear combina-
tion of lagged spatial averages of central Pacific and tropical
North Atlantic climate indices (Niño 4 and TNAI) were cal-
ibrated against a decade-long record of 3◦, monthly TWSAs
observed by the Gravity Recovery And Climate Experiment
(GRACE) satellite mission. Niño 4 was the primary exter-
nal forcing in the northeastern region of the Amazon Basin,
whereas TNAI was dominant in central and western regions.
A combined model using the two indices improved the fit sig-
nificantly (p < 0.05) for at least 64 % of the grid cells within
the basin, compared to models forced solely with Niño 4 or
TNAI. The combined model explained 66 % of the observed
variance in the northeastern region, 39 % in the central and
western region, and 43 % for the Amazon Basin as a whole,
with a 3-month lead time between the climate indices and the
predicted TWSAs. Model performance varied seasonally: it
was higher than average during the wet season in the north-
eastern Amazon and during the dry season in the central and
western region. The predictive capability of the combined
model was degraded with increasing lead times. Degradation
rates were lower in the northeastern Amazon (where 49 %
of the variance was explained using an 8-month lead time

versus 69 % for a 1-month lead time) compared to the cen-
tral and western Amazon (where 22 % of the variance was
explained at 8 months versus 43 % at 1 month). These rela-
tionships may contribute to an improved understanding of
the climate processes regulating the spatial patterns of flood
and drought risk in South America.

1 Introduction

The Amazon River basin has experienced several severe
droughts during the last decade (Marengo et al., 2008, 2011;
Chen et al., 2009; Espinoza et al., 2011; Lewis et al., 2011;
Frappart et al., 2012), with extreme events in 2005 and 2010
increasing forest mortality (Phillips et al., 2009; Lewis et
al., 2011) and the number of satellite-detected fires (Chen
et al., 2013b). More frequent extreme wet events also have
been observed in the Amazon in the last 20 years (Chen et
al., 2010; Boening et al., 2012; Espinoza et al., 2013; Gloor
et al., 2013). Droughts and floods lead to important eco-
nomic losses by affecting land and river transportation, agri-
culture, fisheries (Drapeau et al., 2011), and hydropower gen-
eration (Lima and Lall, 2010). They also influence seasonal
and interannual variability of the regional carbon budget by
modifying photosynthesis, tree mortality, fires, rates of au-
totrophic and heterotrophic respiration, and river-dissolved
organic carbon fluxes (e.g., Richey et al., 2002; Baker et al.,
2008; Phillips et al., 2009; Lewis et al., 2011; Miller et al.,
2011; Chen et al., 2011; Davidson et al., 2012). Extreme hy-
drological events may become more frequent in a changing
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climate due to increases in precipitation extremes (Kitoh et
al., 2013) or a tendency toward longer and more intense dry
seasons (Joetzjer et al., 2013). To limit economic and ecosys-
tem impacts, an important goal is to provide managers with
early warning information about drought and flood risk based
on observations of key climate system predictors on seasonal
timescales. In this context, a key intermediate step is devel-
oping a predictive understanding of variations in terrestrial
water storage – the integral of surface water, soil moisture,
and groundwater.

While the influence of the El Niño–Southern Oscillation
on the Amazon’s hydroclimatology is well established (e.g.,
Ropelewski and Halpert, 1987; Richey et al., 1989; Enfield,
1996; Nogués-Paegle and Mo, 1997; Zeng, 1999; Dettinger
et al., 2000; Liebmann and Marengo, 2001; Ronchail et al.,
2002; Grimm, 2003; Dai et al., 2009; Molinier et al., 2009;
Lima and Lall, 2010; van der Ent and Savenije, 2013), several
recent studies have identified ocean–atmosphere coupling in
the tropical Atlantic as another key regulator of hydrologi-
cal variability within the basin. Studies provide evidence that
the severe 2005 and 2010 droughts in the central and west-
ern Amazon were the result of warmer tropical North At-
lantic sea surface temperatures (SSTs) that induced a north-
ward shift of the Intertropical Convergence Zone (ITCZ) and
reduced easterlies and moisture advection from the tropical
North Atlantic to southern and western regions of the Ama-
zon during austral summer (Marengo et al., 2008; Zeng et al.,
2008; Molinier et al., 2009; Yoon and Zeng, 2010; Espinoza
et al., 2011). These changes in atmospheric circulation in-
dicate that ocean–atmosphere–land dynamics in the region,
including the South American monsoon (Nogués-Paegle and
Mo, 1997; Zhou and Lau, 1998), interact with (and are mod-
ified by) SST variability.

Evidence for a dual external ocean forcing of the Ama-
zon’s hydroclimate also comes from studies that show both
equatorial Pacific and North Atlantic SST anomalies are cor-
related with many variables that influence terrestrial ecosys-
tem drought stress, including precipitation, evapotranspira-
tion, surface relative humidity, and the number of satellite-
detected active fires (Chen et al., 2011, 2013a). These vari-
ables, while crucial for assessing climate impacts on terres-
trial ecosystem function, are not direct indicators of varia-
tions in regional water budgets. Specifically, precipitation is
only one of several variables contributing to the surface wa-
ter mass balance of soils and aquifers, and fires occur as
a consequence of a complex set of feedbacks between hu-
mans, ecosystem processes and climate. Additional informa-
tion is needed to understand more directly how tropical cli-
mate modes influence regional variations in terrestrial water
storage within the Amazon Basin.

Developing accurate forecasting systems for terrestrial
water storage variations and other indicators of flood and
drought risk on seasonal timescales within the Amazon is
challenging and likely requires a combination of dynamical
and statistical approaches. Seasonal precipitation forecasts

from climate models often have low to moderate skill in the
region starting from a 1-month lead time, as a consequence
of uncertainties in initial conditions and incomplete represen-
tation of convection and other atmospheric processes (e.g.,
Lavers et al., 2009). In turn, global hydrology and land sur-
face models often have difficulties representing soil mois-
ture in deeper soil layers (Zeng, 1999) and surface water dy-
namics in rivers, lakes, and floodplains (Swenson and Milly,
2006; Han et al., 2010; Werth and Güntner, 2010). Important
uncertainties also remain in our understanding of biosphere–
atmosphere interactions, including the role of deeply rooted
trees in modulating seasonal and interannual variability in
regional climate (Lee et al., 2005; Golding and Betts, 2008)
and the impacts of fire-emitted aerosols on radiation and cir-
culation (Tosca et al., 2013). In this context, investments in
both statistical and dynamical forecasting approaches have
the potential to advance the field. For statistical models, this
may occur through extraction of key mechanisms and tele-
connections regulating variability in hydrological cycle pro-
cesses (and also by serving as a benchmark for forecasts from
other, more complex models). Dynamical model forecasts, in
contrast, are likely to become increasingly robust with ad-
vances in climate modeling, increases in resolution, and im-
proved estimates of initial conditions (Barnston et al., 2012;
van Dijk et al., 2013). These models also are more likely to
maintain their fidelity during periods of rapid Earth system
change since they simulate the complete evolving state of
ocean–atmosphere conditions.

Here we developed several statistical models to predict ter-
restrial water storage anomalies (TWSAs) using observations
from NASA’s Gravity Recovery And Climate Experiment
(GRACE) mission. GRACE satellite observations have been
used along with precipitation data to predict floods world-
wide with a 1-month lead time, by estimating the saturation
level of the land surface (Reager and Famiglietti, 2009). In
the Amazon Basin, statistically significant teleconnections
between GRACE TWSAs and either Pacific or Atlantic SST
anomalies were identified by de Linage et al. (2013), suggest-
ing that SST anomalies may be used as a proxy for the mete-
orological processes influencing the balance between precip-
itation and evapotranspiration.

We build on this work in the current study by develop-
ing a series of semi-empirical models that are driven by SST
anomalies and used to explain variability in monthly TWSAs
across different river basins and regions within tropical South
America (encompassing the region between 23◦ S–14◦ N and
46◦ W–83◦ W). These models were forced by tropical Pacific
or North Atlantic climate indices with variable lead times rel-
ative to the predicted TWSA time series. This allowed us to
examine the potential of using SST anomalies one to two sea-
sons ahead to predict TWSAs, taking advantage of both SST
and TWSA persistence on these timescales. In Sect. 2 we de-
scribe the source and processing steps used to prepare the
GRACE and SST anomaly observations used in our analy-
sis. In Sect. 3 we discuss how we developed our statistical
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Figure 1. (a) Tropical South America’s topography and river net-
works overlaid with the boundaries of the three subregions consid-
ered in our analysis. Region A consisted of the central and west-
ern Amazon and encompassed some of the “Arc of Deforesta-
tion” that has experienced rapid rates of forest cover loss over the
last decade. Region B spanned the northeastern part of the Ama-
zon Basin, including many floodplain areas. Region C in northern
South America included the Orinoco Basin.(b) Standard deviation
of terrestrial water storage anomalies (TWSAs) interannual vari-
ations as observed by GRACE for August 2002 to July 2012. A
climatological mean annual cycle of monthly means was removed
from the TWSA time series prior to computing the standard de-
viation of the interannual variations. Contours of the main water-
sheds are plotted in black(b) and the main rivers and their trib-
utaries are plotted in green (a andb). Topography information is
from the 2 min Global Relief Data (ETOPO2, 2001, available at
www.ngdc.noaa.gov/mgg/fliers/01mgg04.html).

models, including calibration and evaluation approaches. In
Sect. 4, we present our results, including (1) the different spa-
tial patterns of TWSA forcing by tropical Pacific and Atlantic
climate indices, (2) the degree to which model predictions
are improved when information from Pacific and Atlantic in-
dices are used together, and (3) seasonal variations in model
predictive skill. Because of the potential to use our statistical
models as an intermediate step in drought and flood risk as-
sessment, we also evaluated how model predictive skill was
degraded with increasing lead times. Finally, in Sect. 5, we
place our results in the context of other published work and
suggest directions for model improvement.

2 Data

Our study domain encompassed the Amazon River basin and
several neighboring regions: the Araguaia–Tocantins River
basin to the east, the Maroni, Courantyne and Essequibo river
basins to the northeast, the Orinoco River basin to the north,
the Magdalena River basin to the northwest, the coastal and
mountainous areas of Ecuador and Peru to the west and the
Titicaca and Poopó lakes’ system to the southwest (Fig. 1).

2.1 GRACE terrestrial water storage anomalies

We used the GRACE-Release 2 solutions computed by the
Groupe de Recherche en Géodésie Spatiale (GRGS) (Bru-
insma et al., 2010). We chose to use the GRGS solutions
rather than other publicly available GRACE solutions be-
cause of their ability to preserve small-wavelength signals,
due to a constrained inversion scheme that adapts to the raw
data noise structure and thus improves the signal-to-noise ra-
tio (Bruinsma et al., 2010). No post-processing was therefore
performed. These solutions consist of water storage anoma-
lies expressed in equivalent water height, that are the sum
of surface water, snow, soil moisture and groundwater, at a
spatial resolution of 400 km at the equator and with an un-
certainty comprised between 20 and 30 mm on average over
our study domain, depending on the estimation method (i.e.,
by computing the root-mean-square of interannual variations
over desert land areas, as in Bruinsma et al. (2010), or over
the open-ocean domain within the same latitude range as our
study area, following Chen et al., 2009).

TWSAs are the deviations from a reference value during
the study period, as absolute levels cannot be measured. The
10-day fields were linearly interpolated during gaps and dec-
imated to a monthly time step for consistency with the SST
anomaly time series. The available GRACE record spanned
the period from August 2002 to July 2012. The TWSAs were
computed on a 3◦ × 3◦ grid (333 km× 333 km at the equa-
tor) from the Stokes coefficients to minimize redundant in-
formation and to avoid undersampling. In each grid cell, a
mean monthly climatology constructed from the 10 year pe-
riod was subtracted from the data to remove the mean annual
cycle and isolate variations associated with hydrologic ex-
tremes. The residual interannual TWSA amplitudes ranged
from −280 to 360 mm over the 112 grid cells and their stan-
dard deviation varied between 20 and 135 mm. The largest
standard deviation occurred in the northeastern part of the
basin, including the Rio Branco watershed, the lower Ama-
zon downstream of Manaus, and the coastal basins of the Es-
sequibo, Maroni and Courantyne rivers in Guyana, Suriname
and French Guyana (Fig. 1). In regions near the mouth of the
Amazon, large standard deviations of terrestrial water stor-
age on annual timescales also are observed (Fig. 1a of de
Linage et al., 2013). This spatial pattern is correlated with
areas that have a large surface storage capacity as a conse-
quence of deep river beds and extensive floodplains that of-
ten experience high fractions of inundated area (e.g., Prigent
et al., 2007).

2.2 Climate indices

The El Niño–Southern Oscillation (ENSO) is a global-
scale climate oscillation involving a coupling in the ocean–
atmosphere system in the Pacific, with complex teleconnec-
tions worldwide. Large-scale subsidence and reduced pre-
cipitation over the northeastern regions of tropical South
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Figure 2. Central Pacific and tropical North Atlantic climate index
regions (Niño 4 and TNAI; shaded gray areas). Area-weighted sea
surface temperatures anomalies from these regions were found to
be correlated with interannual terrestrial water storage anomalies in
tropical South America.

America occur during El Niño, because of a reduction in
uplift associated with an eastward shift of the Walker cir-
culation (e.g., Saravanan and Chang, 2000). Concurrently,
some subtropical regions in South America benefit from en-
hanced rainfall as a consequence of strong northerly low-
level winds that advect moisture from the Amazon Basin and
are associated with a weakening of the South America Con-
vergence Zone (e.g., Nogués-Paegle and Mo, 1997; Grimm,
2003; Carvalho et al., 2004).

Here we used the Niño 4 index from NOAA’s Climate Pre-
diction Center (www.esrl.noaa.gov/psd/data/climateindices/
list/) as a measure of ENSO influence on TWSAs in South
America (Fig. 2). We chose Niño 4 because in many regions
of South America GRACE TWSAs are correlated more sig-
nificantly with central Pacific SST anomalies (represented
by the Niño 4 index) than eastern Pacific SST anomalies
(represented by the Niño 3 index) over the 10 years of our
study, as shown by de Linage et al. (2013). During this pe-
riod, central Pacific events were more frequent than eastern
Pacific events, which might explain the stronger correlation
with Niño 4, compared to Niño 3 or Niño 3.4. Analysis by
Kao and Yu (2009) indicates different ENSO types have dif-
ferent spatial-temporal dynamics and teleconnections with
precipitation.

To represent the influence of tropical North Atlantic SST
anomalies on water storage changes in our study domain,
we used the Tropical North Atlantic Index (TNAI), also
from NOAA’s Climate Prediction Center. TNAI is the area-
weighted SST anomaly (after removing a long-term monthly
climatology) averaged across the region indicated in Fig. 2
(Enfield et al., 1999). TNAI is the oceanic northern compo-
nent of a meridional sea surface temperature gradient found
in the coupled atmosphere–ocean system in the tropical At-
lantic Ocean called the Atlantic Meridional Mode. Stronger
convergence of surface winds and more precipitation occurs
in the warmer hemisphere due to a meridional shift of the
ITCZ (Enfield, 1996; Chiang and Vimont, 2004). When the
tropical North Atlantic Ocean becomes warmer, the ITCZ
shifts northward and northeasterly trade winds weaken along
with the northwesterly low-level jet that usually transports
moisture to the southernmost Amazon, thus cutting off an im-

portant moisture source to the region (Marengo et al., 2008;
Zeng et al., 2008). Although the Atlantic Meridional Mode
is equivalently well correlated to GRACE TWSAs compared
to TNAI, we preferred to use TNAI as a predictor because it
remains significantly correlated with TWSAs when the lead
times between TNAI and TWSAs are extended (de Linage et
al., 2013). For each climate index, the mean over the GRACE
period was subtracted from the data.

3 Methods

3.1 Model description

We developed three linear models in which TWSA is a solu-
tion of the following first-order differential equation:

dTWSA(x, t)

dt
= −

TWSA(x, t)

τ (x)
+ F (x, t) . (1)

The first term in the right-hand side of the equation repre-
sents the evolution of the system in the absence of external
forcing (F(x, t) = 0), in other words, the relaxation from the
TWSA initial value to zero with a time constantτ , one of
the model parameters. We included this relaxation term to
reflect the tendency of the plant-soil-aquifer system to re-
tain water during periods of terrestrial water storage deficit
as a consequence of negative feedbacks on evapotranspira-
tion and subsurface runoff (and a reversal of this tendency
during periods with above-average terrestrial water storage).
The second term,F(x, t), represents the forcing (i.e., the
impact of the SST anomalies on the balance between pre-
cipitation and evapotranspiration at each location,x, within
the study domain), which prevents the system from return-
ing to a steady state. For the first two models we considered,
the forcing consisted in a single climate index (Niño 4 or
TNAI), while that of the third model was a linear combina-
tion of both indices (Table 1). We assumed the two indices
were independent enough to be used simultaneously as pre-
dictors. A lead-lag correlation analysis revealed that Niño 4
explained at most 17 % of TNAI’s variance (p < 0.01) from
1950 to 2012, when Niño 4 led TNAI by 4 months. We also
assumed that existing teleconnections between the climate
indices and TWSAs were stationary, that is, we assumed the
parametersa0 andb0 in the equations in Table 1 were con-
stant over the calibration and validation periods considered
here. In the context of developing a forecasting system, it is
important to note that these parameters may change as a con-
sequence of decadal variability in the Pacific (Kosaka and
Xie, 2013), including changes in the relative frequency or in-
tensity of central Pacific and eastern Pacific El Niño (e.g.,
Lee and McPhaden, 2010).

Model calibration was done using the 10-year-long time
series of monthly GRACE TWSAs. For each model and each
parameter set, the solution of the model equation was found
numerically using an ordinary differential equation solver,
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Table 1.Description of the three models: parameters, predictor vari-
ables, degrees of freedom, and number of variables.

Model Forcing term (F(x, t) Number of
# in Eq. (1))∗ DOF variables

1 a0(x) × Niño 4 (t-α(x)) 3 1
2 b0(x) × TNAI ( t-β(x)) 3 1
3 a0(x) × Niño 4 (t-α(x)) + 4 2

b0(x) × TNAI ( t-β(x))

∗ Model parameters inF(x, t) area0, b0, α andβ.

with TWSA (t0) as the initial condition. Among the differ-
ent parameter combinations that we tested, the one leading to
the lowest root mean square error (RMSE) between the ob-
servations and the model was selected. We ensured that the
minimum RMSE was reached by investigating large ranges
for parametersa0 andb0 (Table S1 in the Supplement). The
range of the relaxation constantτ and that of the predictors’
lead timesα andβ were limited by a priori constraints: an
upper limit of 12 months was chosen forτ , while α andβ

were allowed to vary between 3 and 8 months in our primary
set of model analyses presented in Sects. 4.1–4.3. A mini-
mum value of 3 months forα andβ was chosen to place a
reasonable minimum bound on model prediction lead times.
Shorter lead times improved model performance, as shown in
Sect. 4.4, but time delays associated with SST processing and
data availability make it unlikely this information could be
used effectively for operational forecasts. A maximum value
of 8 months was selected because it allowed for the investi-
gation of a wide range of possible lead times (i.e., over one-
to-two seasons) and because model performance was found
to be considerably degraded at longer intervals. Model 3 (the
combined model) used lead time values that had been op-
timized for models 1 and 2 (for the individual Niño 4 and
TNAI models; Fig. S1 in the Supplement) to reduce the num-
ber of iterations during parameter optimization.

3.2 Model evaluation

We computed the coefficient of determinationR2 and the
normalized root mean square error (RMSE) of the linear re-
gression to evaluate model performance in each grid cell.
Normalized RMSE was computed as RMSE divided by the
standard deviation of GRACE TWSAs in each grid cell. For
each model and in each grid cell, we performed anF test
(null hypothesisF = 0, p < 0.05) to check whether or not
the model was statistically better than the temporal mean of
the observations. The statistics of the regression are provided
in Table 2. Finally, to estimate whether the bivariate (com-
bined) model (forced by Niño 4 and TNAI) was significantly
better than each of the two univariate models (forced either
by Niño 4 or TNAI), we used anotherF test (null hypothe-
sis F = 0, p < 0.05) on the residual sum of squares differ-

ence, accounting for the difference in the models’ degrees of
freedom (given in Table 1).

3.3 Initial condition and forecasting uncertainties

We estimated the sensitivity of our model predictions to un-
certainties in the GRACE TWSA initial condition by propa-
gating the estimated GRACE data uncertainty (±30 mm) in
Eq. (1). For each grid cell, we defined the model uncertainty
as the mean monthly standard deviation of a set of model es-
timates in which random errors with a Gaussian distribution
were added to the initial condition.

As the available GRACE record is relatively short, we
could not both train and evaluate our model with equally long
data records. However, to provide an estimate of forecast un-
certainties, we computed an ensemble of 10 models, each of
which was trained using monthly observations from 9 out of
the 10 available years, following the least-square approach
described above for the model calibrated with the full 10-
year time series. Models developed using the 9 years of data
were then used to estimate TWSAs for the left-out year. We
then computed a composite 10-year time series comprised in
each year of the simulation from the ensemble member that
was trained (calibrated) over all years but the left-out year.
The total model RMSE (or NRMSE) was defined from dif-
ference between this composite time series and the observed
GRACE time series. We then estimated the forecast uncer-
tainty as the difference between the total model RMSE (or
NRMSE) and the RMSE (or NRMSE) from the model cal-
ibrated with the full 10-year time series. In the results, we
first present the model calibrated using the 10-year time se-
ries because of its simplicity (its parameters remain constant
over the study period). We then explicitly compare the differ-
ent sources of model uncertainty, including the forecast un-
certainty derived from the composite time series, in Sect. 4.5.

4 Results

4.1 Spatial patterns of climate index influence on
terrestrial water storage anomalies

The influence of Niño 4 and TNAI on terrestrial water stor-
age interannual variability varied considerably across differ-
ent regions in tropical South America (Fig. 3). Niño 4 ex-
plained the largest amount of TWSA variability in the north-
eastern Amazon River basin (accounting for 61 % of the vari-
ance in region B as shown in Table 2). In contrast, TNAI was
the primary external forcing across central and western re-
gions of the basin (accounting for 35 % of the variance in
region A). In northern South America, including the Orinoco
River basin, TNAI explained more than half of the observed
variance (54 % in region C).

Combining Niño 4 and TNAI forcing terms significantly
(p < 0.05) improved model performance for many regions
within South America (Tables 2 and 3 and Fig. S3 in the
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Table 2.Statistics of model performance averaged within each region delineated in Fig. 1. Skill metrics included the coefficient of determi-
nation (R2), root mean square error (RMSE), and root mean square error normalized by the standard deviation of the observations (NRMSE).
Every model fit is significant (F test,p < 0.05) within at least 90 % of the cells in each region.

Model #
R2 RMSE (mm)/NRMSE (%)

Amazon Basin Region A Region B Region C Amazon Basin Region A Region B Region C

1 0.35 0.23 0.61 0.36 50/81 50/89 65/62 48/81
2 0.28 0.35 0.25 0.54 55/85 45/80 91/86 41/68
3 0.43 0.39 0.66 0.63 46/75 44/78 61/58 36/61

Figure 3. Coefficient of determination (R2) and normalized root mean square error (NRMSE) for the three models described in Table 1 and
computed for the period from August 2002 through July 2012. The RMSE was normalized at each location using the standard deviation
of GRACE interannual terrestrial water storage anomalies shown in Fig. 1b. The prescribed minimum lead time for the three models was
3 months. Cells where the linear fit was significant (p < 0.05) are marked with a black dot.

Supplement), with 39, 66 and 63 % of variance explained in
regions A, B and C, respectively. In each region, the com-
bined model significantly outperformed (F test,p < 0.05)
the best of the two univariate models in at least 64 % of the
cells (Table 3). The improvement from the addition of Niño 4
was higher and more widespread in northern South America
than in the central and western Amazon, and more signifi-
cant than the addition of TNAI in the northeastern Amazon.
Given the 3-month minimum lead time between the climate
indices and model predictions, the relatively high amount of
variance explained by the combined model in many regions
indicates considerable potential to develop statistical models
for TWSA forecasting.

Depending on the sign and magnitude of the secondary cli-
mate index, model estimates of positive or negative TWSAs
were either enhanced or damped in specific regions. Dry con-

ditions in the central and western Amazon were triggered by
warm SST anomalies either in the tropical North Atlantic
or in the central Pacific (Niño 4 and TNAI were in-phase)
(Fig. S2a and b in the Supplement). In contrast, in the north-
eastern Amazon and in northern South America, dry condi-
tions were caused by either anomalously warm central Pa-
cific or cold tropical North Atlantic SSTs (Niño 4 and TNAI
were in anti-phase). These relationships are consistent with
previous studies documenting relationships between SST
anomalies and precipitation (Ropelewski and Halpert, 1987;
Zeng, 1999; Liebmann and Marengo, 2001; Ronchail et al.,
2002; Gloor et al., 2013; Grimm, 2003; Molinier et al., 2009;
Yoon and Zeng, 2010; Espinoza et al., 2011) or SSTs and
streamflow (Richey et al., 1989; Dettinger et al., 2000; Dai
et al., 2009; Molinier et al., 2009; Espinoza et al., 2011). We
refer to de Linage et al. (2013) for a detailed comparison of
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Table 3.Statistical comparison between different models pairs using anF test (p < 0.05). See Fig. S3 in the Supplement for the distributed
F values.

Models DOF
% cells with significantF (F > F0.05) MeanF

pair difference F0.05 Amazon Basin Region A Region B Region C Amazon Basin Region A Region B Region C

(1,3) 1 3.9 64 95 83 100 31 39 20 90
(2,3) 1 3.9 75 60 100 79 59 11 145 40

Figure 4. Top left subplot: the monthly Niño 4 index (dark gray
line) and the Tropical North Atlantic Index (light gray line), af-
ter subtracting their respective mean over the GRACE period. Top
right and bottom subplots: GRACE-observed (black line) with mean
monthly error (gray shaded area) and model-predicted TWSAs for
each of the three regions delineated in Fig. 1a, for the three mod-
els described in Table 1. Regional averages of model performances
(Table 2) are also provided for each model. The prescribed mini-
mum lead time between the climate indices and TWSAs was equal
to 3 months.

the intrinsic lags between climate indices and precipitation,
TWSA, and streamflow observations.

The 2010 drought had a considerable impact on TWSAs
in every region and was preceded by very large positive Niño
4 and TNAI indices (Fig. 4). The 2005 drought was visible in
the central and western Amazon, where it was responsible for
a wide trough in the time series. The 2005 drought also was
associated with positive Niño 4 and TNAI indices, although
the magnitudes were smaller as compared to 2010. The im-
pact of the 2011–2012 La Niña on TWSAs may have been
damped because of the considerable water deficits remaining
after the 2010 drought.

4.2 Model lead times and relaxation parameters

The optimal lead time for a given climate index was usually
shorter in regions where TWSAs were dominantly forced

by this index (Fig. S1a in the Supplement). Lead times for
Niño 4 were 3 months in most grid cells, except for sev-
eral small contiguous areas in the central and western part of
the basin (where they ranged up to approximately 6 months).
Lead times for TNAI were uniformly 3 months in the cen-
tral and western Amazon, and were much longer elsewhere
(from 5 months in region C to 7–8 months in region B).

The shortest lead times obtained from the optimization
were often equal to the prescribed minimum value and gen-
erally decreased when the prescribed minimum lead time
was reduced to zero (Fig. S1b in the Supplement), indicat-
ing that in many areas there was no intrinsic phase difference
between the timing of the primary index and its impacts on
TWSAs for the models considered here. Only areas near the
Amazon River main stem and river mouth retained an irre-
ducible 3-month lead time for Niño 4, which was consistent
with expected time delays introduced by routing of runoff
through Amazon sub-basins, and the importance of surface
water in this region driving month-to-month variations in ter-
restrial water storage. The impact of changing the minimum
lead time on models skill is discussed in Sect. 4.4.

A shorter relaxation timeτ indicates a shorter memory and
thus a stronger sensitivity of the system to rapid changes of
the climate indices. In either the central and western Ama-
zon or the northeastern Amazon, mean relaxation times were
shorter for the model forced by the dominant index, while
they were longer for the secondary index (Fig. S2c in the
Supplement). In northern South America, however, relax-
ation times were larger for the dominant index, TNAI, than
for Niño 4. For the combined model, the mean relaxation
time in the central and western Amazon and the northeastern
Amazon was approximately one-month longer than those ob-
tained from the univariate model forced by the dominant in-
dex. Largerτ values (6/12 months) were found in the down-
stream parts of the main rivers, floodplains and wetlands,
where the land surface memory increases due to longer resi-
dence times of surface water storage and time delays associ-
ated with stream and river transport. These parameter values
are broadly consistent with results from Bonnet et al. (2008),
who estimated a 3 month residence time for the water within
a floodplain lake, and an estimated 1 month delay for every
900 km of water transport through the river and floodplain
network based on an effective routing velocity (Miller et al.,
1994).
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Figure 5. Top left subplot: the annual cycle of the standard devi-
ation of SST-based climate indices (with no lags). Top right and
bottom subplots: monthly climatology ofR2 between observed and
predicted TWSAs averaged over each of the three regions delin-
eated in Fig. 1a, for the three models described in Table 1 (with
a 3-month prescribed minimum lead time). Dashed lines represent
the R2 computed for all months. The gray shaded areas represent
the 3 months with the lowest average TWSA, computed from the
GRACE TWSA mean monthly climatology.

4.3 Seasonal variations in model performance

Each climate index had considerable month-to-month differ-
ences in their standard deviations, with annual peaks occur-
ring between December and February for Niño 4 and March
through May for TNAI (Fig. 5). Likely as a consequence of
the different seasonal dynamics of the climate indices and
their teleconnections with TWSAs, model performance var-
ied considerably over an annual cycle (Fig. 5). Seasonal vari-
ation in theR2 metric for the combined model was larger
for the central and western Amazon than for other regions.
Within each region, the monthlyR2 of the best two models
had a similar phase. In the central and western Amazon, the
combined model had higher levels of performance between
May and October, before and during the time terrestrial water
storage was near its annual minimum (i.e., during the precipi-
tation dry season, see Ronchail et al., 2002). In the northeast-
ern Amazon, the combined model performance was highest
from January to June. This period spans the time when wa-
ter storage increases in floodplain and wetland areas along
the Amazon main stem downstream of Manaus (Prigent et
al., 2007; Paiva et al., 2013). In northern South America, we
found that the highestR2 values occurred between March
and June, during and after the annual minimum in terrestrial
water storage (corresponding to the end of the dry season and
beginning of the wet season for precipitation).

Figure 6. RMSE versus prescribed minimum lead time for the
three models, averaged over each of the three regions delineated
in Fig. 1a. Dashed lines bound the 95 % confidence intervals within
which the models either forced by Niño 4 (model 1) or TNAI (model
2) are statistically different from the combined model (model 3).
The vertical dotted line represents the minimum lead time that was
used in the previous figures. The correspondingR2 model perfor-
mance metric is shown in Fig. S4 in the Supplement.

4.4 Changes in model performance with varying lead
times

To study the degradation of model performance with increas-
ing minimum lead times, in another set of simulations we
varied the lower bound of the climate index lead times from
1 to 8 months. Overall, model performance degraded mono-
tonically (R2 decreased and RMSE increased) with increas-
ing minimum lead times. In most areas, the model trajecto-
ries usually did not cross each other (Figs. 6 and S4 in the
Supplement), so that the model ranking for any given lead
time was the same as that found for the nominal 3-month
minimum lead time described above. In the central and west-
ern Amazon, however, model 1 (Niño 4) provided better ex-
tended forecasts than model 2 (TNAI), while the opposite
was true for medium- and short-range forecasts. Also, the
combined model was not significantly (p > 0.05) better than
model 1 for extended forecasts with 8-month lead times.

In the central and western Amazon the evolution of the
model skill was mainly influenced by TNAI, while in the
northeastern Amazon, it was influenced by Niño 4, so that
the trajectories of the combined model and the best indi-
vidual univariate model tended to be parallel in these re-
gions. In northern South America, both indices had impor-
tant, complementary roles as predictors: Niño 4 influenced
the short- to medium-range forecasts, while TNAI influenced
the longer-range forecasts. As a result, in this region the com-
bined model diverged from the univariate model forced by
TNAI for short and medium lead times. The time-varying
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Table 4. Initial condition and forecasting uncertainties averaged
over each region delineated in Fig. 1.

Model #
RMSE (mm)/NRMSE (%)

Amazon Basin Region A Region B Region C

Initial conditions

1 4.0/7.1 4.0/7.7 3.9/3.6 1.4/2.4
2 3.7/5.5 1.4/2.8 8.8/8.3 4.9/8.9
3 3.0/5.0 1.9/3.7 4.1/3.7 5.3/9.9

Forecasting

1 4.1/6.9 3.9/6.9 2.9/2.7 4.6/7.9
2 5.1/7.5 2.8/5.0 11.0/10.0 5.1/8.7
3 4.5/7.6 3.5/6.2 4.6/4.4 6.8/12.0

influence of the two indices may be a consequence of an
atmospheric bridge between the Atlantic and Pacific circu-
lations, with warm tropical North Atlantic SST triggering
La Nina conditions three seasons later (Ham et al., 2013).
Interaction among these predictors is further discussed in
Sect. 5.2.

In the Amazon Basin, the combined model was able to
explain 31 % of the observed variance for an 8-month lead
time compared to 45 % for a 1-month lead time (Fig. S4
in the Supplement). Model degradation with increasing lead
times was smaller in the northeastern Amazon (where 49 %
of the variance was explained at 8 months versus 69 % at
1 month) than in the central and western Amazon (where
22 % of the variance was explained at 8 months versus 43 %
at 1 month). In northern South America, model degradation
was even smaller, with still 52 % of the variance explained at
8 months versus 65 % at 1 month.

4.5 Initial condition and forecasting uncertainties

Normalized monthly mean errors arising from uncertainties
in initial conditions in the different regions ranged between 2
and 10 % (Table 4). As shown in Fig. S5 in the Supplement,
the errors introduced from the initial conditions decreased
rapidly within the first year. The spatial pattern of normal-
ized model error for initial condition uncertainty is shown
in Fig. 7a. The forecasting error, defined in Sect. 3.3, repre-
sents the additional error introduced by forecasting TWSAs
using a model developed for a different time period. These er-
rors had NRMSEs ranging from 3 to 12 % (or RMSEs from
3 to 11 mm), depending on the region and model, with the
largest uncertainties found for the combined model (forced
by both Niño 4 and TNAI) (Fig. 7b, Table 4). The forecast er-
ror associated with the combined model was approximately
10 % of the total error (Fig. 3, Table 2) in the Amazon Basin
and up to 20 % in the northern South America. As expected,
the forecasting error increased with the prescribed minimum
lead time (Fig. 8).

Figure 7. (a)Normalized model errors arising from uncertainties in
the initial conditions for the three different models described in Ta-
ble 1 (and with a 3-month minimum lead time).(b) Forecasting un-
certainty defined as the NRMSE differences between the composite
time series described in Sect. 3.3 and the model calibrated with the
full 10-year time series (shown in Fig. 4). The total error is the sum
of the forecasting errors(b) and the prediction error (Fig. 3).

5 Discussion

5.1 Potential for flood and drought forecasting in the
Amazon

Floods hinder ground transportation and damage crops and
infrastructure in many regions in South America. The north-
eastern Amazon is characterized by an extensive network of
wetlands and floodplains (Prigent et al., 2007; Paiva et al.,
2013) that are inundated seasonally. A strong wetting trend
was observed by GRACE in these regions (Fig. 4), and may
be related to an equatorial Pacific surface cooling trend (de
Linage et al., 2013; Kosaka and Xie, 2013) or with warming
of the tropical North Atlantic over the last 20 years (Gloor
et al., 2013). Both of these pathways are consistent with the
sign of our coefficients linking Niño 4 and TNAI with pre-
dicted TWSAs (Fig. S2 in the Supplement). Large hydroelec-
tric reservoirs are also found in these regions (like the Bal-
bina Reservoir near Manaus) that are used to generate hydro-
electricity. Our 3-month combined model explained a consid-
erable amount of the variance in this region (66 % in region
B) and had a level of performance higher than average dur-
ing the precipitation wet season (i.e., when floodplains and
wetlands begin to fill with excess water runoff). An impor-
tant next step in this context is to relate the TWSA observa-
tions and model predictions analyzed here to floodplain area,
river height, and reservoir height time series using additional
satellite observations (see Paiva et al., 2013).

Although floods have significant economic impacts, farm-
ers and fishermen may be more vulnerable to droughts, be-
cause droughts reduce crop yields, hinder river transporta-
tion, and harm fish communities (Drapeau et al., 2011). Also,
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Figure 8. RMSE versus prescribed minimum lead time for the
combined model, either fully calibrated (red line with full circles,
same as in Fig. 6) or the composite time series (light red line with
open circles), averaged over each of the three regions delineated in
Fig. 1a. The difference between the two RMSEs is the forecasting
error (shaded area). The vertical dotted line represents the minimum
lead time that was used to display the forecasting error spatial dis-
tribution shown in Fig. 7b.

droughts impact larger areas than floods: the 2005 and 2010
droughts respectively affected 1.9 and 3× 106 km2 of land,
based on satellite precipitation data (Lewis et al., 2011). Se-
vere hydrological droughts like the 2005 and 2010 events
may increase tree mortality in intact forests and promote un-
derstory fires that contribute to the conversion of tropical
forests to savannas and croplands. Regions that are critically
affected by fires include the Amazon’s central and south-
ern regions (the so-called “arc of deforestation”, see Chen
et al., 2013b). In these regions, the amount of soil moisture
recharge during the wet season critically affects transpira-
tion, surface humidity, fire weather, and fire spread rates dur-
ing the following dry season (Chen et al., 2013a). In the cen-
tral and western Amazon our 3-month model predictions had
above-average seasonal performance during the precipitation
dry season (May–August), suggesting that TWSA may be
another useful variable for integration into an early warning
system for Amazon fires.

5.2 Ocean–atmosphere dynamics and implications for
TWSA prediction

Complex teleconnections exist between tropical Pacific and
North Atlantic ocean–atmosphere systems. Linkages be-
tween the eastern Pacific and the tropical North Atlantic are
well known, with El Niño events leading to positive Atlantic
SST anomalies with delays of approximately 2–4 months
(Enfield, 1996; Giannini et al., 2000; Saravanan and Chang,

2000). This is consistent with TNAI lagging Niño 4 by 4
months (and both indices being positively correlated) and ex-
plains the severity of the 2005 and 2010 droughts when both
pools were warmer than usual (Fig. 4). On the other hand,
positive SST anomalies in the tropical North Atlantic con-
tribute to La Niña conditions in the central Pacific three sea-
sons later (Ham et al., 2013), which may partly explain the
2006 and 2011 La Niñas. In terms of the statistical models
evaluated here, it suggests that the two forcing terms in the
combined model are not completely independent, which may
lead to a slight ambiguity in identifying the forcing source of
the observed TWSA variations. In future work, spatial op-
timization of the forcing regions within the Pacific and At-
lantic by means of empirical orthogonal function analysis
(Westra et al., 2010) or other multivariate methods (Westra et
al., 2008) may lead to increases in model skill. Regional in-
dicators of the atmospheric circulation (Yin et al., 2014) also
may be useful in model refinement. Combined, these steps
may reduce possible correlations among the predictors and
improve our understanding of the modes that drive hydrolog-
ical cycle variability in South America.

In some regions of South America, our analysis provides
evidence that predictability of TWSAs may be possible for
relatively long lead times. For example, for the northeastern
part of the Amazon, performance of the combined model was
reduced by only 30 % when lead times were extended from
3 months (R2

= 0.66) to 8 months (R2
= 0.49). In this re-

gion, Niño 4 was the dominant index and some of the success
of the model for the longer lead times may be attributable
to intra-seasonal persistence (and characteristic seasonal be-
havior) of the climate index. During the building phase for
ENSO (from JJA to DJF), for example, SST anomalies vary
monotonically toward their peak value, sustained by positive
feedbacks between surface winds and SSTs (Rasmusson and
Carpenter, 1982).

5.3 Importance of regional and local controls on TWS
variability

The underlying teleconnections between climate variability
in the ocean regions used to drive our model and Amazon hy-
drological processes are highly non-linear and involve com-
plex interactions with regional atmospheric circulation and
the local land surface. During austral summer, the South
American monsoon (SAM) serves as a likely vector for these
teleconnections (Zhou and Lau, 1998). However, depending
on the timing of ocean–atmosphere variability in Pacific and
Atlantic regions with respect to the onset of the SAM, either
forced or internal variability dominates in the atmosphere
over South America, inducing confusion on the causality of
the observed precipitation anomalies (e.g., Yin et al., 2014).

The SAM starts in austral spring with a low-level conver-
gence over the Amazon and stronger trade winds (easterlies)
flowing from the tropical North Atlantic (Sahara high) to-
ward the northern Andes. Since the SAM onset is concurrent
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with the ENSO building phase, ENSO is likely to inter-
act with the initiation of the SAM (its tropical branch) and
may impact its propagation. A higher model skill was indeed
found at this time, in other words, during the local wet season
in the Amazon northeastern regions (Fig. 5). The SAM ma-
ture phase is characterized by convection and rainfall over its
subtropical branch in austral summer and is called the South
American Convergence Zone or SACZ (Nogués-Paeble and
Mo, 1997). The SACZ extent is modulated by ENSO on
interannual timescales (Nogués-Paeble and Mo, 1997; Car-
vahlo et al., 2004). During El Niño the SACZ is shifted off-
shore in the western South Atlantic, hence suppressing pre-
cipitation over eastern tropical South America. Precipitation
is concurrently enhanced in subtropical South America due
to an increased meridional moisture transport from tropical
regions to subtropical regions. Future work should investi-
gate the feasibility of developing statistical TWSA prediction
models for these subtropical regions.

As part of the SAM, the equatorial northeasterly winds are
re-directed by the northern Andes and become northwest-
erlies traveling along the eastern flank of the Andes to the
southeast (e.g., Zhou and Lau, 1998). Thus the western and
southern Amazon regions provide moisture to the downwind
subtropical regions, and may be prone to droughts whenever
their own moisture source (provided by the equatorial trades
from the Atlantic) is reduced because of El Niño or tropical
North Atlantic warm events. These complex dynamics may
partly explain why our model skill was lower in central, west-
ern, and southern regions of our domain as compared to the
northeastern region, which is more directly under the influ-
ence of ENSO.

The impact of interannual SST anomalies in the tropical
North Atlantic on the SAM is less studied relative to that
of ENSO. Warmer tropical North Atlantic SSTs weaken the
equatorial trade winds and shift the ITCZ to the north, which
in turn results in the weakening of the northwesterly low-
level jet that usually brings moisture from the north of the
continent to the southern Amazon regions, and reduces con-
vection over these regions (Marengo et al., 2008). The max-
imum of TNAI variability occurs in austral fall, at the end
of the SAM, so it may not directly affect the onset of the
SAM. Further work is needed to better understand how the
tropical North Atlantic circulation interacts with the regional
dynamics in tropical South America.

5.4 Model structure and uncertainties

Other studies (Chen et al., 2013a; de Linage et al., 2013)
have used climate indices as a proxy for TWSAs or other
observables. Our approach was different in essence because
(1) we considered predictive models that can inform the de-
velopment of seasonal forecasts and (2) we modeled TWSA
changes (dTWSA/dt) as a function of SST anomalies, or
equivalently, that TWSAs responded to the integral of SST

anomalies. This form of the equation is consistent with SST
anomalies imparting precipitation-evapotranspiration imbal-
ances in South America with relatively short atmospheric
transport times by means of the ocean atmosphere mecha-
nisms described above in Sect. 5.3. We also modeled TWSA
as experiencing a forced relaxation (as described by Eq. 1),
thus accounting for the land surface memory. In the ab-
sence of any additional external forcing (P -E anomalies),
the relaxation term causes the system to gradually return
back to the mean hydrologic state. During times with posi-
tive TWSAs (periods of land water excess), this return to the
mean would likely occur by means of increased drainage,
runoff, and evapotranspiration. During times with negative
TWSAs (periods of water deficit), return to the mean would
occur by means of reduced plant transpiration, reduced soil
evaporation, higher soil water retention (lower conductivity),
and reduced surface and subsurface runoff. We used a spa-
tially varying parameterization because the relaxation time
is likely to change from region to region as a function of
storage capacity and routing. For example, longer relaxation
times were expected (and found) in regions near the mouth
of Amazon River, where transport times from upper basins
introduce time delays and variations in floodplain storage are
relatively large.

Important next steps for reducing model uncertainties in-
clude (1) a more comprehensive evaluation of model fore-
casting success for time periods that were not used to cal-
ibrate model parameters as more GRACE observations be-
come available, (2) improvements to the approach for op-
timizing parameters for the combined model, and (3) more
detailed analysis and study of the mechanisms contributing
to TWSA interannual variations in different South Amer-
ican regions. Forecast errors obtained using our approach
of parameterizing the model using 9 years of observations
and predicting the remaining (left-out year) likely underes-
timate the true range of uncertainty, given the relatively lim-
ited range of Pacific and North Atlantic Ocean SST variabil-
ity observed over the past decade. Improved parameteriza-
tions may include the development of new models that al-
low for a seasonally varying TWSA sensitivity to the forcing,
to increase the inter-seasonal performance of our model. To
improve our understanding of the underlying mechanisms,
more study is needed of the relative contributions of remote
oceanic sources to local and regional precipitation patterns
(van der Ent and Savenije, 2013), as well as more detailed
analysis of vegetation and deforestation influence on pre-
cipitation recycling by means of land–atmosphere couplings
(Coe et al., 2009; Lee et al., 2011).

6 Conclusions

We found that the spatial pattern of interannual TWSAs in
tropical South America was significantly influenced by vari-
ations in SST anomalies from the tropical Pacific and North
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Atlantic, as represented by Niño 4 and TNAI, respectively.
To predict the spatial and temporal variability of TWSA in
tropical South America, we built a series of simple statis-
tical models. Niño 4 was the primary external forcing for
the northeastern Amazon (with 61 % of variance explained
with a 3-month forecast), whereas TNAI was dominant in the
central and western regions of the southern Amazon (35 %
of variance explained with a 3-month forecast). Forcing the
model with a combination of the two indices improved the fit
significantly (p < 0.05) for more than 64 % of the grid cells,
compared to models forced solely with Niño 4 or TNAI. The
combined model was able to explain 43 % of the variance
in the Amazon Basin as a whole, 66 % in the northeastern
region, and 39 % in the central and western region.

We studied how the predictive skill of our combined model
was degraded with increasing lead times from 1 to 8 months.
For the Amazon Basin as a whole, the model was still able
to explain 31 % of the observed variance using an 8-month
lead time versus 45 % for a 1 month lead time (equivalent to
a 31 % degradation). Model degradation with increasing lead
times was smaller in the northeastern Amazon (up to 29 %)
and larger in the central and western Amazon (up to 49 %).

These statistical models have the potential to provide early
warning information about flooding in the northeastern Ama-
zon, where floodplain areas are extensive and the sensitivity
of floods to external SST forcing was high (model skill was
up to 25 % higher than the annual mean during the wet season
and the time of peak of flooding in this area). They also may
enable drought and fire season severity prediction, in partic-
ular in the central and western Amazon where our models
had above-average performance (up to 50 % higher) during
the dry season.

An important next step is to improve our understanding
of ocean–atmosphere processes that enable these statistical
predictions, including for example, how the South Ameri-
can monsoon and internal atmospheric variability influence
the spatial pattern of TWSA variability over the continent.
Further work also is needed to validate the models devel-
oped here against longer time series of GRACE observations
and to relate predictions of TWSAs to estimates of flood and
drought extent. Refinement of the statistical models may be
possible in the future by allowing parameters to vary sea-
sonally and by optimizing the ocean regions used as model
drivers.

The Supplement related to this article is available online
at doi:10.5194/hess-18-2089-2014-supplement.
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