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Abstract. A Hierarchal Bayesian model is presented for one
season-ahead forecasts of summer rainfall and streamflow
using exogenous climate variables for east central China. The
model provides estimates of the posterior forecasted proba-
bility distribution for 12 rainfall and 2 streamflow stations
considering parameter uncertainty, and cross-site correlation.
The model has a multi-level structure with regression coef-
ficients modeled from a common multi-variate normal dis-
tribution resulting in partial pooling of information across
multiple stations and better representation of parameter and
posterior distribution uncertainty. Covariance structure of the
residuals across stations is explicitly modeled. Model per-
formance is tested under leave-10-out cross-validation. Fre-
quentist and Bayesian performance metrics used include re-
ceiver operating characteristic, reduction of error, coefficient
of efficiency, rank probability skill scores, and coverage by
posterior credible intervals. The ability of the model to re-
liably forecast season-ahead regional summer rainfall and
streamflow offers potential for developing adaptive water risk
management strategies.

1 Introduction

The Huai River basin (Fig. 1), located between the Yangtze
and Yellow River basins is the most densely inhabited river
basin and the main cropping area in China. The total drainage

area of 270 000 km2 is divided into the Huai River catchment
(190 000 km2) and the Yishusi River catchment (80 000 km2)

by a paleo-channel of Yellow River. The mean annual precip-
itation for the Huai River basin is approximately 900 mm, of
which 50–75 % occurs during the summer monsoon season.
There are 36 large reservoirs in the basin primarily designed
for water supply and flood control (Zhang et al., 2012). Nat-
ural climate variations in conjunction with increasing popu-
lation demands are causing severe water stress in the region.
Moreover, the region is susceptible to droughts and floods
with a recurrent frequency of four years on average (Yan et
al., 2013; Cheng et al., 2012). Such variations in water sup-
ply are often related to inter-annual fluctuations in large-scale
climatic patterns. In this paper, potential climate teleconnec-
tions are explored and formalized into a predictive model in
a Bayesian framework which allows for formal uncertainty
reduction and modeling. Applications for water, food and en-
ergy management using such probabilistic forecasts could be
developed as part of a strategy for climate risk mitigation and
for adaptation to a variable climate.

Interest in the development and application of long-lead
hydrologic forecasts has grown over the last decade primar-
ily because of the improved monitoring of sea surface tem-
perature (SST) in the tropical Pacific and advances in ex-
perimental climate forecasts from general circulation models
(GCMs). Since GCM-predicted fields are usually available
at large spatial scales, one needs to apply either dynamical or
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Figure1:  Location of the study area. 566 
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Fig. 1.Location of the study area.

statistical downscaling to develop regional hydrologic fore-
casts (Robertson et al., 2004; Gangopadhyay et al., 2005).
Alternately, one can develop a low-dimensional statistical
model by relating the observed rainfall or streamflow to iden-
tified climatic precursors (e.g., El Ninõ–Southern Oscillation
(ENSO) indices) for the given site (Souza and Lall, 2003). A
key aspect in developing such dynamic or statistical models
is the ability to accurately represent the uncertainties, both at
the model representation level and at the parameter estima-
tion level. Developing statistical schemes that can address si-
multaneous prediction at multiple sites and for multiple vari-
ables while addressing their correlation structure is often a
challenge.

Hierarchical Bayesian methods provide the opportunity to
explicitly quantify the parameter uncertainty through each
estimation stage using appropriate conditional and prior dis-
tributions. This allows a better representation of model and
parameter uncertainties. Recently, Devineni et al. (2013) pre-
sented a hierarchical Bayesian regression strategy for esti-
mating streamflow at multiple locations using various model
structures to pool information across multiple sites to an ap-
propriate degree such that the features that are common to
the site regression and those that vary across sites can be
identified for an overall reduction in parameter uncertainty
while preserving the structure in errors across the stations.
Here, a similar Hierarchical Bayesian approach is developed
for regional rainfall and streamflow forecasts using appropri-
ate climate indicators that could be derived from GCMs or
observed climate fields. The application focuses on the up-
per and middle regions of the Huai River basin which are
of interest for local management, and may have similar cli-
matic forcing. Section 2 provides a brief description of the
study area, data sources and the climate predictor identifica-
tion procedure. The hierarchical Bayesian regression model

is presented in Sect. 3. In Sect. 4, the cross-validated results
are presented. A summary is finally presented.

2 Data description

2.1 Streamflow and rainfall data

We used streamflow data from two stations and rainfall data
from 12 stations in this study to develop regional hydro-
logic forecasts. The streamflow data are from the Bengbu
(117.38◦ E, 32.56◦ N) and the Lutaizi (116.79◦ E, 32.57◦ N)
hydrological stations (shown as red dots in Fig. 1). Twelve
rainfall stations with at least 50 years of data were selected in
the contributing section of the basin (shown as filled triangles
in Fig. 1). The details of the hydrologic stations including the
number of years of data records are shown in Table 1. Prelim-
inary analysis of the seasonality of streamflow and area aver-
aged rainfall show that more than 50 % of the annual rainfall
and streamflow occurs in June-July-August (JJA) (Fig. 2).
Consequently, a prediction of the summer monsoon rainfall
and streamflow in June or earlier is of interest.

2.2 Climate teleconnection and predictor identification

Xu et al. (2007) and Kwon et al. (2009) developed season-
ahead streamflow forecasts for the Yangtze River on the
Three Gorges Dam using exogenous climate indices from
eastern Indian Ocean and western Pacific Ocean. Recently,
Liu et al. (2013) and Linderhorm et al. (2013) investigated
the relation between East Asian monsoon rainfall and North
Atlantic sea surface temperature conditions using observa-
tions and paleo-reconstructed records. So far little work
has been done for climate informed hydrologic prediction
for the Huai River basin. To identify predictors that influ-
ence the regional hydroclimate in the basin during JJA sea-
son, we consider SST anomaly conditions during February-
March-April (FMA, 3 months lag) and October-November-
December (OND, 6 months lag) obtained from the Hadley
Center SST dataset (HADSST2) (Rayner et al., 2006). Fig-
ure 3 shows the Spearman’s rank correlation between the
observed streamflow during JJA at the Bengbu hydrologic
station and the pre-season SST conditions. The 3-month lag
correlation (i.e., JJA streamflow with FMA SSTa) and the 6-
month lag correlation (i.e., JJA streamflow with OND SSTa)
are shown in Fig. 3a and b, respectively. From Fig. 3a,
we see that the SST1 region (155–175◦ E and 40–50◦ N)
correlates with the summer streamflow in the Huai River
basin. This region is associated with the Kuroshio current
which is the west side of the clockwise North Pacific Ocean
gyre. This phenomenon was previously identified by Geng et
al. (1997). The warmer SSTs in the Kuroshio current region
and the mid-latitude central Pacific in late spring can gen-
erate a large-scale atmospheric circulation pattern over the
Asia-Pacific region that is favorable for precipitation in the
North China region. Warm conditions in this region result in
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Figure 2:  Seasonality of area rainfall and streamflow in study region. 
 

Fig. 2.Seasonality of area rainfall and streamflow in study region.

Table 1.Detail information for streamflow and rainfall station used in this study.

Station Station Elevation Actual data record
ID name Abbreviation (m) Category & used for reconstruction

1 Bengbu BB 10.0 streamflow 1951–2010
2 Lutaizi LTZ 19.0 streamflow 1951–2010
3 Xuchang XC 66.8 rainfall 1952–2010
4 Xihua XH 52.6 rainfall 1955–2010
5 Zhumadian ZMD 82.7 rainfall 1958–2010
6 Xinyang XY 114.5 rainfall 1951–2010
7 Shangqiu SQ 50.1 rainfall 1953–2010
8 Gushi GS 57.1 rainfall 1952–2010
9 Bozhou BZ 37.7 rainfall 1953–2010
10 Fuyang FY 30.6 rainfall 1953–2010
11 Shouxian SX 22.7 rainfall 1955–2010
12 Bengbu BB 18.7 rainfall 1952–2010
13 Liuan LA 60.5 rainfall 1956–2010
14 Huoshan HS 68.1 rainfall 1954–2010

above-normal inflow conditions in the Huai River. Similarly,
from Fig. 3b, we can see that 6-month prior conditions in the
North Atlantic Ocean identified as SST2 (15◦ W–5◦ E and
35–55◦ N) influence the summer flows in the basin. This is in
line with an earlier finding (Gu et al., 2009a) which showed
that the East Asian summer monsoons are strongly related
to a tripole mode of the North Atlantic SST anomalies in
the preceding winter that typically enhances the stationary
wave-train propagating from west Eurasia to East Asia. The
correlations with SST1 and SST2 are statistically significant
at the 95 % level.

In addition to the SST anomaly conditions, we also con-
sidered the 4-month lagged (February-March-April) North
Atlantic oscillations (NAO) (Hurrell et al., 2003), summer
North Atlantic oscillation (SNAO) (Folland et al., 2009)
and 6-month lagged (November-December-January) Atlantic
Multi-decadal Oscillation (AMO) (Knight et al., 2006) as
candidate predictors. Gu et al. (2009b) showed that the Jan-
uary and March NAO modulates the summer rainfall patterns
over China. Following Linderholm et al. (2011), we selected
the SNAO as one of the predictors as it influences the storm

tracks over China with wetter than normal conditions dur-
ing positive SNAO phase and drier than normal conditions
during negative phase. Similarly, AMO has been shown as
an important covariate for climate in central Asia with pos-
itive AMO phase leading to strong southeast summer mon-
soons and late retrieval (Lu et al., 2006). We also checked
the relationship between ENSO indices, Pacific decadal os-
cillation and the Northern Hemisphere snow cover with sum-
mer streamflow and rainfall in the basin. There was no sta-
tistically significant correlation between these covariates and
streamflow or rainfall in the region. Table 2 summarizes the
correlations between the two streamflow stations, area aver-
aged rainfall and the climate predictors selected for the study.

3 Methodology

3.1 Hierarchical Bayesian model

In this paper, we follow an approach similar to that used by
Devineni et al. (2013) for tree-ring-based streamflow recon-
struction, but for multi-variate seasonal forecasts for regional
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Table 2.The correlation between streamflow/area rainfall and climate predictors chosen in this study∗.

SST1 SST2 AMO NAO SNAO

Lutaizi 0.44 (FMA) 0.45 (OND) 0.28 (NDJ) −0.26 (FMA) 0.39 (FMA)
Bengbu 0.44 (FMA) 0.47 (OND) 0.21 (NDJ) −0.22 (FMA) 0.34 (FMA)
Area rainfall 0.46 (FMA) 0.51 (OND) 0.36 (NDJ) −0.27 (FMA) 0.36 (FMA)

∗ () is the selected period of the predictor for streamflow prediction; Area rainfall is the average rainfall of 12 stations in
the study region.

 

 

 
Figure 3:  SST regions (SST1 and SST2) that influence the rainfall and streamflow 
in the Huai River Basin. SST regions that have significant correlation at 95% 
confidence interval (>0.25 or < -0.25) are considered as predictors for the 
Hierarchical Bayesian Model. 

(SST1: 40°N~50°N, 155°E~175°E; SST2: 35°N~55°N, 15°W~5°E) 

 

 

Fig. 3.SST regions (SST1 and SST2) that influence the rainfall and
streamflow in the Huai River basin. SST regions that have signif-
icant correlation at 95 % confidence interval (> 0.25 or< −0.25)
are considered as predictors for the hierarchical Bayesian model.
(SST1: 40–50◦ N, 155–175◦ E; SST2: 35–55◦ N, 15◦ W–5◦ E).

streamflow and rainfall. The basic idea is that a particu-
lar climate predictor may inform the rainfall or streamflow
anomaly at each of the sites in the region in a similar way.
If the response were exactly the same, predicting the average
of the station values or pooling all the data into the same
regression would be effective since that would reduce the
uncertainty associated with parameter estimation. However,
the response across the rainfall and the streamflow stations
may vary systematically due to local conditions or averag-
ing scale (e.g., for a large river basin vs. small or point rain-
fall). The hierarchical model can be used for partial pooling
of this common information, by considering multiple levels
of modeling. The individual regression coefficients for each
site on each climate predictor are estimated at the first level.

The second level estimates the average regression coefficient
across sites and its variance, thus allowing variation in the
response across sites, but also its potential shrinkage to an
appropriate degree through an estimation of the variance. If
the variance estimated is large, then the model tends towards
a model that would be formed if each site was regressed inde-
pendently on the predictor. If the variance is small, then the
model tends towards a fully pooled regression model, and the
responses are deemed homogeneous. Partial pooling reduces
the equivalent number of independent parameters, resulting
in lower uncertainty in parameters estimates, and therefore
reduced uncertainty in the final forecasts. The general mod-
eling framework is presented as follows.

Given that the station rainfall at locationi for yeart is Rit ,
and station streamflow at locationi for yeart is Sit , we form
Y = { R, S}. The streamflow and rainfall dataY are assumed
to come from a distribution (process model) with probabil-
ity density functionf (Y|θ ), whereθ is a parameter vector.
In the application presented here, we consider that log(Y) is
normally distributed. This assumption was checked using the
Shapiro–Wilk test and Kolmogorov–Smirnov test on the log-
transformed data. Analysis of the residuals using the quan-
tile plots and normality tests also showed that the normal as-
sumption of the log-transformed flows is valid. Where a lin-
ear model is considered for log(Y) in terms of a set of climate
predictors, the regression coefficients are interpretable as the
fractional change inY given the corresponding predictor.
This allows a consideration of partial pooling of response to
a particular climate predictor across rainfall and streamflow
data series that may have a disparate range or scale of val-
ues. The first level of the model considers that at each sitei,
log(Yi) is described by a normal distribution with time vary-
ing meanµit that is informed by a regression on the five pre-
dictorsXt with interceptsαi and a (5× 14) regression coef-
ficient matrixβ. The “errors” from the regression model are
considered to be spatially correlated with a (14× 14) covari-
ance matrix6. The second level of the model considers that
the regression coefficient matrixβ can be modeled as coming
from a multi-variate normal distribution with a (5× 1) mean
vectorµβ which represents the average regression coefficient
across the 14 sites for each predictor, and a (5× 5) covariance
matrix 6β that takes into account the correlation across the
predictors associated with the common effect across the 14
sites. Theµβ and6β are called hyperparameters. The model
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and the priors associated with the parameters and the hyper-
parameters are presented below:

Level1: log(Yt ) ∼ N
(
µt ,6

)
(1)

µit = αi + Xtβ (2)

Level2: β ∼ MVN(µβ ,6β). . . (3)

With priors modeled as

αi ∼ N(0,10000)

µβ ∼ N(0,10000)

6β ∼ Inv-Wishartv0(30)

6 ∼ Inv-Wishartv1(31) (4)

The prior for the covariance matrix6β is taken to be the
inverse Wishart distribution with a scale matrix30 andν0
degrees of freedom. In our applications, the scale matrices
30 and31 were specified as an identity matrix (I ) and the
degrees of freedomν0 and ν1 were set to one more than
the dimension of the matrix (i.e., the total number of pre-
dictors, five for6β and total number stations, 14 for6) to
induce a uniform prior distribution on the variance (Gelman
and Hill, 2007). This choice of priors was made for computa-
tional convenience and represents a simpler model than could
be formulated if all parameter covariance were to be mod-
eled. The joint posterior distributionp(θ |data), of the com-
plete parameter vectorθ is derived by combining the prior
distributions and the likelihood functions. The parametersθ

are estimated using WinBUGS (Spiegelhalter et al., 1996)
which employs the Gibbs sampler, a Markov chain Monte
Carlo (MCMC) method for simulating the posterior proba-
bility distribution of the parameters conditional on the cur-
rent choice of parameters and the data. A discussion on such
model constructs and their comparison to a no pooling model
that estimates independent regressions across sites and to a
full pooling model that ignores the cross-site variations in re-
sponse is presented in Devineni et al. (2013). Several hydro-
logic applications using Bayesian model constructs have also
been developed and demonstrated in Lima and Lall (2009,
2010), and Kwon et al. (2008). Renard et al. (2013) present a
useful tutorial and examples of related Bayesian models for
hydroclimatic applications.

3.2 Cross-validation

Cross-validation statistics computed over different blocks of
data can reveal how well the Bayesian model can perform
in truly out of sample predictions recognizing that differ-
ent climate epochs may lead to different model fits and per-
formance. We evaluate the model using an m-fold cross-
validation technique. A sample is formed by leaving outm

randomly selected data points from the observational data set
for validation and the Bayesian model is developed using the
remaining(n−m) observations. This process is repeated sev-
eral times to obtain an ensemble of validation metrics result-
ing from each randomly selected model. In the applications

presented in the later section,m was 10,n was 50, and 30
sample models were fit. We use three traditional performance
metrics, reduction of error (RE) and coefficient of efficiency
(CE) and the rank probability skill score (RPSS), as mea-
sures of model performance to compare the forecasted pos-
terior mean and the distribution of the streamflow and rainfall
estimates with the actual streamflow and rainfall data.

The reduction of error (RE) ranges from−∞ to +1 and is
similar to theR2 statistic (Lorenz, 1956; Fritts, 1976).

RE= 1.0−

n∑
t=1

(Ot − St )
2

n∑
t=1

(Ot − oc)2
(5)

In Eq. (5), Ot andSt are the observed and the predicted pos-
terior mean of the streamflow (transformed back to real space
by taking anti-logs) in yeart of the validation period andoc is
the mean of the observational data in the calibration period.
RE> 0 indicates that the simulated streamflow contains use-
ful information not contained in the calibration period. Sim-
ilarly RE< 0 indicates that the simulations are poorer than
climatology, i.e., the simulations are not better than the mean
flows in the calibration period. The coefficient of efficiency
(CE) is defined as

CE= 1.0−

n∑
t=1

(Ot − St )
2

n∑
t=1

(Ot − ov)2
. (6)

In Eq. (6), Ot andSt are the observed and the predicted pos-
terior mean of the streamflow in yeart of the validation pe-
riod andov is the mean of the observational data in the valida-
tion period. CE< 0 indicates that the simulations are poorer
than validation climatology, i.e., the simulations are not bet-
ter than the mean flows in the validation period. CE is similar
to RE, but used as a measure to evaluate the model under the
validation period, it is a more rigorous metric.

In addition to RE and CE that measure the error in predict-
ing the conditional mean, we also verify the RPSS to quan-
tify the error in estimating the entire probability distribution
of the forecast (Wilks, 2011; Candille and Talagrand, 2005;
Gangopadhyay et al., 2005). The RPSS is based on the rank
probability score (RPS) computed for each forecast and ob-
servation pair at each station in each year:

RPS=

n∑
k=1

(Sk − Ok)
2, (7)

whereSk is the cumulative probability of the forecast for cat-
egory k andOk is the cumulative probability of the observa-
tion for category k. This is implemented as follows. First, the
observed time series is used to develop 3 categories that cor-
respond to the lower 33 %, middle 33 % and upper 34 % of
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Figure 4: Boxplots of the regression coefficients βij (open box) and the µβj mean of 

the regression coefficients (filled box) for the five predictors. The first two boxplots 

for each predictor correspond to the streamflow stations and the next 12 to the rainfall 

stations.   

 

Fig. 4. Box plots of the regression coefficientsβij (open box) and
theµβj mean of the regression coefficients (filled box) for the five
predictors. The first two box plots for each predictor correspond to
the streamflow stations and the next 12 to the rainfall stations.

values. These categories are determined separately for each
station in the basin. Next, for each forecast at each station and
year, the cumulative probability associated with each of the
k categories is assessed by counting the fraction of the 1000
ensemble members from the hierarchical Bayesian regres-
sion model for that year for that station. Correspondingly,
for each year and station, the observed cumulative probabil-
ities for each category are assigned as 0, if k< k*, and 1 if
k ≥ k*, where k* is the category in which the observation for
that year and station falls.

Now the RPS is computed as the squared difference be-
tween the observed and forecast cumulative probabilities,
and the squared differences are summed over all three cat-
egories. The RPSS is then computed as

RPSS= 1−
RPSforecast

RPSclimatology
, (8)

whereRPSforecast is the mean ranked probability score for
model forecast andRPSclimatology is the mean ranked proba-
bility score for climatological forecast. RPSS represents the
level of improvement of the forecast in comparison to ref-
erence forecast which is usually assumed to be climatology.
Similar to RE and CE, an RPSS> 0 indicates that the fore-
casts have skill better that the climatology, and vice versa.

4 Results and discussion

The posterior distribution of the regression coefficients (β)

for each climate predictor and the mean of the vector of
regression coefficients across sites (µβ) from the joint nor-
mal distribution, is shown in Fig. 4 through box plots of
the values simulated from the posterior density functions.
All the predictors except NAO have positive coefficients for
the mean response across sites. Note that the spread on each
µβ covers the median of the 14 correspondingβs, as would

be expected from partial pooling. With the exception of the
AMO, the β for streamflow tend to be higher and distinct
from those for rainfall. This is expected given that the stream-
flow represents a spatial averaging of the rainfall process, and
hence may have lower uncertainty and better identifiability.
One could consider modeling these as separate groups to be
pooled. However, given that we have only 2 streamflow sta-
tions, pooling across them would not provide much improve-
ment in this application. Modeling them together provides a
larger sample size (14) for the estimation of the coefficients
of the Level 2 model, and leads to a higher spread in the
posterior distribution ofµβ than would result if we modeled
the rainfall and streamflow stations in separate groups. An
averaging of a larger number of rainfall stations with stream-
flow stations that individually represent a spatial averaging of
rainfall is attractive from a conceptual perspective to regular-
ize or reduce the uncertainty in the estimates of the response
for the noisier rainfall stations. The simulations of the co-
variance matrix across predictors,6β (results not shown),
have non-zero off-diagonal elements. If two predictors are
highly correlated then their regression coefficients cannot be
uniquely identified through classical or Bayesian regression.
However, their mean and covariance can be estimated and
simulations of the log(Y) generated from the Bayesian model
would be based on this covariance across the associated re-
gression coefficients. Hence, an appropriate range of log(Y)
values will be generated for each prediction, even though the
individualβ are not uniquely identified due to predictor cor-
relation.

The posterior probability distributions of the forecasts
from the model for the streamflow at Bengbu station and
rainfall at Shouxian station during the period 1996–2010 are
shown as box plots in Fig. 5a and b, respectively. While the
Bayesian model is developed using all the data, the fore-
casts are shown for the last 15 years to make a cleaner fig-
ure. Subsequent performance metrics are evaluated under
cross-validation. The plots show streamflow and rainfall val-
ues as the percentage difference each year from their long-
term average (1696 m3 s−1 for the flow at Bengbu station and
455 mm for rainfall at Shouxian). We see that the directional
indication of the forecast is generally quite accurate while
the uncertainty varies from year to year. We also computed
the coverage rate under Bayesian credible intervals for the
model and observe that for a 90 % credible interval, on aver-
age, over the 14 stations, approximately 10 % of the observed
data are outside the interval, indicating the robustness of the
fitted model.

From Fig. 5, we note that 1997, 1999 and 2001 are anoma-
lously dry years, and that the observations are in the tails
of the forecast probability distribution. First, we note that in
terms of the usual practice in operational climate forecasting
from NOAA or the IRI, where it is common to provide the
users with a tercile forecast, the Bayesian model forecasts
in each of these years do indicate a high probability of below
normal values. Given that the forecast is developed using 4–6
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Figure5:  The posterior probability distributions for JJA averaged streamflow and 

JJA total rainfall for (a) standardized streamflow at Bengbu station and (b) 

standardized rainfall at Shouxian station. The posterior distribution of the cross-site 

correlation for Bengbu station and for Shouxian station is presented in (c) and (d) 

respectively.  Each boxplot has the 25th, median and 75th percentile of the posterior 

distribution, with whiskers extended to the extreme values sampled. The solid triangle 

denotes the observation.    

 

Fig. 5. The posterior probability distributions for JJA averaged streamflow and JJA total rainfall for(a) standardized streamflow at Bengbu
station and(b) standardized rainfall at Shouxian station. The posterior distribution of the cross-site correlation for Bengbu station and for
Shouxian station is presented in(c) and(d), respectively. Each box plot has the 25th, median and 75th percentile of the posterior distribution,
with whiskers extended to the extreme values sampled. The solid triangle denotes the observation.

months lag predictors, the sign of a strong shift in the proba-
bility will alert the decision makers to an anticipated extreme
event. Decision makers are often influenced by the ability to
correctly indicate extreme conditions since the losses from
their operations are most sensitive to such states. In our in-
teractions with corporate and public sector decision makers,
we have noticed both skepticism induced by failure to pre-
dict extremes, even if all performance measures are good,
and conversely enthusiasm for the model on noting that the
directional (high, average, low) forecasts are quite good.

However, we do see the consistent underestimation of dry
conditions as evidence that either the tail behavior of the
forecast distribution or the linearity of the link function be-
tween the predictors and the predictands is in question. The
usual tests of goodness of fit accepted the hypothesis that
the log-normal distribution was a good fit to the data, but
discrimination with other distributions given the sample size
may well lack power. Given the relatively short records, es-
pecially with our emphasis on cross-validation, and the di-
mension of the predictor space, exploration of a nonlinear
model across the five predictors and 14 sites, and in the gen-
eral case with more sites and predictors is challenging. In
upcoming work, we are considering Gaussian process mod-
els (Rasmussen and William, 2006; Brahim-Belhouari and
Bermak, 2004) to address this setting in a formal way.

To provide insight as to how applications of the categor-
ical forecasts could be approached, we present (Fig. 6) the
receiver/relative operating characteristic (ROC) plot (Mason,
1982) considering the decile categorical thresholds on the
forecast posterior probability distribution for each of the 14
forecasts. Forecasts with better discrimination from random
chance typically exhibit a ROC curve approaching the upper-
left corner of the diagram as opposed to the 45◦ diagonal
lines, where the forecast has little ability to discriminate from
a 50:50 probability that occurs by chance. From Fig. 6, we
see that the ROC curve for all the 14 stations is well beyond
the diagonal line and approaches the left corner indicating
that the forecasts exhibit hit rates higher than the false alarm
rate and are well calibrated to predict anomalous events us-
ing exogenous climate precursors. In reality a decision maker
could prescribe their own thresholds of interest and evaluate
the consequences of the forecast relative to the uncertainty
and the threshold prescribed, as part of the decision process.
In summary, while the conventional model checking under
Bayesian modeling involves verifying for coverage rates and
uncertainty level, we also verified our models using the stan-
dard verification procedures used in climate forecasting from
various institutions for benchmarking (Barnston et al., 2003;
Goddard and Mason, 2003).

It is important to have the proper spatial correlation of
the forecasted streamflow across the stations for hydrologic
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Figure 6: ROC plot from the forecasts based on decile categorical thresholds for all 
the 14 streamflow and rainfall stations. 
 

Fig. 6. ROC plot from the forecasts based on decile categorical
thresholds for all the 14 streamflow and rainfall stations.

applications. Here, the spatial correlation is estimated from
the posterior distribution of the streamflow and rainfall and
compared to the observed cross-site correlation. The results
for two stations (station1: streamflow from Bengbu station,
station 11: rainfall from Shouxian station) are shown in
Fig. 5c and d. The box plots in Fig. 5c and d present the
posterior probability distribution of the correlations for these
station with each of the 13 other stations. The observed cor-
relation for each station is shown as a triangle. The fore-
cast ensembles provide a good reproduction of the spatial
correlation across all years.

The results for RE, CE, and RPSS performance under m-
fold cross-validation for each station are shown in Fig. 7. RE
and CE are used to measure the goodness of fit of the model
by comparing the forecasted streamflow and rainfall with the
actual observed data. They are used as an expression of the
trueR2 of the regression equation when applied to new data.
By assessing the RE and CE under cross-validation, we are
essentially providing a measure of the variance explained un-
der a validation data set. Given that seasonal forecasts are
better represented probabilistically using the posterior dis-
tribution, expressing the skill of the forecast using RE and
CE requires summarizing the forecasts using measures of
central tendency such as mean or median of the posterior
distribution which does not give credit to the probabilistic
information in the forecasts. RPSS computes the cumula-
tive squared error between the categorical forecast probabil-
ities and the observed category in relevance to a reference
forecast. We observe that typically the hierarchical Bayesian
model leads to values of RE, CE and RPSS greater than zero

 

Figure7: Performance under “leave 10 out cross validation” for all 14 stations from 

the hierarchical Bayesian model from 30 random simulations ((a) Reduction of Error 

(RE), (b) Coefficient of Efficiency (CE), (c) Rank probability skill score (RPSS)). 

Fig. 7.Performance under “leave-10-out cross-validation” for all 14
stations from the hierarchical Bayesian model from 30 random sim-
ulations –(a) reduction of error (RE),(b) coefficient of efficiency
(CE), (c) Rank probability skill score (RPSS).

for all the stations (except Huoshan station−14) indicat-
ing that the seasonal forecasts developed using the climate
precursors contain useful information.

In addition to computing these traditional performance
measures, the performance of the posterior probability dis-
tribution is assessed by examining the model’s ability to
cover the observed rainfall and flows within a specified cred-
ible interval under m-fold cross-validation. We estimated the
coverage rates for the 90 % credible intervals under cross-
validation. For each validation period, we count the num-
ber of failures or the number of observations that are out-
side the 5th and 95th percentile of the posterior distribution
for each station resulting from the model developed using
the fitting period. By computing the total number of failures
from all the randomly selected models, we estimated the cov-
erage rate as the percentage of failures for a total of 300
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(30× 10 years) forecasts. The average coverage rate across
the stations is 92 % for the corresponding to the 90 % cover-
age interval indicating the robustness of the fitted Bayesian
models under cross-validation.

5 Summary

This study investigated the predictability of the summer rain-
fall and streamflow in the upper and mid-Huai River basin
using five selected large-scale climate indices as predictors.
The study identified two regions, one in the North Pacific and
one in the North Atlantic in addition to pre-season AMO,
NAO and SNAO that can be used as climatic precursors
for JJA streamflow and rainfall in the Huai River basin. As
the underlying challenge is to consistently model the vari-
ability across sites and across variables, we employed a hi-
erarchical Bayesian model strategy. Hierarchical Bayesian
models and multi-level models have become quite com-
mon as educational and research tools for Computational
Statistics. They appear for applications in causal inference,
prediction, comparison and data description especially for
multi-variable problems where the investigator needs to learn
something about the group as well as individual dynamics.
In many cases, they directly generalize traditional regression
approaches in this setting. Given our experience with such
models in other contexts, we were interested in exploring
how a structured approach to regional statistical forecasts of
streamflow and rainfall could be approached. In general, this
is a high dimensional problem that offers some interesting
opportunities both from a model framing context and from a
regularization context.

The partial-pooling hierarchical Bayesian regression
model provided a useful way to model spatial co-variability
in seasonal hydrological predictions, while considering the
potentially common effects of the predictors on regional hy-
drologic response. An advantage of the approach is that it al-
lows appropriate grouping of information in the region, and
explicit modeling of the covariance of the model errors and
the regression coefficients to better represent the uncertainty
in both the model parameters and the final streamflow and
rainfall forecasts. Cross-validated model results show good
predictive skill, and the common effects as well as the at
site effects of each predictor are identified well even un-
der leave-10-out of 50 cross-validation. Comparison of the
partial-pooling model with a no-pooling model in the same
estimation framework (equivalent to the traditional regres-
sion based modeling framework) showed that the Bayesian
model is competitive or superior in terms of the validation
statistics. An aspect of Bayesian modeling that is often cited
is the ability to provide a systematic approach to the propa-
gation and modeling of model parameter uncertainty. In this
context, we argue that while there could be a potential up-
per limit in predictability in seasonal rainfall using anoma-
lous SST conditions as shown in Westra and Sharma (2010),

from a forecast utility point of view, knowing the uncer-
tainty is certainly useful since it can be used for develop-
ing probability-based risk management models for optimiz-
ing reservoir operations or agricultural decision models. We
find this useful, but also note that typically these models re-
quire assumptions as to parametric probability density mod-
els. There is a practical utility especially in the context of
dynamical and statistical regional forecast models to being
able to generate consistent simulations across parameters and
output variables and to build in a multi-level modeling struc-
ture in one shot using multi-level or hierarchical models. Our
future work in the region will focus on using the forecasts
developed to specify dynamic rules for operating multiple
reservoir systems in the basin using both multi-site seasonal
hydrologic forecasts and changing demand through adaptive
human behavior to better manage deficits from the reservoirs.
A refinement of the method applied here to disaggregating
the rain and streamflow in time over the season to prop-
erly capture monsoon breaks and the amplitude, duration and
spatial structure of rainfall events will be a goal for these
applications. Nonlinearity and non-Gaussian aspects will be
modeled in a Gaussian process framework.
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