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Abstract. Long-term precipitation forecasts can help to re-
duce drought risk through proper management of water re-
sources. This study took the saline Maharloo Lake, which is
located in the north of Persian Gulf, southern Iran, and is con-
tinuously suffering from drought disaster, as a case to inves-
tigate the relationships between climatic indices and precip-
itation. Cross-correlation in combination with stepwise re-
gression technique was used to determine the best variables
among 40 indices and identify the proper time lag between
dependent and independent variables for each month. The
monthly precipitation was predicted using an artificial neu-
ral network (ANN) and multi-regression stepwise methods,
and results were compared with observed rainfall data. Initial
findings indicated that climate indices such as NAO (North
Atlantic Oscillation), PNA (Pacific North America) and El
Niño are the main indices to forecast drought in the study
area. According toR2, root mean square error (RMSE) and
Nash–Sutcliffe efficiency, the ANN model performed bet-
ter than the multi-regression model, which was also con-
firmed by classification results. Moreover, the model accu-
racy to forecast the rare rainfall events in dry months (June
to October) was higher than the other months.

From the findings it can be concluded that there is a re-
lationship between monthly precipitation anomalies and cli-
matic indices in the previous 10 months in Maharloo Basin.
The highest and lowest accuracy of the ANN model were in
September and March, respectively. However, these results
are subject to some uncertainty due to a coarse data set and
high system complexity. Therefore, more research is neces-

sary to further elucidate the relationship between climatic
indices and precipitation for drought relief. In this regard,
consideration of other climatic and physiographic factors
(e.g., wind and physiography) can be helpful.

1 Introduction

Arid and semi-arid climates cover over one-quarter of the
land area of the earth and experience serious water scarcity,
more than any other climate region. Drought has tremendous
social and economic impacts all over the world. Accord-
ing to the report from Iranian Parliament, the cost incurred
by drought in Iran alone is estimated to be about USD 2.5
billion annually (IRNA Press, 2011). It is therefore essen-
tial to have a proactive approach to reduce the impacts of
the drought. Precipitation forecasting is an important way to
support water resources management so as to mitigate the
harmful effects of droughts and climate change.

Short-term weather forecasting is mostly based on radar
and satellite information analysis. Long-term prediction fills
the gap between short-range weather forecasting and climate
prediction, and points to timescales of more than 1 month
to 1 year (Tourigny and Jones, 2009). The main source of
the predictability results from large-scale atmospheric cir-
culation anomalies due to tropical sea surface temperature
(SST) anomalies (Teschl and Randeu, 2006). Sea surface
temperature anomalies have relatively large timescales, and
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may be predictable at a useful level of skill up to a season or
a year (Shukla et al., 2000).

Many studies have investigated the relationship between
SST anomalies and climatic phenomena variations, es-
pecially precipitation. Previous studies have demonstrated
the influence of the El Niño/La Niña–Southern Oscilla-
tion (ENSO) on different climates since the 1980s (Vautard
and Legras, 1988; Barnston and Livezey, 1987; Fraedrich,
1994). Ferranti et al. (1990) and Flateau et al. (1997) stud-
ied the significant impact of the Madden–Julian Oscilla-
tion (MJO) on the speed of propagation in equatorial In-
dian and western Pacific oceans. Barlow et al. (2002) sug-
gested that the prolonged, westward-concentrated La Niña
was a major factor for the drought in the center and south-
west Asia. Palmer et al. (2004) studied precipitation fore-
casting in autumn over the Mediterranean coast. Bladé et
al. (2012) found high uncertainty on summer rainfall fore-
casts using the summer North Atlantic Oscillation (SNAO) in
Europe and Mediterranean, showing that the Mediterranean
region was anomalously wet during high SNAO summers
when strong anticyclonic conditions and suppressed precipi-
tation overcame the United Kingdom. Guérémy et al. (2012)
forecast French Mediterranean heavy precipitation events us-
ing weather regimes during autumn, and established an atmo-
spheric link between Pacific SST anomalies and precipitation
over this area.

Long-term predictions often exhibit high uncertainties.
Scientists have made considerable effort to achieve greater
accuracy and reliability through easily used methods and
available data (Wu et al., 2011). To improve forecast accu-
racy, some researchers have attempted to discover nonlinear
relationships between climatic phenomena and climatic in-
dices patterns (Kim and Barros, 2001; Tourigny and Jones,
2009; Guérémy et al., 2012). Li et al. (2012) applied the
back-propagation method and identified five key indices out
of 24 factors as the most effective variables in runoff fore-
casting during the flood season in the Nenjiang River basin
in China.

The present study investigated Maharloo Lake in Iran to
explore more accurate long-term precipitation forecasting us-
ing multi-regression analysis and artificial neural network
methods. The key contribution was the establishment of a
10-month-ahead precipitation forecasting model to support
drought-risk management and the applicability of the ANN
model in long-term prediction using atmospheric circulation
factors.

2 Materials and methods

2.1 Study area

Maharloo Lake (Fig. 1) is a saline shallow lake located
200 km north of the Persian Gulf in southern Iran. The
lake covers an area of about 250 km2, and the basin area

is about 31 500 km2. It is so salty that some areas are salt-
mined during the dry season. The area is situated in an
arid and semi-arid region. Rainfall varies from 150 mm on
the plains to 650 mm on the high mountains, with an aver-
age of 350 mm. The rainfall is concentrated in cold seasons,
while the precipitation is very low from June to October. The
lake is recharged by two seasonal rivers: the Sultanabad and
Khoshk.

During winter, several migratory bird species from north
of Caspian Sea, flamingos (Phoenicopterus roseus), common
shelducks (Tadorna tadorna) and mallards (Anas platyrhyn-
chos), spend 4 months in the area feeding on brine shrimp
(Artemia franciscana). Thus, the lake has important ecologi-
cal value.

Recently the lake water has decreased, especially during
drought episodes. In 2008, about 90 % of Maharloo Lake
dried out, which caused the number of flamingos to decrease
from 150 000 to only 5000 (ISNA Press, 2008). In addi-
tion, the lake watershed is used for agricultural and industrial
activities that consume a large portion of water. Therefore,
long-term prediction of precipitation can help adjust agricul-
tural and industrial activities and consider lake sustainability
based on ecological water rights.

The climate of the area is affected by different systems,
including the Mediterranean and Black Sea from the west,
the Caspian Sea from the north, and the Persian Gulf and
Arabian Sea from the south, which add to the difficulty and
uncertainty in precipitation prediction.

2.2 Precipitation data

Precipitation data from four gauges (Shiraz, Dehkade, Ali
Abad and Dashtbal) located in Maharloo Basin during Jan-
uary 1967 to December 2009 are used. Time series of
monthly precipitation values obtained from these gauges
and the Thiessen method were used to calculate the mean
monthly precipitation series for the entire basin.

2.3 Atmospheric circulation factors

Atmospheric dynamics are influenced by solar activity
through solar sunspot activity and radiation intensity.
Sunspots are temporary phenomena on the photosphere of
the sun that appear visibly as dark spots compared to sur-
rounding regions. Solar radiation intensity is the energy
source of climatic systems and is a relatively stable influence,
so it is generally considered as a constant factor. However,
sunspots cycle approximately 11 years. Sunspot number is
correlated with precipitation and drought. Wang et al. (1997)
studied the relationship between relative sunspot number
and runoff in the Yellow River basin. Friis-Christensen and
Lassen (1991) and Weickmann et al. (2000) found that
sunspot cycle length showed good correlation with Northern
Hemisphere land temperature and drought periods.
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Fig. 1. Satellite image of Maharloo Lake in the southern Iran. 
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Figure 1. Satellite image of Maharloo Lake in the southern Iran.

The specific heat and mass of the water on earth are
large (Li et al., 2012). The huge heat capacity of the oceans
brings an obvious and long-term effect to atmosphere–
ocean interactions, which affects atmospheric circulation in
subsequent periods (Penland and Matrosova, 1998). Atmo-
spheric circulation factors represent the physical properties
correlated with precipitation. In this study, 40 climate in-
dices from the NOAA website (http://www.esrl.noaa.gov/
gmd/dv/ftpdata.html) were used. Table 1 lists the climatic in-
dices selected as atmospheric circulation predictors and their
recorded period. The cold and warm phases of ENSO phe-
nomena are accessible on the websitewww.ggweather.com/
enso/oni.htm.

2.4 Description of methods

Since large differences existed in the means and variations
between the parameters, the data were normalized (Tren-
berth, 1994; Teschl and Randeu, 2006; Guérémy, 2012) be-
fore they were used in the model. After normalization, all
time series of monthly rainfall and climate indices were in
the range of 0 and 1 (see Appendix: Eq. A1).

2.4.1 Multivariate regression

The time lag between dependent and independent variables
was different for each input variable. Cross-correlation was
used to find the proper independent variables and identify
their time lags. The final multivariate equation was deter-
mined using the stepwise method. The stepwise regression
method selects the predictive variables by an automatic pro-
cedure starting with the best-correlated variable. It adds the
variable (if any) if the addition of this variable significantly
improves model performance. This process repeats until no
improvement is obtained (Prasad et al., 2010).

2.4.2 Artificial neural network

The application of ANN in hydrology forecasting started
in the early 1990s, covering rainfall–runoff modeling (Fer-
nando and Jayawardena, 1998), streamflow forecasting (Kim
and Barros, 2001; Wang et al., 2006) and groundwater level
forecasting (Coulibaly et al., 2001).

The ANN usually consists of an input, hidden and out-
put layer. Multi-layer perceptron (MLP) is the most widely
used ANN in forecasting models, and was applied in this
study. The same independent variables of the multivariate re-
gression model were used as the input. The data set was di-
vided into two groups: 80 % of the data were used for model
training, and 20 % were used for cross-validation. For each
month, neural network training and validation were repeated
20 times, and the best result was selected according toR2

and root mean square error (RMSE). In each separate run,
the first and the last 10 % of the time series were selected for
validation. The order of the data was randomized before di-
viding the data set into two groups. Both the training and val-
idation data were plotted for comparison. Figure 2 presents
the best results, where the validation data were indicated by
black arrows.

2.5 Evaluation criteria

The R2 and RMSE between model outputs and observa-
tions were used as the primary indicators of model perfor-
mance. The higher theR2 value and the smaller the RMSE,
the better were the model results. Other criteria includ-
ing Nash–Sutcliffe efficiency, accuracy percentage, Heidke
skill score, trend accuracy and Taylor diagrams were used
to further quantify forecasting accuracies (see Appendix:
Eqs. A2 to A5).
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Table 1.Primary selection of atmospheric circulation predictors.

No. Climate index Data period No. Climate index Data period

1 PNA 1950–2013 21 Hurricane activity 1950–2009
2 EP/NP 1950–2013 22 AO 1950–2011
3 WP 1950–2013 23 Pacific warm pool 1948–2008
4 NAO 1950–2013 24 CAR 1951–2010
5 NAO (Jones) 1948–2001 25 QBO 1948–2013
6 SOI 1951–2013 26 AMM 1948–2013
7 Nino 3 1950–2013 27 NTA 1951–2010
8 BEST 1948–2011 28 Atlantic Multidecadal Oscillation smoothed 1948–2007
9 TNA 1948–2013 29 Globally integrated angular momentum 1958–2013
10 TSA 1948–2013 30 ENSO precipitation index 1979–2009
11 WHWP 1948–2013 31 Central Indian precipitation (monsoon) 1948–1999
12 ONI 1950–2013 32 Sahel rainfall 1948–2001
13 MEI 1950–2013 33 SW monsoon region rainfall 1948–2010
14 Nino 1+2 1950–2013 34 Northeast Brazil rainfall anomaly 1948–2000
15 Nino 4 1950–2013 35 Solar flux (10.7cm) 1948–2013
16 Nino 3.4 1950–2013 36 Global mean land/ocean temperature index 1948–2013
17 PDO 1948–2013 37 Atlantic Multidecadal Oscillation unsmoothed 1948–2013
18 NOI 1948–2007 38 Tropical Pacific SST EOF 1948–2008
19 NP 1948–2011 39 Atlantic triple SST EOF 1948–2008
20 TNI 1948–2013 40 Sunspot 1749–2013

Nash–Sutcliffe efficiency ranges from−∞ to 1, and a
value higher than 0 means model predictions were better than
the mean of observations.

Accuracy percentage shows what fraction of the forecasts
is in the correct category, and it ranges between 0 and 1. To
calculate this value, monthly precipitations were categorized
into five classes (very dry, dry, normal, wet and very wet)
based on SIP factor (Khalili and Bazrafshan, 2003) (see Ap-
pendix: Table A1).

Heidke skill score (HSS) indicates the fraction of correct
forecasts after eliminating randomly correct forecasts since
some forecasts can be correct due purely to random chance.

Trend accuracy gives the percentage for which the actual
output changes in the correct direction relative to the previ-
ous desired value. Trend accuracy measures the proportion of
the trend that has been correctly predicted. In this case, the
trend is either “up” or “down”.

Taylor diagrams provide a statistical summary of how well
modeled patterns match observed patterns in terms of corre-
lation, RMSE and variance.

3 Results

3.1 Regression results

For each independent variable, the best time lag to the de-
pendent variable was determined through cross-correlation.
Table 2 shows the correlation between the PNA (Pacific
North America) index and precipitation in different time-lag
months. For example, the best time lag to predict precipita-

tion in January using the PNA index was 5 months (the pre-
vious August). It is seen that, for different months, the best
time lag is different.

Table 3 shows the top 10 factors out of 40 indices and the
corresponding best time lags. They were ranked byR2, and
only theR2 values that are higher than 0.05 were listed. The
indices in the first line of the table are the best indices to
predict monthly precipitation for univariate regression. These
indices explained less than 25 % (mostly less than 20 %) of
total variation, and such low values ofR2 implied that precip-
itation in the area was not affected by one particular region
only with a constant interval.

To improve model performance, more independent vari-
ables were added via the stepwise regression method. Ta-
bles 4, 5 and 6 show the results of the correlation matrix,
analysis of variance (ANOVA) table, and multivariate coeffi-
cients for January precipitation, respectively.

It is seen from Table 4 that the precipitation in January
P (Jan) has significant correlation with PNA, QBO (Quasi-
Biennial Oscillation) and TNA (Tropical Northern Atlantic).
Also, there is a strong correlation between PNA and TNA.
Given the fact that the correlation betweenP (Jan) and PNA
is higher than the correlation betweenP (Jan) and TNA, TNA
was ruled out while PNA and QBO were finally selected as
the independent variables for predicting the precipitation in
January, as proved by Tables 5 and 6.

Similarly, the procedures were applied to all the other
months. The final selected independent variables are listed
in parentheses in Table 3, and Table 7 presents the univariate
and multivariate regression results for an entire year.
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Table 2.Cross-correlation between PNA index and precipitation.

Delay Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

+12 months 0.024 0.005 0.001 0.051 0.006 0.082 0.038 0.001 0.001 0.004 0.010 0.029
+11 months 0.021 0.005 0.006 0.008 0.003 0.155** 0.003 0.075 0.000 0.040 0.000 0.033
+10 months 0.001 0.009 0.042 0.056 0.000 0.029 0.001 0.000 0.000 0.002 0.011 0.012
+9 months 0.002 0.000 0.013 0.001 0.003 0.033 0.019 0.005 0.006 0.009 0.003 0.002
+8 months 0.053 0.005 0.001 0.008 0.039 0.004 0.001 0.039 0.007 0.018 0.028 0.002
+7 months 0.005 0.001 0.086 0.010 0.001 0.014 0.002 0.002 0.011 0.038 0.054 0.032
+6 months 0.013 0.064 0.016 0.004 0.028 0.009 0.000 0.062 0.001 0.004 0.000 0.020
+5 months 0.117* 0.032 0.027 0.038 0.008 0.014 0.004 0.001 0.024 0.007 0.012 0.012
+4 months 0.011 0.004 0.016 0.000 0.000 0.022 0.005 0.004 0.024 0.029 0.110* 0.000
+3 months 0.014 0.003 0.024 0.037 0.049 0.005 0.018 0.000 0.085 0.010 0.025 0.007
+2 months 0.001 0.005 0.003 0.004 0.024 0.000 0.000 0.115* 0.000 0.104* 0.004 0.000
+1 month 0.072 0.001 0.005 0.066 0.000 0.011 0.002 0.060 0.013 0.002 0.008 0.008

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level.

Table 3.Ranked indices and proper time lags for each month of a year.

Ranking Factor Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1st
R2 0.117 0.142 0.263 0.212 0.209 0.195 0.236 0.144 0.155 0.151 0.182 0.117

Single (PNA) (QBO) (GIAM) (NAO) (Alt, Tro, SST) (SWMRR) (Alt, Me, Mo) (QBO) (NAO) (SOI) (Nino1+2) (SWMRR)
Time lag 5 11 9 11 8 7 10 1 10 3 8 8

2nd
R2 0.115 0.131 0.152 0.153 0.171 0.155 0.164 0.122 0.116 0.132 0.171 0.107

Single (QBO) NAO PDO Nino3 TNA PNA CAR EP, NP AO (BEST) (TSA) TNI
Time lag 10 7 6 12 8 11 12 7 3 3 4 4

3rd
R2 0.106 0.109 0.122 0.139 0.153 0.148 0.163 0.122 0.105 0.123 0.099

Single TNA SOI SWMRR Nino1+2 Alt, Me, Mo (AO) NTA (AO) AO AO (TNA)
Time lag 1 11 6 12 9 12 11 4 9 8 7

4th
R2 0.102 0.109 0.133 0.152 0.098 0.153 0.115 0.104 0.11 0.096

Single BEST Nino1+2 NP Long, AMO WP SWMRR PNA PNA PNA NTA
Time lag 11 10 1 7 11 9 2 2 4 8

5th
R2 0.097 0.108 0.128 0.152 0.127 0.099 0.095 0.105 0.094

Single (WHWP) TNI (GIAM) Alt, Mul. Osc Alt, Tro, SST WP WP SWMRR SOI
Time lag 2 7 11 7 7 9 1 11 1

6th
R2 0.096 0.106 0.118 0.15 0.124 0.098 0.093 0.097

Single EP, NP QBO Tro, Pac, SST AO TNA PDO QBO WP
Time lag 10 8 12 12 10 3 7 3

7th
R2 0.103 0.116 0.14 0.12 0.095

Single (NAO) WHWP GMLOT EP, NP EP, NP
Time lag 7 11 5 11 10

8th
R2 0.1 0.112 0.128 0.118 0.093

Single HURR Solar WP Long, AMO Pac WP
Time lag 5 9 8 12 2

9th
R2 0.097 0.109 0.118

Single SWMRR (NAO) Alt, Mul, Osc
Time lag 1 10 12

10th
R2 0.095 0.106 0.11

Single Nino3.4 WHWP Pac WP
Time lag 12 7 12

Results showed thatR2 increased and the regressions ex-
plained up to 44 % (mostly more than 30 %) of total variation.
For July and September, only univariate regression was se-
lected because adding more variables did not make improve-
ment to the prediction.

3.2 ANN results

Since a neural network can arrive at different solutions for
the same data due to initialization of network weights, results
from 20 repetitions for each month were selected. The results
showed that the ANN model explained more than 40 % (up
to 76 %) of total variation. Figure 2 presents comparisons be-
tween the ANN model results and the observations. Although
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Table 4. Correlation matrix between January precipitation and se-
lected indices.

P (Jan) PNA QBO TNA

P (Jan)
Pearson correlation 1 0.34∗

−0.34∗ 0.33∗

Sig. (two-tailed) 0.03 0.03 0.03
N 43 43 43 43

PNA
Pearson correlation 0.34∗ 1 −0.06 0.26

Sig. (two-tailed) 0.03 0.69 0.01
N 43 43 43 43

QBO
Pearson correlation −.034∗ −0.06 1 −0.09

Sig. (two-tailed) 0.03 0.69 0.58
N 43 43 43 43

TNA
Pearson correlation 0.33∗ 0.26 −0.09 1

Sig. (two-tailed) 0.03 0.10 0.58
N 43 43 43 43

* Significant correlation.

Table 5.ANOVAs for the regressions of precipitation in January.

Sum of Mean
Model∗ squares df square F Sig.

1
Regression 0.21 1 0.21 5.35 0.026

Residual 1.61 41 0.04
Total 1.82 42

2
Regression 0.40 2 0.20 5.54 0.008

Residual 1.43 40 0.04
Total 1.82 42

* Dependent variableP (Jan); 1: independent variable PNA; 2: independent
variables PNA and QBO.

the ANN model results were better than the regression model
results, both methods failed to predict some extreme values.

3.3 Evaluation of results

Table 8 presents the precipitation classification results of
the ANN and regression models, and Table 9 gives the
R2, RMSE, Nash–Sutcliffe, trend accuracy and Heidke skill
score values. The values ofR2, RMSE, Nash–Sutcliffe, trend
accuracy and Heidke skill score were higher when the time
lag was 10 months. In general, the ANN model performed
better than the regression model. Trend accuracy determines
the accuracy of variation direction, and was almost equal in
both methods. However, this criterion is sensitive to false pre-
diction; thus even one false prediction can decrease its value
seriously. For example, the false prediction of February pre-
cipitation in 1999 using the ANN method caused a decrease
in trend accuracy, even though the other evaluation criteria
were better.

Taylor diagrams can highlight the goodness of different
models compared to observations. The diagram can be visu-
alized as a series of points on a polar plot. The azimuth angle
refers to the correlation coefficient between the predicted and

Table 6. Coefficients of univariate and multivariate regression
models.

Unstandardized Standardized

Model∗
coefficients coefficients

t Sig.
B SE Beta

1
Constant 0.168 0.065 2.580 0.014

PNA 0.286 0.124 0.340 2.313 0.026

2
Constant 0.318 0.091 3.513 0.001

PNA 0.269 0.118 .0320 2.282 0.028
QBO −0.234 0.103 −0.319 −2.276 0.028

* Dependent variableP (Jan); 1: independent variable PNA; 2: independent variables PNA
and QBO.

Figure 2. Comparisons between observations and ANN model re-
sults as well as regression model results: the arrows indicate the
chosen data for validation (normalized precipitations are shown on
the vertical axis).

observed data. Radial distance from the origin represents the
ratio of the normalized standard deviation (SD) of the simu-
lation to that of the observation. The distance from the refer-
ence point (observations) is a measure of the centered RMSE
(Taylor, 2001, 2005). Therefore, an ideal model (being in
full agreement with the observations) is marked by the ref-
erence point with the correlation coefficient equal to 1, and
the same amplitude of variations compared with the obser-
vations (Heo et al., 2014). Figure 3 displays the normalized
standard deviation (SD) and correlation coefficientR2 of the
ANN and regression models. The ANN results were closer
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Table 7.Univariate and multivariate regression models for each month of a year.

Month Formula R2 N Sig.

Jan NP= 0.286(PNA5) + 0.168 0.12 43 5 %
NP= 0.269(PNA5) − 0.234(QBO10) + 0.318 0.22 43 1 %

Feb NP= −0.359(QBO11) + 0.532 0.14 43 5 %
NP= −0.364(QBO11) + 0.552(WHWP2) + 0.485 0.25 43 1 %

Mar NP= 0.559(GIAM9) + 0.115 0.26 43 1 %
NP= 0.529(GIAM9) + 0.278(NAO7) − 0.028 0.34 43 1 %

Apr NP= −0.492(NAO11) + 0.510 0.21 43 1 %
NP= -0.533(NAO11) − 0.412(GIAM11) + 0.713 0.39 43 1 %

May NP= −0.540(Atl-Tro-SST8) + 0.454 0.21 43 1 %
NP= −0.573(Atl-Tro-SST8) − 0.538(NAO10) + 0.816 0.37 43 1 %

Jun NP= 0.502(SWMRR7) − 0.073 0.20 43 1 %
NP= 0.538(SWMRR7) + 0.474(AO12) − 0.314 0.44 43 1 %

Jul NP= −0.508(Atl-MM10) + 0.325 0.30 43 1 %

Aug NP= −0.239(QBO1) + 0.206 0.15 43 5 %
NP= −0.247(QBO1) − 0.356(AO4) + 0.396 0.36 43 1 %

Sep NP= 0.328(NAO10) − 0.090 0.18 43 1 %

Oct NP= −0.355(SOI3) + 0.262 0.15 43 1 %
NP= −0.360(SOI3) + 0.349(WP1) + 0.058 0.28 43 1 %

Nov NP= −0.511(Nino1+ 28) + 0.386 0.18 43 1 %
NP= −0.432(Nino1+ 28) − 0.313(TSA4) + 0.518 0.33 43 1 %

Dec NP= 0.357(SWMRR8) + 0.184 0.12 43 5 %
NP= 0.415(SWMRR8) − 0.419(TNA7) + 0.338 0.26 43 1 %

Note: subscript numbers presents time lags in a month. NP: normalized precipitation, PNA: Pacific North
American, QBO: quasi-biennial oscillation, GIAM: globally integrated angular momentum, NAO: North Atlantic
Oscillation, Atl-Tro-SST: Atlantic tripole SST, SWMRR: southwest monsoon region rainfall, Atl-MM: Atlantic
Meridional Mode, SOI: Southern Oscillation Index, Nino1+ 2: extreme eastern tropical Pacific SST, WHWP:
western hemisphere warm pool, AO: Antarctic Oscillation, BEST: bivariate ENSO time series, TSA: tropical
southern Atlantic, TNA: tropical northern Atlantic.

to the observation points than were the regression results.
In the diagram, the SDs of all predicted data of both meth-
ods were less than the observations, indicating that neither
method captured the fluctuation of the natural events well.

4 Discussion and conclusions

The Maharloo watershed is suffering from water scarcity,
while the watershed is dominated by agricultural and indus-
trial activities that demand a large amount of water. There-
fore, long-term prediction of precipitation can help adjust
agricultural and other activities and consider lake sustainabil-
ity based on ecological water requirements, especially during
drought period when the ecosystem is more frangible.

The present study applied multivariate regression and
ANN methods for the long-term prediction of precipitation in
the Maharloo Lake basin in Iran. It used atmospheric circula-
tion factors and cross-correlation to identify proper indepen-

dent variables and time lags, among 40 indices and 12-month
delay for each target month. The monthly precipitation was
predicted and compared with the measured data.

According to Table 3, the NAO, PNA, QBO and SWMRR
indices were more frequently used than the other indices, in-
dicating that the regional precipitation of the Maharloo Basin
was mainly affected by the North Atlantic Oscillation, the
Pacific North American and Southwest Monsoon Region.
These results agree with Guérémy et al. (2012), who dis-
cussed the link between Pacific SST anomalies and precip-
itation over the Mediterranean region. Therefore, the Pacific
SST anomalies can affect the Mediterranean region as well
as southern Iran.

Analyses on the ENSO phenomena and the seasonal pre-
cipitation indicated that only autumn had a good match with
the ENSO phenomena (Fig. 4). The high precipitation in au-
tumn of 1977, 1982, 1986, 1994 and 2004 are in accordance
with ENSO warm phase (El Niño), and the low precipitation
in autumn of 1970, 1973, 1983, 1998, 1999 and 2007 are
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Table 9.Evaluation on the predicted results of the regression model and ANN model.

Factor\
method R2 RMSE Nash–Sutcliffe Accuracy Heidke skill score Trend accuracy

Month Reg ANN Reg ANN Reg ANN Reg ANN Reg ANN Reg ANN

Jan 0.218
√

0.313 0.18
√

0.17 0.22
√

0.31 40 %
√

47 % 8 %
√

21 %
√

81 %
√

81%
Feb 0.243

√
0.263 0.23

√
0.23 0.24

√
0.26 37 %

√
51 % 4 %

√
24 %

√
69 % 67 %

Mar
√

0.336 0.287
√

0.19 0.20
√

0.34 0.28 28 %
√

35 % 7 %
√

12 %
√

81 %
√

81 %
Apr 0.389

√
0.536 0.19

√
0.17 0.39

√
0.54

√
42 % 37 %

√
20 % 14 %

√
81 % 79 %

May
√

0.371 0.274
√

0.20 0.22
√

0.36 0.26
√

49 % 47 %
√

22 % 15 % 64 %
√

71 %
Jun 0.437

√
0.513 0.17

√
0.15 0.41

√
0.50 91 %

√
93 % 52 %

√
54 %

√
21 % 19 %

Jul 0.298
√

0.482 0.17
√

0.15 0.27
√

0.47 84 %
√

88 % 25 %
√

40 %
√

43 % 40 %
Aug 0.356

√
0.494 0.17

√
0.14 0.32

√
0.49 86 %

√
91 % 45 %

√
60 % 43 %

√
50 %

Sep 0.178
√

0.761 0.15
√

0.08 0.17
√

0.75 88 %
√

95 % 13 %
√

48 %
√

12 % 10 %
Oct 0.281

√
0.447 0.17

√
0.14 0.27

√
0.44 81 %

√
86 % 32 %

√
48 % 43 %

√
55 %

Nov 0.331
√

0.367 0.19
√

0.18 0.32
√

0.37 44 %
√

51 % 18 %
√

27 %
√

86 %
√

86 %
Dec 0.253

√
0.341 0.19

√
0.18 0.25

√
0.34 35 %

√
42 % 5 %

√
11 % 71 %

√
81 %

√
: better result.

Figure 3. Scatterplot of the predicted data of the regression and
ANN models on a Taylor diagram.

well correlated with ENSO cool phase (La Niña). However,
no significant relationship between the ENSO phenomena
and the seasonal precipitation was found in the other sea-
sons. These results were consistent with the findings of Bar-
low et al. (2002), who discovered the effects of cold phase
ENSO (La Niña) on the drought in central and southwest
Asia, and Nazemosadat et al. (2006), who showed the ENSO
phenomenon had a significant effect on autumn precipitation
in Iran.

The results revealed that monthly precipitation anomalies
could be forecasted about 10 months in advance using the
selected indices in Table 7, although theR2 is not high. The
relatively lowR2 can be attributed to the far distance between

Figure 4. Seasonal precipitation in accordance with El Niño and La
Niña events.

original location of climatic indices and the study area, and to
the long temporal duration as shown in Heo et al. (2014) and
Li et al. (2012). In other words, the higher rates of observed
precipitation variation compared with the modeled predic-
tions implied that other regional conditions (such as temporal
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Figure 5.Monthly average precipitation and the corresponding pre-
diction accuracy by ANN model on Maharloo Basin.

wind and local humidity, orographic conditions) also affected
and complicated the precipitation system, which is crucial to
be considered in future research. The comparison to monthly
observed precipitation and the evaluation indices indicated
that in general climatic indices are effective for predicting
precipitation in both dry and wet seasons (overall accuracy
= 64 %). However, the accuracy is not equal in different
months. The accuracy (Heidke skill score) in wet season is
comparatively lower than in dry season (Fig. 5), which may
be because the study area is far from both the Pacific and
Atlantic oceans.

The predicted results in dry months (June to October) were
better than the other months. Although the precipitation in
these months is naturally low, the ANN model could suc-
cessfully forecast the rare rainfall events that happened in
some of the years (e.g., June 1979, August 1994, 1996, and
September 1994, which are indicated in Table 8). It is also
indicated in Fig. 2 that the rainfall peaks are mostly not well
predicted, while the droughts (low rainfall) are well captured
by both methods.

Detailed comparison of numerical values is usually not
straightforward; thus comparing the precipitation classes
makes it easier to evaluate the different techniques. As shown
in Table 8, the performance of ANN is mostly better than the
regression method. Also in Table 9, Heidke skill scores can
more clearly quantify the performance difference between
ANN and regression methods than other indicators. The Ma-
harloo Lake basin is usually lacking rainfall in summer; thus
the five classes decreased to three classes (normal, dry and
very dry). Consequently, the results of trend accuracy and
Heidke skill score related to these classes were significantly
higher than other months.

The better results of the ANN model compared to the
regression model on the relationships between atmospheric
indices and regional precipitation showed the high flexibil-
ity of the ANN method and the nonlinear nature of the
relationships. These results were consistent with the find-
ings of previous studies (Teschl and Randeu, 2006; Li et
al., 2012; Wu and Chau, 2010), which showed the ability
of the ANN model to determine an atmospheric link be-
tween SST anomalies and precipitation over the inland area
of the Persian Gulf.

In general, due to large spatiotemporal distance between
climatic indices and precipitation in destination as well as
the coarse resolution of the data, the accuracy of the mod-
els was relatively low, which was also pointed out by some
other scientists (Ferranti et al., 1990; Fernando and Jayawar-
dena, 1998; Palmer et al., 2004; Guérémy et al., 2012). How-
ever, without considering the Heidke skill score, which elim-
inates randomly correct forecasts, the results (Table 9) are
optimistic, especially for the dry months. The accuracy to-
gether with RMSE andR2 can give reliable model output.

A future study should determine how different indices af-
fect regional precipitation, whether the results are extendable
to a larger area, and whether global changes such as global
warming are influential in source or destination areas.
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Table A1. Rainfall categories base on SIP index.

SIP value Rainfall category

SIP< −100 very dry
−100≤ SIP< −50 dry
−50≤ SIP≤ 50 normal
50≤ SIP< 100 wet
100≤ SIP very wet

Appendix A: Formula description

A1 Normalization function

Xnorm =
Xi − Xmin

Xmax− Xmin
, (A1)

whereXnorm is the normalized value ofXi ; XMax andXmin
are the maximum and minimum of the data series, respec-
tively (range: 0 to 1).

A2 Root mean square error (RMSE)

RMSE=

√∑n
i=1 (XO − XE)2

n
, (A2)

whereXO and XE are the observed and estimated values,
respectively (range: 0 to∞, perfect value: 0).

A3 Standard index of precipitation (SIP) and
categorization

SPI=
Pi − P

SD
× 100, (A3)

wherePi is the precipitation, andP and SD are the mean
and standard deviation of the precipitation, respectively. SIP
is categorized using Table A1.

A4 Accuracy and Heidke skill score (HSS)

Accuracy=
1

n

k∑
i=1

n(Fi · Oi) (A4)

HSS=

1
N

k∑
i=1

n(Fi · Oi)−
1

N2

k∑
i=1

n(Fi)n(Oi)

1−
1

N2

k∑
i=1

n(Fi)n(Oi)

(A5)

In these formulasn(Fi · Oi) denotes the number of forecasts
in categoryi that had observations in same category;n(Fi)

andn(Oi) denote the total number of forecasts and observa-
tions in categoryI ; andN is the total number of forecasts
(accuracy range: 0 to 1, perfect value is 1; HSS range:−∞

to 1, 0 indicates no skill, perfect score is 1).
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