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Abstract. Predicting streamflows in snow-fed watersheds
in the Western United States is important for water alloca-
tion. Since many of these watersheds are heavily regulated
through canal networks and reservoirs, predicting expected
natural flows and therefore water availability under limited
data is always a challenge. This study investigates the appli-
cability of the flow duration curve (FDC) method for pre-
dicting natural flows in gauged and regulated snow-fed wa-
tersheds. Point snow observations, air temperature, precipi-
tation, and snow water equivalent were used to simulate the
snowmelt process with the SNOW-17 model, and extended
to streamflow simulation using the FDC method with a mod-
ified current precipitation index. For regulated watersheds,
a parametric regional FDC method was applied to recon-
struct natural flow. For comparison, a simplified tank model
was used considering both lumped and semi-distributed ap-
proaches. The proximity regionalization method was used to
simulate streamflows in the regulated watersheds with the
tank model. The results showed that the FDC method is capa-
ble of producing satisfactory natural flow estimates in gauged
watersheds when high correlation exists between current pre-
cipitation index and streamflow. For regulated watersheds,
the regional FDC method produced acceptable river diver-
sion estimates, but it seemed to have more uncertainty due to
less robustness of the FDC method. In spite of its simplicity,
the FDC method is a practical approach with less computa-
tional burden for studies with minimal data availability.

1 Introduction

Snow accounts for a significant portion of precipitation in
the mountainous Western United States and snowmelt plays
an important role in forecasting streamflow (Serreze et al.,
1999). Extreme amounts of snowfall can result in a flood
in the melting season, and sometimes snow accumulation
alleviates drought by natural redistribution of precipitation
in a high water-demand period. In such regions, snowmelt
controls the hydrologic processes and water relevant activi-
ties such as irrigation. Therefore, the reliable prediction of
snowmelt is crucial for water resources planning and man-
agement (He et al., 2011; Mizukami et al., 2011; Singh and
Singh, 2001).

Conventionally, conceptual snowmelt models developed
by combining rainfall–runoff models with temperature index
models using a parameterized melting factor (e.g., Anderson,
2006; Albert and Krajeski, 1998; Neitsch et al., 2001), have
been used to predict daily streamflows in snow-fed water-
sheds. Conceptual modeling is an attractive solution to daily
streamflow simulation not only for rainfall-fed but also for
snow-fed watersheds due to its flexibility and applicability
(Uhlenbrook et al., 1999; Smakhtin, 1999). Examples in-
clude models such as SSARR (Cundy and Brooks, 1981),
PRMS (Leavesley et al., 1983), NWSRFS (Larson, 2002),
UBC (Quick and Pipes, 1976), CEQUEAU (Morin, 2002),
HBV (Bergström, 1976), SRM (Martinec, 1975), and TANK
(Sugawara, 1995), among others.

However, a significant simplification is necessary when
complex hydrological behavior of a watershed is implicitly
parameterized into a conceptual model (Blöschl et al., 2013).
Such simplifications make it difficult to relate model pa-
rameters directly to measured watersheds properties (Beven,
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2006). Hence, the parameters of conceptual models are usu-
ally identified by streamflow observations with calibration
techniques such as the shuffled complex evolution or genetic
algorithm. In truth, calibration is the major part of concep-
tual modeling, and it is still typically labor-consuming; how-
ever, computational efficiency has improved with advances
in computer technology. In spite of the effort involved, un-
certainty in conceptual models is always an important issue
(Kuczera and Parent, 1998; Uhlenbrook et al., 1999; Panday
et al., 2013). Furthermore, the parameter set calibrated by
streamflow observations is usually not unique because there
can be other sets of parameters providing similar model per-
formance (Beven, 1993; Seibert, 1997; Oudin et al., 2006;
Perrin et al., 2007). Particularly in snowmelt runoff model-
ing, calibration can produce less uniqueness, less robustness,
and more uncertainty than rainfall–runoff modeling because
additional inputs (e.g., air temperature) and parameters (e.g.,
melting factor) are required to define the snowmelt process.

As an alternate approach, linking point snow observations
to streamflow can be a pragmatic option. A common statisti-
cal approach for simple generation of daily streamflow is the
flow duration curve (FDC) method. A FDC gives a summary
of streamflow variation and represents the relationship be-
tween streamflow and its exceedance probability (Vogel and
Fennessey, 1994). For streamflow generation, one or multi-
ple sets of donor variables are transferred to a target station
by corresponding exceedance probability of the donor sets
with that of the target. A number of variations of the FDC
method have been used for the generation of daily streamflow
data. Hughes and Smakhtin (1996), for instance, suggested a
FDC method with a nonlinear spatial interpolation method to
extend observed flow data. Smakhtin and Masse (2000) de-
veloped a variation of the FDC method to generate stream-
flow using rainfall observations as the donor variable instead
of streamflow data. Recently, the FDC was used not only
for generating streamflow directly, but also for calibrating
conceptual models (Westerberg et al., 2011). Westerberg et
al. (2011) used the FDC as a performance measure to cir-
cumvent uncertainty in discharge data and other drawbacks
in model calibration with traditional methods. Despite the
numerous applications with the FDC, there is still no good
approach using the FDC method to generate daily stream-
flow from point snow observations. Given the simplicity of
the FDC method, a suitable approach using the FDC method
to predict snowmelt-driven runoff using point snow observa-
tions could be practical and cost efficient due to the reduced
computational effort.

If the target station is ungauged, a regional FDC can es-
timate the FDC of the target station. The regional FDC is
generally developed using the relationships between selected
percentile flows in gauged FDCs and climatic or physical
properties of the watersheds. Thus, the regional FDC esti-
mates the unknown FDC of an ungauged watershed only with
its physical properties. Many regional FDC methods have
been proposed for generating streamflows in ungauged wa-

tersheds. Shu and Ouarda (2012) categorized the regional
FDC methods as a statistical approach (e.g., Singh et al.,
2001; Claps et al., 2005), a parametric approach (e.g., Yu et
al., 2002; Mohamoud, 2008), and a graphical approach (e.g.,
Smakhtin et al., 1997).

The regional FDC can be used not only for generating
streamflows in ungauged watersheds, but also for recon-
structing natural flows of watersheds regulated by reser-
voir operations, river diversions and other human activities.
Smakhtin (1999), for example, evaluated the impact of reser-
voir operations by comparing between regulated outflows
from a reservoir and natural flow estimated by a regional
FDC. In the Western United States, the prior appropriation
doctrine, the water right of “first in time, first in right,”
has produced many river basins with impaired streamflows.
These impairments are particularly significant in watersheds
with high aridity, low precipitation, and relatively large wa-
ter demands. The regional FDC method can represent flow
impairments by reconstructing natural flows using minimal
data. The reconstruction of natural flow provides additional
information to water managers for efficient water alloca-
tion during the high-demand periods. The volume difference
between reconstructed natural flows and impaired stream-
flow observations can simply indicate the combined effects
of reservoir operations, river diversions, and other human-
driven activities. Thus, the effect of regulation in a watershed
can be approximately evaluated from this comparison.

As discussed earlier, prior studies using the FDC method
with precipitation data focused on predicting streamflows
in natural and managed watersheds under typical rainfall–
runoff conditions and not with snowmelt-driven streamflow.
Therefore the goals of this work are twofold: first to assess
the applicability of the FDC method in predicting stream-
flows in semi-arid snowmelt-driven watersheds through the
comparison with conceptual rainfall–runoff models incorpo-
rating a temperature index-based snowmelt model; and sec-
ond to assess the possibility of extending the work through
regionalization to predict natural streamflows in regulated
watersheds to determine water availability. In this work, a
modified approach to the FDC method for streamflow gener-
ation from rainfall observations (Smakhtin and Masse, 2000)
is proposed. The simplified SNOW-17 model was used here
with point snow observations to estimate snowmelt discharge
required by the FDC method and the conceptual model. Also,
a parametric regional FDC method was applied for the re-
construction of natural flows and a proximity-based region-
alization approach was used in the conceptual rainfall–runoff
models for comparison with the regional FDC. By compar-
ing with impaired streamflows and observed managed flows,
water use in a watershed was estimated.
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Fig. 1.Physical layout of the Sevier River basin, Utah.

2 Description of the study area and data

The study area is the Sevier River basin, located in South
Central Utah, and the details are given Fig. 1. The Sevier
River basin is a semi-arid basin with relatively high ET
(evapotranspiration). The watersheds in or adjacent to the
Sevier River basin are dominantly fed by snowmelt from the
high-elevation region. Particularly, the Sevier River is signifi-
cantly regulated by diversions and reservoir operations along
the major channel for agricultural water use. Hence, a real-
time streamflow monitoring system along the main channel
is operated by the Sevier River Water Users Association, but
it is difficult to estimate the natural discharge from the regu-
lated watersheds using this monitoring system.

This study used the US Geological Survey (USGS)
streamflow stations for the FDC method and conceptual
modeling. Because only five watersheds in the Sevier River
basin have natural streamflow observations, eight adjacent
watersheds were included as well for generating streamflows
in gauged watersheds. In addition, two USGS stations in the
main Sevier River with significant impairments were selected
for reconstructing natural flows using the regionalization
methods. These two stations were assumed as ungauged wa-
tersheds although these have continuous daily observations.
Hence, “gauged” watersheds in this study refer to watersheds
with natural flow observations only, while “regulated” water-
sheds indicate watersheds with impaired flows and therefore
these watersheds are treated as ungauged watersheds.

Precipitation, maximum and minimum air temperature,
and snow water equivalent (SWE) data from the SNOTEL
stations operated by US Department of Agriculture (USDA)
were used as inputs to the FDC method and conceptual mod-
eling. The details of the USGS stations and corresponding
SNOTEL stations are given in Table 1 with corresponding
data periods and watershed areas. Additionally, the records
of canal diversions from the Utah Division of Water Rights
were used to compare streamflows simulated by regionaliza-
tion with actual river diversions. For the conceptual model-
ing, point SNOTEL data were adjusted to spatially averaged
inputs using data from the PRISM database (PRISM Climate
Group, 2012). The procedure included a comparison between
a pixel located in a SNOTEL station and the areal average of
pixels in a watershed or an elevation zone using 30 arcsec an-
nual normals from 1981 to 2010. The ratio of the average of
pixels to the pixel at a SNOTEL station was multiplied by the
point precipitation at the SNOTEL station, while the differ-
ence between these was added to the point temperature. For
the regional FDC, the SNOTEL data adjusted by PRISM data
were also used for calculating climatic variables. The USGS
National Elevation Dataset (2012) and US General Soil Map
served by USDA (2013) were used to obtain geomorphologic
and soil properties of the watersheds.

3 Methodology

3.1 SNOW-17 snowmelt model

This study uses SNOW-17 as the snowmelt model which
has been used for river forecasting by the National Weather
Service (NWS). SNOW-17 is a single-layered, conceptual
snowmelt model. This model estimates SWE and snowmelt
depth as outputs. Input data required are precipitation
and air temperature only. Although the original SNOW-17
model has 10 parameters for point-scale simulation, this
study used the simplified model similar to Raleigh and
Lundquist (2012). For simplification, temperature for divid-
ing rainfall and snowfall (PXTEMP), base temperature for
non-rain melt (MBASE), and the liquid water holding ca-
pacity (PLWHC) were assumed at typical values of 1.5◦C,
0◦ C, and 5 %, respectively. Rain on snowmelt and daily
melt at the snow–soil interface were deactivated since these
contribute minimally to the energy budget of the snowmelt
process (Raleigh and Lundquist, 2012; Walter et al., 2005).
The simplified version has only five parameters, which are
SCF, MFMAX, MFMIN, NMF, and TIPM. SCF is a mul-
tiplying factor to adjust new snow amounts. MFMAX and
MFMIN are the maximum and minimum melting factors to
calculate melting depths, respectively. NMF and TIPM are
parameters for simulating energy exchange when there is no
snowmelt. A detailed description of the model was given by
Anderson (2006). This study used Nash–Sutcliffe Efficiency
(NSE) for performance evaluation of SNOW-17 and model
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Table 1.Details of gauged watersheds and corresponding USGS and SNOTEL stations.

# USGS station Gauged watershed Area (km2) SNOTEL station
Data period (water yeara)

Calibration Validation

1 10173450 Mammoth Creek 271.9 Castle Valley 2001–2006 2007–2011
2 10174500 Sevier River at Hatch 880.6 Midway Valley 2001–2006 2007–2011
3 10194200 Clear Creek 424.8 Kimberly Mine 2001–2006 2007–2011
4 10205030 Salina Creek 134.2 Pickle KEG 2001–2006 2007–2011
5 10215900 Manti Creek 68.4 Seeley Creek 2001–2006 2007–2011
6 10242000 Coal Creek 209.5 Webster Flat 2001–2006 2007–2011
7 10234500 Beaver River 235.7 Merchant Valley 2001–2006 2007–2011
8 10172700 Vernon Creek 64.7 Vernon Creek 2001–2006 2007–2011
9 10146000 Salt Creek 247.6 Payson R.S. 2001–2006 2007–2011
10 09310500 Fish Creek 155.7 Mammoth-Cottonwood 2001–2006 2007–2011
11 09326500 Ferron Creek 357.4 Buck Flat 2001–2006 2007–2011
12 09330500 Muddy Creek 271.9 Dill’s Camp 2001–2006 2007–2011
13 09329050 Seven Mile Creek 62.2 Black Flat-U.M. CK 1992–1998 2008–2011

a Water year (WY): 1 year from 1 October in the previous year to 3 September in the current year.

calibration. Parameters were optimized using the genetic al-
gorithm in the Matlab environment. The NSE for snowmelt
modeling (NSESWE) is defined as

NSESWE = 1−

∑T
t=1

{
QSWE(t) − Q̂SWE(t)

}2

∑T
t=1

{
QSWE(t) − QSWE

}2
, (1)

whereQSWE(t) and Q̂SWE(t) are observed and simulated
SWEs (mm) at timet , respectively,QSWE is the mean ob-
served SWE (mm), andT is the number of observations.

3.2 Modified FDC method with precipitation index

The FDC method is a non-parametric probability density
function representing the relationship between magnitude of
streamflow and its exceedance probability. The FDC method
is typically used to generate daily streamflow at a station
from highly correlating donor streamflow data sets with a tar-
get station. A drawback of this approach is that streamflow
generation is dependent on the availability of donor data sets.
Hence, in a region with a low density of stream gauging sta-
tions, the FDC method may face the difficulty of not having
adequate donor streamflow data.

Smakhtin and Masse (2000) developed a modified FDC
method with a precipitation index to overcome the limited
availability of donor variable sets. Their method included
transforming the time series of precipitation into an index
having similar properties to streamflow data. The transfor-
mation was to avoid zero values in precipitation data caused
by the intermittency of precipitation events, which there-
fore produce a different shape of duration curve from a typ-
ical FDC. The duration curve of transformed precipitation
could indicate the exceedance probability at the outlet, which
determines the magnitude of streamflow.

This study modified the original concept as follows. First,
the outflow depth simulated by SNOW-17 was used for con-
structing the FDC instead of precipitation data to represent
the snowmelt process. Second, a constant recession coeffi-
cient was applied for the calculation of precipitation index of
Smakhtin and Masse (2000), but different coefficients were
used to represent the different hydrologic responses of rain-
fall and snowmelt to streamflow. The modified approach is
given below.

The current precipitation index at timet , ICP(t) in mm d−1

was defined in the original work as

ICP(t) = k · ICP(t − 1) · 1t + P(t), (2)

wherek is the recession coefficient (d−1), P(t) is daily pre-
cipitation at timet (mm d−1), and1t is the time interval (d).
Recession coefficient,k, represents the similar concept to the
baseflow recession coefficient and needs to be determined
by observed streamflow. According to previous studies,k

varies from 0.85 to 0.98 d−1 (Linsley et al., 1982; Fedora and
Beschta, 1989). In addition, the initial value ofICP can be as-
sumed as the long-term mean daily precipitation because of
the fast convergence of calculations (Smakhtin and Masse,
2000).

To consider the snowmelt process, outflow calculated by
SNOW-17 was divided into two time series, since it was
important to stipulate different recession coefficients for
snowmelt and rainfall processes given the different times-
scales of these processes for generating streamflow (De-
Walle and Rango, 2008). Time series of snowmelt depth
and rainfall depth were separated based on the existence of
snow cover (when SWE> 0). Finally, the two indices were
summed for simulatingICP. Hence, theICP(t) is redefined as
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Fig. 2. Details of the proposed modeling approach with the FDC
method and the SNOW-17 model.

ICP(t) = ICS(t) + ICR(t)

ICS(t) = kS · ICS(t − 1) · 1t + S(t) (3)

ICR(t) = kR · ICR(t − 1) · 1t + R(t),

whereICS(t) is the current snowmelt index (mm) at timet ,
S(t) is the snowmelt depth (mm) at timet , ICR(t) is the cur-
rent rainfall index (mm) at timet , R(t) is the rainfall depth
(mm) at timet , kS andkR are recession coefficients (d−1) for
snowmelt and rainfall, respectively. Generally,kS is greater
thankR because snowmelt runoff varies more smoothly with
time than quick flow caused by rain storms. In this study,
kS andkR were selected by values showing maximum corre-
lation betweenICP and observed streamflow data. Figure 2
shows the proposed FDC method used in this work.

The selection of a snow observation station when multiple
stations are present in a watershed was based on high corre-
lation between calculatedICP and observed streamflow. Al-
though Smaktin and Masse (2000) commented that the effect
of weights in the case of multiple stations was not a signif-
icant factor in their original FDC method with the precipi-
tation index, a high correlation betweenICP and streamflow
supports better performance in the generation of streamflow
because of the significant climatic variation of snow-fed wa-
tersheds located in high-elevation regions.

Fig. 3. Details of the proposed approach with the tank model and
SNOW-17.

3.3 Simplified tank model

This study used the simplified tank model proposed by
Cooper et al. (2007) to compare the performance under the
conditions of similar and limited data availability. The sim-
plified tank model reduced the number of parameters of the
original tank model (Sugawara, 1995) to help minimize over-
parameterization when the tank model was combined with
the snowmelt model. This simplified tank model shown in
Fig. 3a has two vertical layers with the primary soil mois-
ture layer in the upper tank. This study did not consider the
secondary soil moisture layer in the simplified tank model
because it was not sensitive to runoff simulations (Cooper
et al., 2007). Evapotranspiration (ET) in the tank model was
independently estimated using the modified complementary
method proposed by Anayah (2012). The combined model
has 12 parameters (5 for snowmelt, 7 for runoff). The struc-
ture of the tank model is adequately flexible to be calibrated
by streamflow observations. It has more parameters than the
Snowmelt Runoff Model with eight parameters (Martinec et
al., 2008).

The model produces several modes of response repre-
senting the different conditions that may prevail in a wa-
tershed. The upper tank has a non-linear response in the
rainfall–runoff process because of its multiple horizontal out-
lets, whereas the lower tank has a linear response. There
are three thresholds to determine the four modes of hydro-
logic response, which areHS , H1, andH2. HS represents the
soil moisture-holding capacity (mm).H1 andH2 represent
the lower and upper thresholds for generating direct runoff
(mm). The detailed procedure for calculating streamflow is
available from Cooper et al. (2007).

This study used two approaches with the proposed tank
model (as depicted in Fig. 3) for evaluating the performance
with and without the consideration of climatic variation in
a watershed. The first approach was a completely lumped
model with a single set of climatic inputs that disregards the
climatic variation of a watershed (Fig. 3a). The second ap-
proach was a semi-distributed tank model with five different
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tanks for the upper layer to accommodate climatic variation
due to elevation (Fig. 3b). All of the upper tanks in both ap-
proaches were assumed to have same parameters for both
snowmelt and runoff modeling. For the semi-distributed tank
model, a watershed was divided into five zones with the aid
of the area–elevation relationship. Inputs for each zone were
individually computed from the corresponding SNOTEL sta-
tion and PRISM data as explained earlier.

The parameters were optimized using the genetic algo-
rithm in Matlab for both the lumped and the semi-distributed
tank models with the objective function of minimizing the
sum of weighted squared residuals shown as below.

Minimize
T∑

t=1

w(t) ·

{
Q(t) − Q̂(t)

}2
, (4)

where w(t) is weight (unitless) varying with magnitude
of runoff data,Q(t) and Q̂(t) are observed and simulated
streamflows (m3 s−1), respectively, andT is the number of
observations. The weights can be determined empirically
with observed data for equalizing residuals in low flows with
those in high flows. The weights used in previous studies
(e.g., Kim and Kaluarachchi, 2008, 2009) ranged from 4 to
10. The average streamflows of gauged watersheds in the
high flow season (April to June) were about 2 to 10 times
(with median of 5.17) those in the low flow season (March to
June). Hence, this study used a weight of 5 for the low runoff
season and 1 for the high runoff season. Although Cooper
et al. (2007) proposed two constraints to calibrate the tank
model parameters with wide ranges, incorporating SNOW-17
into the tank model made it difficult to apply the constraints
to the combined model. Hence, in the optimization with ge-
netic algorithm, the ranges of parameters were identified us-
ing Monte Carlo simulations with uniform distributions. One
of the best 100 parameter sets obtained by sorting the values
of the objective function was selected to set the parameter
ranges for genetic algorithm.

3.4 Regionalization

This study applied regionalization to simulate natural stream-
flows in regulated watersheds with impaired observations.
A parametric approach was selected for constructing the re-
gional FDC. The model proposed by Shu and Ouarda (2012)
was used and given as

QP = aV b
1 V c

2 V d
3 . . . , (5)

where QP is percentile flows,V1, V2, V3,. . . are selected
physical or climatic descriptors,b, c, d,. . . are model pa-
rameters, anda is the error term. Logarithmic transformation
of Eq. (5) can help solve the model through linear regres-
sion. By step-wise regression, independent variables can be
selected.

Meanwhile, a proximity-based regionalization method
was used for the tank model. In the case of conceptual mod-
eling, regionalization of parameters for ungauged watersheds

Fig. 4.Results from SNOW-17 at SNOTEL stations:(a) Castle Val-
ley, (b) Pickle KEG, and(c) Vernon Creek.

were categorized by three approaches (Peel and Blöschl,
2011): (a) regression analysis between individual parame-
ters and watershed properties (e.g., Kim and Kaluarachchi,
2008; Gibbs et al., 2012); (b) parameter transfer based on
spatial proximity (e.g., Vandewiele et al., 1991; Oudin et al.,
2008); and (c) physical similarity (e.g., McIntyre et al., 2005;
Oudin et al., 2008, 2010). Even if the performance of these
three approaches was dependent on climatic conditions, per-
formance and complexity of the model, and other factors,
several studies concluded that the spatial proximity method
was attractive due to its better performance and simplicity
(Oudin et al., 2008; Parajka et al., 2013). Hence, this study
used the proximity-based regionalization for regulated water-
sheds. Parameter sets were transferred from multiple gauged
watersheds for better precision, and the average of stream-
flows simulated by the parameter sets was taken as the natural
flow estimates for the regulated watersheds.

4 Results

4.1 SNOW-17 modeling

SNOW-17 was calibrated and verified by SWE observations
at SNOTEL stations. Figure 4 shows the results of SNOW-17
modeling where the comparison between simulated and ob-
served SWE is excellent. The average NSE values between
simulated and observed SWE for calibration and validation
were 0.942 (a range of 0.867 to 0.984) and 0.933 (a range of
0.793 to 0.967), respectively. The loss of NSE from calibra-
tion to validation was not significant and therefore the model
was unlikely to be over-parameterized. Also, the simple ob-
jective function of maximizing NSE (equivalent to minimiz-
ing the sum of squared residuals) seems to provide adequate
performance as long as accumulated precipitation shows a
consistent trend with observed SWE in the snow accumu-
lation period. Simultaneous monitoring of precipitation and
SWE at the same location may provide quality inputs to
SNOW-17 modeling.

However, a temperature index snowmelt model can
have errors from strong winds and dew-point temperature
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(Anderson, 1976). In other words, good calibration by SWE
observations does not necessarily guarantee accurate simula-
tion of outflow depth. The loss of SWE by winds or subli-
mation, for instance, is not contributing to the melting depth
while some SWE reduction is observed. Thus, in a region
with high possibility of such errors, caution is required to
link point snowmelt observations to streamflow.

4.2 Streamflow generation in gauged watersheds

The time series of outflow depth from SNOW-17 was used to
calculateICP. Since the rationale behind the FDC method is
that exceedance probability ofICP is same as that of stream-
flow, the data periods of both point snow observations and
streamflow data should be same. In fact,ICP calculation is
mathematically equivalent to the computation of storage in
a single linear reservoir such as the lower tank in the tank
model. Hence, the hydrological meaning ofICP is liquid wa-
ter availability in a watershed with the assumption of a single
linear reservoir. Through theICP computation, the intermit-
tent time series of outflow depth was transformed to a smooth
time series.

The computed recession coefficients of snowmelt varied
from 0.97 to 0.98 d−1, while the range for rainfall was 0.85
to 0.86 d−1. These results demonstrate that snowmelt runoff
was slowly changing during the year, unlike rainfall runoff
that showed a relatively large fluctuation due to the inter-
mittent storm events. In the study area, snowmelt runoff ac-
counted for a large portion of streamflow and therefore the
recession coefficient of snowmelt played a major role in the
high correlation betweenICP and streamflow. However, if
there was noticeable contribution of rainfall runoff to stream-
flow observations, then the recession coefficient of rainfall
would be more important and sensitive. Particularly, rainfall
runoff can be crucial in the non-melting season, and there-
fore, the separation of recession coefficients is necessary for
high correlation betweenICP and streamflow.

When calibrating the lumped and semi-distributed tank
models, Monte Carlo method was used to identify the pa-
rameter ranges of the tank model for optimization with ge-
netic algorithm as commented earlier. The random simula-
tions were to avoid local parameter sets providing unrealis-
tic or poor streamflow simulation when using genetic algo-
rithm with wide parameter ranges. To decide on the required
number of simulations, the Clear Creek watershed was se-
lected and tested among the given gauged watersheds. By
increasing the number of simulations from 1000 to 20 000,
it found that 20 000 simulations provided the efficient num-
ber of simulations with the initial parameter ranges. From
the best 100 parameter sets of the 20 000 simulations, a pa-
rameter set with an acceptable NSE and a low reduction of
NSE between calibration and validation was chosen. For op-
timization with genetic algorithm, the parameter ranges were
rescaled with the ranges of approximately 50 to 200 % of
each parameter of the chosen set. With the rescaled param-

Fig. 5. Simulated streamflows with the FDC and the tank model:
(a) Ferron Creek,(b) Sevier River at Hatch,(c) Vernon Creek, and
(d) Fish Creek.

eter ranges, the genetic algorithm produced the optimal pa-
rameter set. It was later found that the optimal parameter set
showed better performance than the best 100 parameter sets
of the 20 000 simulations for all gauged watersheds. From
this observation, the optimal parameter set was assumed as
the calibrated parameter set.

As expected, the semi-distributed tank model performed
better than the others with NSE, as shown in Table 2. Figure 5
depicts the simulated streamflow at several stations using the
FDC method and the tank model. Due to the high climatic
variation in mountainous watersheds, ignoring the eleva-
tion distribution could result in poor streamflow generation.
These results confirmed the earlier studies (e.g., Martinec et
al., 2008; Uhlenbrook et al., 1999) that discussed the im-
portance of the elevation distribution on snowmelt runoff
modeling. Theoretically, it is natural to expect poor perfor-
mance from point snow observations of the FDC method and
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Table 2.Performance comparison between the FDC method and the tank models.

# Watershed
NSE (calibration/validation)

FDC Lumped Semi-distributed

1 Mammoth Creek 0.83/0.88 0.83/0.85 0.88/0.80
2 Sevier River at Hatch 0.77/0.80 0.89/0.83 0.94/0.89
3 Clear Creek 0.75/0.60 0.78/0.75 0.86/0.80
4 Salina Creek 0.53/0.50 0.60/0.57 0.69/0.76
5 Manti Creek 0.65/0.36 0.84/0.61 0.89/0.66
6 Coal Creek 0.87/0.55 0.90/0.42 0.89/0.72
7 Beaver River 0.90/0.79 0.90/0.80 0.89/0.81
8 Vernon Creek 0.36/−1.03 0.75/0.47 0.76/0.31
9 Salt Creek 0.55/−0.11 0.57/0.44 0.65/0.46
10 Fish Creek 0.81/−0.33 0.86/0.63 0.83/0.62
11 Ferron Creek 0.91/0.87 0.85/0.81 0.91/0.85
12 Muddy Creek 0.31/−0.04 0.46/0.68 0.71/0.52
13 Seven Mile Creek 0.66/0.67 0.74/0.72 0.71/0.72

Average 0.68/0.35 0.77/0.66 0.82/0.69
Best 0.91/0.87 0.90/0.85 0.94/0.89

Poorest 0.31/−1.03 0.46/0.68 0.65/0.46

the on and off snow cover of the lumped tank model. How-
ever, the FDC method could be competitive when point snow
observations are highly correlated with streamflow. Ferron
Creek, Beaver River, and Mammoth Creek, which had fairly
high correlation betweenICP and streamflow data, showed
good performance in streamflow prediction. Even the semi-
distributed tank model did not show better results than the
FDC method for Ferron Creek and Beaver River.

Typically, watersheds showing good performance with the
FDC method have good performance with the lumped and
semi-distributed tank models too. Since both methods used
linear reservoir coefficients for simulating streamflow, they
performed well in watersheds with linear behavior and such
watersheds were likely to have relatively homogenous cli-
matic conditions. In addition, the FDC method showed the
highest performance reduction from calibration to validation
among the three methods. This may be due to the unstable
correlation betweenICP and streamflow and the uncertainty
of the FDCs.

Figure 6 shows a comparison between field discharge mea-
surements and simulated streamflows in the calibration pe-
riod. In order to avoid potential errors in streamflow obser-
vations converted from water stage, streamflow simulations
by three methods were directly evaluated by field measure-
ments. Table 3 summarizes the NSE and correlation coef-
ficient values between field measurements and three simu-
lations. Streamflow values for this evaluation were normal-
ized by watershed area to remove the influence of water-
shed scale. On average, the performance trend from the poor-
est to the best watersheds was similar to the calibrations
with the continuous streamflow data in terms of NSE. How-
ever, Vernon Creek and Salt Creek experienced a large re-

Fig. 6. Comparison between field discharge measurements and
streamflow simulations (discharges are normalized by watershed
area).

duction of NSE when compared with field measurements. It
means that these two watersheds had relatively large obser-
vational errors in the continuous streamflow data. In addi-
tion, Muddy Creek and Sevenmile Creek had better NSE for
the lumped and semi-distributed tank models with field mea-
surements. It also means the two watersheds possibly had
considerable observational errors, but the conceptual models
produced more precise streamflows than water stage data and
rating curves. Also, Mammoth Creek, Sevier River at Hatch,
and Coal Creek were likely to underestimate high flows with
all three methods, but this was not experienced with contin-
uous streamflow data. This indicates precipitation data for
the three watersheds were also underestimated, orICP and
the model parameters were adapted by the underestimated
high flows.
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Table 3.NSE and correlation coefficient between field measurements and the three model simulations.

# Watershed
NSE Correlation coefficient

FDC Lumped Semi-distributed FDC Lumped Semi-distributed

1 Mammoth Creek 0.93 0.78 0.76 0.98 0.95 0.95
2 Sevier River at Hatch 0.67 0.77 0.86 0.96 0.98 0.99
3 Clear Creek 0.90 0.71 0.77 0.97 0.92 0.93
4 Salina Creek 0.55 0.69 0.90 0.80 0.87 0.98
5 Manti Creek 0.60 0.86 0.89 0.80 0.95 0.95
6 Coal Creek 0.74 0.85 0.83 0.93 0.96 0.97
7 Beaver River 0.93 0.96 0.95 0.97 0.98 0.98
8 Vernon Creek 0.01 0.50 0.09 0.64 0.83 0.69
9 Salt Creek 0.50 0.64 0.70 0.72 0.73 0.80
10 Fish Creek 0.56 0.66 0.69 0.75 0.90 0.90
11 Ferron Creek 0.90 0.91 0.91 0.95 0.95 0.89
12 Muddy Creek 0.51 0.92 0.93 0.74 0.87 0.94
13 Seven Mile Creek 0.72 0.91 0.93 0.88 0.94 0.94

Average 0.66 0.78 0.79 0.85 0.91 0.92
Best 0.93 0.96 0.95 0.97 0.98 0.99

Poorest 0.01 0.50 0.09 0.64 0.73 0.69

4.3 Regional FDC for regulated watersheds

The FDC method and the tank model were upscaled to wa-
tersheds affected by river diversions and reservoir operations
to predict the natural flows at impaired streamflow stations.
As mentioned earlier, regionalization was used for upscal-
ing of regulated watersheds. The regulated station near the
Piute Reservoir (Fig. 1) is Seveir River near Kingston, and
the other near the Sevier Bridge Reservoir is Sevier River
below San Pitch River near Gunnison (hereafter Sevier River
near Gunnison).Water use in agricultural areas through river
diversions significantly affect streamflow observations in the
two stations. Streamflow observations at Sevier River near
Kingston only include river diversions while the diversions
and reservoir operations are included in streamflow obser-
vations at Sevier River near Gunnison. The two watersheds
were divided into several sub-watersheds because these were
too large to fall within the areas of gauged watersheds used
for developing the regional FDCs. Hence, the sum of stream-
flows of each sub-watershed simulated by regionalization
was the volume of natural flow at each target station.

Climatic, geomorphologic, land cover and soil properties
of the gauged watersheds were used to identify independent
variables in determining the percentile flows of the paramet-
ric regional FDC. The candidate properties are listed in Ta-
ble 4. The step-wise regression was implemented for each
percentile flow in the Matlab environment. The variable with
the largest significance among the candidates was taken as an
independent variable for the first step. Then, other variables
were added step by step based on thep value of F statistics.
The selected variables for each percentile flow and the statis-
tics of the regression analysis are given in Table 5. Overall,
the regional FDC reproduced minimum, average, and stan-

dard deviation well, but underestimated the maximum of per-
centile flows. This means the regional FDC may underesti-
mate percentile flows of large watersheds; therefore it is not
recommended to use the regional FDC for an ungauged wa-
tershed with an area larger than the largest watershed of the
regression model.

As expected, watershed area was included in every per-
centile flow as an independent variable. Watershed area was
positively related to percentile flows, and its multipliers
ranged from 0.5 to 1.0. The multiplier had an increasing ten-
dency as percentile increases. The routing effect on high flow
(low percentile) may cause less proportionality to watershed
area than low flow (high percentile).

Also, mean elevation was selected as another crucial in-
dependent variable. The multiplier of elevation varied from
2.2 to 3.7. Elevation was considered to be a geomorphologic
property, but it represented the climatic variation of the wa-
tersheds because every climatic candidate had high correla-
tion with elevation. It is a natural observation because more
precipitation and lower air temperature are expected in the
higher elevations.

Proportion of clay, dry bulk density, and saturated hy-
draulic conductivity were chosen to explain the variance of
the regression errors remained from watershed area and mean
elevation. The higher proportion of clay means lower perme-
ability of soil, and saturated hydraulic conductivity control-
ling infiltration. Hence, the proportion of clay seems to af-
fect high flows while saturated hydraulic conductivity was
selected for low flows. The higher dry bulk density pro-
duces less porosity and less water-holding capacity in soils,
thus a positive relationship was obtained between dry bulk
density and 30 and 40 percentile flows. Drainage density
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Table 4.Candidate variables for the multiple linear regression analysis.

Variable Notation Unit Max Mean Min

Annual precipitation PPT mm 867.0 613.1 484.8
Summer rainfall RF mm 207.6 137.0 78.6
Annual mean degree-days< 0◦C ADD0

◦C day 840.3 544.1 238.0
Annual mean degree-days> 15◦C ADD15

◦C day 444.4 173.1 15.6
Average number of days> 15◦C WDAY days 104.8 59.4 13.8
Hargreaves reference ET ETo mm 1094.3 924.4 790.0
ARIDITY (ETo/PPT) AI mm mm−1 2.26 1.55 0.98
Drainage area AR km2 868.9 260.1 63.1
Longest flow length LFL km 61.7 29.9 14.4
Watershed slope WSLP degree 19.3 14.0 7.5
Mean elevation ELE km 3.11 2.60 2.20
Drainage density RD km km−2 0.28 0.23 0.19
Forest cover FCV % 87 62 11
Saturated hydraulic conductivity KSAT µm s−1 21.9 9.2 5.2
Minimum depth to bedrock DBR cm 110.3 67.0 11.7
Dry bulk density DNS g cm−3 1.51 1.34 1.20
Proportion of clay CLAY % 33.5 24.9 13.4
Proportion of silt SILT % 52.4 33.9 14.9
Proportion of sand SAND % 56.9 40.9 26.2
Available water capacity AWC mm mm−1 0.17 0.14 0.07

Table 5.Selected variables and statistics of the regional FDC method.

Percentile flow Selected variables R2 Observed Estimated

Max Mean Min Stda Max Mean Min Std

Q0.1 AR, ELE, CLAY 0.86 48.65 16.96 1.04 13.10 40.59 16.12 1.16 11.42
Q1 AR, ELE, CLAY 0.94 37.87 11.54 0.59 8.99 27.58 11.28 0.63 8.37
Q5 AR, ELE, CLAY 0.93 12.94 4.56 0.24 3.48 10.27 4.46 0.27 3.19
Q10 AR, ELE, CLAY 0.93 6.31 2.39 0.16 1.74 5.58 2.34 0.16 1.63
Q20 AR, ELE, CLAY 0.92 3.40 1.10 0.13 0.86 2.87 1.05 0.12 0.73
Q30 AR, ELE, DNS 0.93 2.72 0.74 0.09 0.67 2.04 0.70 0.09 0.51
Q40 AR, ELE, DNS 0.94 2.01 0.85 0.08 0.49 1.39 0.50 0.08 0.35
Q50 AR, ELE, KSAT 0.95 1.56 0.42 0.07 0.37 1.04 0.40 0.06 0.25
Q60 AR, ELE, KSAT 0.92 1.39 0.35 0.07 0.33 0.83 0.33 0.06 0.20
Q70 AR, ELE, KSAT 0.91 1.22 0.31 0.06 0.29 0.83 0.30 0.05 0.21
Q80 AR, ELE, KSAT 0.86 1.10 0.27 0.05 0.27 0.82 0.27 0.05 0.21
Q90 AR, RD, ELE, KSAT 0.96 1.05 0.24 0.05 0.26 0.82 0.23 0.04 0.21
Q95 AR, RD, ELE, KSAT 0.95 0.96 0.21 0.03 0.25 0.73 0.20 0.04 0.19
Q99 AR, RD, ELE, KSAT 0.97 0.88 0.18 0.02 0.23 0.65 0.17 0.02 0.17
Q99.9 AR, RD, ELE, KSAT 0.82 0.83 0.15 0.01 0.22 0.48 0.13 0.02 0.14

a Std: Standard deviation.

was included as an additional significant variable for low
flows with negative relationships. The negative relationship
is probably because the higher drainage density means more
distribution of streamflow in a watershed.

When using the regional FDC approach,ICP was not
necessarily used as the only donor variable to transfer ex-
ceedance probability to the target stations. In fact, the best
donor variable is a data set that can show the best correlation
with gauged streamflow at the target station. However, it is

impossible to check the correlation between donor variables
and ungauged streamflow. Thus, one or multiple donor vari-
ables close to the target station have been typically used in
the regional FDC approaches. Shu and Ouarda (2012) sug-
gested using multiple donor variables to minimize the un-
certainty of using a single donor variable. This study used
two sets of neighboring streamflow observations as well as
ICP to generate streamflows in sub-watersheds. The reces-
sion coefficients ofICPwere assumed to be 0.98 and 0.85 d−1
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Fig. 7. Simulated streamflow in regulated watersheds:(a) Sevier
River near Kingston, and(b) Sevier River near Gunnison. FDC,
Tank (L), and Tank (D) of the inside 1 : 1 plots are streamflows
in m3 s−1 simulated by the FDC method, lumped tank, and semi-
distributed tank models, respectively.

for snowmelt and rainfall, respectively. As commented ear-
lier, parameters of both lumped and semi-distributed tank
models were transferred from nearby gauged watersheds for
streamflow simulation at the target stations. The parameter
sets of Mammoth Creek, Sevier River at Hatch, Coal Creek,
and Beaver River were used for Sevier River near Kingston
while Salina Creek, Manti Creek, Ferron Creek, and Seven-
mile Creek were selected for Sevier River near Gunnison.
Figure 7 shows the simulated streamflows by the regional
FDC and the tank models with regionalized parameters at
both target stations. In the case of Sevier River near Gunni-
son, the outflow from the Rocky Ford Reservoir was sub-
tracted from the observed streamflow to calculate the dis-
charge produced by the watershed only. It could be easily
recognized that these two watersheds were significantly reg-
ulated based on the irregular shapes of hydrographs. At Se-
vier River near Kingston, the regional FDC method estimated
more volume of natural flow than the lumped and the dis-
tributed tank models. On the other hand, water volume es-
timated by the regional FDC was between the estimates of
the lumped and semi-distributed models at Sevier River near
Gunnison. Volume errors between the regional FDC method
and the tank models varied from−17.1 to +21.8 %. The
differences among the three methods were mainly in mid-
dle to high flows rather than low flows. The correlation co-
efficients between the simulations with the regional FDC
and the lumped tank model were 0.94 and 0.70 at both sta-
tions, respectively, while those between the regional FDC
and the semi-distributed tank model were 0.92 and 0.90, re-
spectively. The larger difference between the lumped and
semi-distributed models at Sevier River near Gunnison may
be due to the higher climatic variation of this watershed,
making the lumped assumption inappropriate. This is evident
from the greater difference of NSE between the lumped and
semi-distributed models of gauged watersheds transferred to
Sevier River near Gunnison.

Fig. 8.Model performance vs. correlation betweenICP and stream-
flow. Note correlation coefficient is calculated only when ex-
ceedance probability is less than 0.2. For validation, only positive
NSEs are plotted.

5 Discussion

5.1 FDC method for gauged watersheds

The basis of the FDC method is point snowmelt model-
ing with SNOW-17. SNOW-17 performed well for the study
area, but its parameter uncertainty could be a concern similar
to conceptual runoff modeling. However, the five parameters
used in SNOW-17 were small when compared to most clas-
sical hydrologic models. Indeed, a simpler snowmelt model
(e.g., DeWalle and Rango, 2008) or observed snowmelt depth
(equivalent to a reduction in observed SWE) could be an al-
ternative for SNOW-17, while not necessarily reducing the
uncertainty.

The performance of the FDC method was affected by the
correlation betweenICP and streamflow. Particularly, the cor-
relation betweenICP and middle to high flow determined the
performance. Figure 8 shows the relationship between the
performance and the correlation coefficient betweenICP and
streamflow with exceedance probability less than 0.2. Based
on this knowledge, good performance (NSE> 0.8) could be
expected when the correlation coefficient is greater than 0.8.
The greater NSE in the validation period of Mammoth Creek
and Sevier River at Hatch (Table 2) than in the calibration pe-
riod could be explained by the correlation coefficient. These
two watersheds had greater correlation coefficients (about
0.04 differences for both watersheds) in the validation pe-
riod. The stable FDCs found for both watersheds also sup-
ported the better performance during validation.

It is also noted that the FDC method is not any more ro-
bust than the other methods. As shown in Table 2, the NSE of
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the FDC method has a much wider range from the poorest to
the best performing watersheds than the others. Indeed, more
watersheds showed better NSE, as the inputs were more dis-
tributed. This means that considering only point inputs with
the FDC method could result in highly variable performance.
Also, more distributed inputs would be better for more ro-
bust performance, even in the case of a simple model. With
the FDC method, its low input requirement and computa-
tional burden has to be traded with some loss of robustness
of performance.

In general, the FDC method had a poorer performance
than the lumped and the semi-distributed tank models. One
reason may be that the tank model was directly calibrated
to streamflow observations, while the FDC method matched
the magnitudes ofICP and streamflow based on an empirical
probability density function. However, the main reason was
that correlation betweenICP and streamflow could be lower
significantly from one period to another. Fish Creek, for in-
stance, experienced a reduced correlation coefficient (about
0.35) from calibration to validation. On the other hand, the
lumped and semi-distributed models that considered spa-
tial variations did not have such large reductions in NSE.
It means a point snow observation might not represent the
behavior of an entire watershed. Hence, the first task is to as-
sess the applicability of the FDC method by evaluating the
correlation betweenICP and streamflow.

There could be many reasons for the low correlation be-
tweenICP and streamflow. For example, Vernon Creek and
Muddy Creek showed poor performances with the FDC
method, but the reasons were different. Vernon Creek is close
to the Sevier Desert, which has extremely low excess pre-
cipitation, unlike Muddy Creek. Thus, the consideration of
other hydrological processes was necessary for Vernon Creek
(ET in the lumped tank model) while the spatial variation of
inputs is required for Muddy Creek. If ET is considered in
the FDC method when computingICP, the FDC method may
perform better than the proposed approach.

5.2 Regional FDC method for regulated watersheds

It is impossible to evaluate the correlation betweenICP and
streamflow observation for regulated watersheds. With the
low robustness of performance, usingICP as the only donor
variable could result in a large bias in streamflow generation.
Even in the case of transferring multipleICP values, the bias
would not be small due to the performance variability of the
FDC method. Thus, the use ofICP was limited as one of the
multiple donor variables. Neighboring streamflow observa-
tions were also transferred in order to make up the drawback
of ICP. Hence, the role ofICP for regulated (or ungauged)
watersheds was to capture the hydrologic responses not in-
cluded in the neighboring streamflow observations.

The simulated streamflows were higher than observed
from April to October due to river diversions for agricul-
ture at both regulated watersheds, except for year 2011 at

Sevier River near Gunnison. Sevier River near Gunnison is
located below the intersection between the Sevier River and
the San Pitch River, but it was difficult to know the stream-
flow from the San Pitch River on a regular basis. Streamflow
in the San Pitch River was negligible in dry and normal years
due to the high agricultural water demand in the San Pitch
River basin, but it could not be neglected in a wet year such
as 2011. Thus the observed streamflows at Sevier River near
Gunnison were greater than the simulated natural flows in a
wet year as shown in Fig. 7b.

Conceptually, when the simulated streamflow is greater
than the observed flow, the difference indicates the volume
of diversions. However, a similar difference could be as-
sumed to represent the volume of return flow from the agri-
cultural areas when the observation is greater than the sim-
ulated value. As depicted in Fig. 7a, streamflow not de-
caying from November to March (the period of no diver-
sions) demonstrated that the return flows through infiltration
affected streamflow continuously. Return flows may affect
streamflow during the period of diversions, but it was dif-
ficult to estimate the impact due to the complexity of com-
bined flow. Simply, a positive difference between the simu-
lated and observed flows in Fig. 7a indicated diversions in-
cluding return flows, whereas a negative difference indicated
return flow.

This study used observed diversions in the watersheds to
validate the simulated natural streamflow. Most river diver-
sions above Sevier River near Kingston were recorded for
management purposes. Due to the high efficiency of water
use in the agricultural area above this station, the effect of
surface return flows may be small or negligible during the pe-
riod of diversions. Even though the return flows through in-
filtration may affect streamflow, it was relatively small when
compared to the total diversions and streamflow during the
period of diversions. If one assumes that there is no signifi-
cant return flows during the diversion season, the difference
between simulated and observed flows could be considered
to be the volume of diversions.

Table 6 shows the sum of observed diversions in the main
channel of the Sevier River above Sevier River near Kingston
and the estimated volumes from the three methods. The ac-
tual volume of diversions would be a little greater than the
observed because some diversions might not be observed in
spite of the large coverage of the diversion monitoring in
the watershed. Hence, although Table 6 shows that the re-
gional FDC method provided a larger natural flow than the
others, the estimated volume of diversions by the regional
FDC method could be considered a possible prediction.

However, the volume difference between the regional FDC
and the semi-distributed model in Table 6 ranged from 13 to
40 %. This relatively high variation may come from the low
robustness of the FDC method, errors in the regional FDC,
and uncertainty in the regionalized parameters of the con-
ceptual models. With these error sources, the use of only
one method may be inappropriate. It is apparent that the
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Table 6. Estimated impairment and observed canal diversions at Sevier River near Kingston from April to September. The numbers within
parentheses are percent difference from the observed volume.

Year
Estimated volume of diversion (×106 m3)

Observed volume of
FDC Lumped tank Semi-distributed tank diversion (×106 m3)

2008 108 (+36 %) 69 (−13 %) 81 (+2 %) 79
2009 110 (+32 %) 61 (−25 %) 78 (−5 %) 82
2010 137 (+86 %) 95 (+29 %) 112 (+51 %) 74
2011 165 (+46 %) 132 (+19 %) 145 (+31 %) 111

semi-distributed model provides the most trustworthy results
due to its better performance. Shu and Ouarda (2012) recom-
mended at least four streamflow observations as donor vari-
ables for good precision with the FDC methods. Thus, the re-
gional FDC with two streamflows andICP in this study could
add more uncertainty than a case with more donor variables.

An important goal of this work in using the regional ap-
proaches was to estimate the amount of water from stream-
flow without actual diversion data. In most of these situa-
tions data are limited, yet water managers require such in-
formation to better manage water demands. The results of
this analysis, especially from Table 6, shows the regional
FDC method could produce acceptable estimates with less
time and effort than conceptual modeling. There are several
limitations in the regional FDC method. For every region-
alization approach, including the regional FDC method, ad-
equate streamflow observations are necessary to have good
estimates. Parajka et al. (2013) commented that studies with
more than 20 gauging stations produced better and stable
performance with deterministic models. The regional FDC
method is also sensitive to the number of gauging stations.
Although the density of gauging stations was low in this
study, gauged watersheds in the regional analysis should be
adequate in terms of the watershed scale and climatic char-
acteristics to minimize bias. As mentioned earlier, multiple
donor variables can also minimize errors caused by bias of a
single donor set.

6 Conclusions

In this study, a conceptual snowmelt model, SNOW-17, us-
ing point snow observations, was extended using a modified
FDC method to simulate streamflows in the semi-arid and
mountainous Sevier River basin of Utah. The FDC method
was later extended to simulate natural streamflows in regu-
lated watersheds by incorporating a parametric regional FDC
method. The FDC method could be a simple practical ap-
proach for streamflow generation for watersheds with limited
data. The FDC method was compared with the lumped and
semi-distributed tank models under similar data availability
to simulate streamflows and later extended via regionaliza-
tion to estimate natural flows in regulated watersheds.

The results show that the FDC method could be a prac-
tical option for snow-fed watersheds with high correlation
betweenICP and streamflow. Of course, the performance
of the snowmelt model was a prerequisite for good perfor-
mance. With streamflow observations,ICP could be corre-
lated and can be a good donor variable without other neigh-
boring streamflow observations. In spite of the simplicity of
the FDC method, it could provide approximate estimates of
natural flow in terms of water volume. The spatial variation
of climatic variables in a watershed could determine the per-
formance of the FDC method. High ET could result in low
correlation betweenICP and streamflow. Thus, the considera-
tion of ET in the calculation ofICP can enhance the accuracy
of the FDC method. As seen here, whenICP and streamflow
are highly correlated, the FDC method is able to outperform
the lumped and semi-distributed models. Without the burden
of parameter optimization and related computations of hy-
drologic processes, the FDC method could generate approx-
imate streamflows with comparable precision to conceptual
modeling. Importantly, checking the correlation betweenICP
and streamflow would be a key step for good performance.
In the case of regulated or ungauged watersheds, a regional
FDC should replace the gauged FDC. In snow-fed water-
sheds of the study area, drainage area and elevation were im-
portant to characterize percentile flows. Soil properties such
as proportion of clay, saturated hydraulic conductivity, and
dry bulk density, were also significant variables for estimat-
ing percentile flows of the regional FDC. Streamflows sim-
ulated by the regional FDC produced acceptable streamflow
estimates when compared to the other conceptual models. In
this work, the simulated natural flow by regionalization was
used to estimate the volume of river diversions in regulated
watersheds with impaired streamflow observations. Both the
regional FDC and regionalization of conceptual modeling es-
timated the approximate volumes of river diversions. Even
though the regional FDC method produced more uncertain
diversion volume, both estimation approaches could provide
practical and acceptable values under data-limited conditions
for water resources planning and management. In short, the
FDC method can be a practical method for the simulation
of natural flows in both gauged and ungauged or regulated
watersheds, especially under limited data. However, the pa-
rameters of snowmelt modeling should be estimated using
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SWE observations as shown here. Other studies are neces-
sary to determine the parameters of the snowmelt model for
watersheds without SWE observations. Also, the difficulty of
determining the recession coefficients forICP calculation in
ungauged watersheds is another remaining issue, since the
typical values for gauged watersheds are assumed. In sum-
mary, the FDC approach used here could produce practical
values of expected streamflows from point observations for
watersheds with limited data.
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