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Abstract. Vegetation patterns are a common and well-
defined characteristic of many landscapes. In this paper we
explore some of the physical mechanisms responsible for
the establishment of self-organized, non-random vegetation
patterns that arise at the hillslope scale in many areas of
the world, especially in arid and semi-arid regions. In do-
ing so, we provide a fundamental mechanistic understand-
ing of the dynamics of vegetation pattern formation and de-
velopment. Reciprocal effects of vegetation on the hillslope
thermodynamics, runoff production and run-on infiltration,
root density, surface albedo and soil moisture content are
analyzed. In particular, we: (1) present a physically based
mechanistic description of processes leading to vegetation
pattern formation; (2) quantify the relative impact of each
process on pattern formation; and (3) describe the relation-
ships between vegetation patterns and the climatic, hydraulic
and topographic characteristics of the system. We validate
the model by comparing simulations with observed natural
patterns in the areas of Niger near Niamey and Somalia near
Garoowe. Our analyses suggest that the phenomenon of pat-
tern formation is primarily driven by run-on infiltration and
mechanisms of facilitation/inhibition among adjacent vegeta-
tion groups, mediated by vegetation effects on soil properties
and controls on soil moisture and albedo. Nonetheless, even
in presence of those mechanisms, patterns arise only when
the climatic conditions, particularly annual precipitation and
net radiation, are favorable.

1 Introduction

The presence of self-organized vegetation patterns is a com-
mon and well-defined characteristic of many arid and semi-
arid landscapes. Indeed, vegetation is in general spatially het-
erogeneous and its constituent species show spatial distribu-
tions that depart from complete randomness (Greig-Smith,
1979), although only in a few cases, where this departure is
more marked, the pattern structure is easily recognizable.

Vegetation patterns exhibit a multitude of shapes (banded,
spotted or labyrinthine) and occur at a wide variety of spatial
scales. Typical dimensions of a vegetation pattern element
(i.e., width of a band or radius of a patch of vegetation) can
span up to two orders of magnitude, ranging from 100 m to
almost 102 m (Rietkerk and Van de Koppel, 2008).

The identification and characterization of this phe-
nomenon, as well as the individuation of the processes re-
sponsible for specific types of these patterns (e.g., so-called
tiger bushes) were the main focus of numerous studies (e.g.,
(Greig-Smith, 1979; Dunkerley and Brown, 1999; Thiéry et
al., 1995; Worral, 1959). Initially, studies were mainly fo-
cused on qualitative descriptions and on identifying and list-
ing the recurrence of certain types of spatial configurations
(Boaler and Hodge, 1962; Worral, 1960). However, more re-
cently, research has been directed to a more quantitative char-
acterization of the processes leading to the formation of veg-
etation patterns (D’Odorico et al., 2006; Lefever and Leje-
une, 1997). Most of these studies agree that the development
of non-random self-organized configurations is the result of
short-range synergy and long-range competition occurring
between plants and groups of plants (D’Odorico et al., 2006;
Valentin et al., 1999).
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Plants, especially in arid landscapes, help reduce soil ero-
sion and augment soil permeability; they also protect each
other from winds and damage caused by animals and ex-
treme temperatures and humidity conditions. In some areas,
these interactions favor the formation of bands of vegetation
perpendicular to the planar slope vector in mild hillslopes
(Bromley et al., 1997) or perpendicular to the direction of
the prevalent winds in response to their erosive action (Lep-
run, 1999). Although hillslope-scale patterns can arise in a
variety of regions and climates, scarcity of water seems to be
the common denominator of every landscape characterized
by observable vegetation patterns.

Many models have been developed to describe vegetation
structures that deviate from randomness. Cellular automata
models, for example, have been successfully adopted to in-
vestigate the spatial distribution of Acacia trees in desertic
areas, (Wiegand et al., 1999, 2000) or to analyze gap dynam-
ics and cohesistence of trees and grass in savannas (Jeltsch
et al., 1996). However, most of the models that have been
used specifically to reproduce the geometric vegetation struc-
tures that are the objects of this study belong to three cate-
gories: (1) kernel based models (Lefever and Lejeune, 1997;
Thiéry et al., 1995; D’Odorico et al., 2006); (2) advection–
diffusion models (HilleRisLambers et al., 2001; Rietkerk et
al., 2002); and (3) differential flow instability models (Klaus-
meier, 1999; Sherrat, 2005; Saco et al., 2007). With this ef-
fort, we intend to investigate vegetation pattern formation
using a mechanistic water balance model coupled to phe-
nomenological conceptualizations of the feedbacks among
the components of the climate–soil–vegetation system. Our
overarching objective is to explore and identify (some of)
the physical mechanisms responsible for the establishment
of non-random spatial vegetation patterns that arise in arid
and semi-arid regions. In order to do so, we (1) develop
a physically based mechanistic understanding of the pro-
cesses leading to vegetation pattern formation; (2) implement
such understanding in a mathematical model able to repli-
cate the main physical characteristics of observed vegetation
patterns; (3) individuate the relative importance of each pro-
cess in pattern formation; and (4) capture the relationships
between vegetation patterns and the climatic, hydraulic and
topographic characteristics of the system.

2 Hypotheses

By “vegetation patterns” we refer to the non-random arrange-
ment of vegetated and bare patches of soil on the landscape,
where non-randomness indicates any spatial distribution of
patches that deviates from a purely spatially random distri-
bution.

Our first hypothesis is that vegetation patterns emerge as a
result of physical, chemical and physiological feedbacks be-
tween vegetation, hydrologic and climatic processes, and soil

Fig. 1. Vegetation patterns typical shapes and dimensions (edited
from D’Odorico et al., 2006).

properties, and that those feedback processes are amenable to
quantitative description and modeling.

Our second hypothesis is that patterns develop because
those feedback processes tend to make certain regions in the
neighborhood of an existing clump of vegetation more con-
ducive to the establishment of additional vegetation (or not).

Finally, our third hypothesis is that the spatial distribu-
tion of vegetation depends on the spatial distribution of
soil moisture and energy (which, in turn, is influenced by
the vegetation itself). Thus, physiological and hydrologi-
cal processes conducive to local decreases in the available
soil water and nutrients will tend to inhibit vegetation es-
tablishment and those conducive to locally maintaining or
increasing soil water and nutrients will tend to promote
vegetation establishment.

In general, the previous hypotheses imply that the spatial
structuring of vegetation is the result of a series of process
that optimize the use of the available resources (Schymanski
et al., 2009, 2010)

3 Methods

We are interested in analyzing vegetation agglomerates
emerging at the hillslope scale and whose typical dimen-
sions are of the order of magnitude of 100 to almost 102 m
(Fig. 1). Hence, we simulate the climate–soil–vegetation dy-
namics of a hillslope on a two-dimensional gridded domain
of area 105–107 m2. In order to characterize self-organized
spatial structures, we subdivide the study domain into a grid
of pixels of area 100–102 m2.

Water and energy fluxes occur mainly in the vertical di-
rection, across the interface between soil and atmosphere.
Spatial interactions between vegetation agglomerates, and
mutual interactions between soil, water fluxes, and vegeta-
tion, on the other hand, mostly occur in the horizontal direc-
tions. Therefore, the description of these coupled processes
requires a 3-D dynamical model. However, following a suc-
cessful approach used to investigate the impact of climate
on the vegetation in drylands (Tietjen et al., 2009), here we
model these 3-D interactions by means of a combination of a
1-D water balance model to describe the vertical fluxes, cou-
pled to a 2-D model to capture the horizontal interactions.

Hydrol. Earth Syst. Sci., 17, 63–84, 2013 www.hydrol-earth-syst-sci.net/17/63/2013/



R. Foti and J. A. Ramı́rez: Formation and evolution of vegetation patterns 65

Although observed vegetation patterns show variability
over time, their statistical properties do not change drasti-
cally within a year and from year to year, suggesting that
patterns are the result of adaptation to the long-term av-
erage characteristics of the soil–climate system rather than
a response to short-term disturbances. Under the assump-
tion of stationary climate, therefore, we use long-term aver-
age climatic and hydraulic conditions in order to determine
the spatial configurations of vegetation and associated water
and energy fluxes that are in long-term equilibrium with the
soil–climate system.

3.1 Procedure schematization

Because the long-term average vegetation density (i.e., the
portion of a given area which is covered by vegetation)
at a certain location in space is the long-term response of
the climate–soil–vegetation system to a set of environmen-
tal forcings (e.g., precipitation, temperature, solar radiation),
knowledge of the spatial arrangement of the environmental
forcings over a certain domain can be used to determine the
configuration of vegetation density over the same domain.
Therefore, we seek to determine a spatial configuration of
fluxes and vegetation density that simultaneously satisfies the
water and energy budgets both at the global (i.e., for the en-
tire study domain) and the local (i.e., for each pixel) scales,
while taking into account lateral interactions (i.e., between
adjacent pixels) between vegetation, climate and soil.

However, the aforementioned spatial configuration of veg-
etation and water fluxes across the study hillslope is, a priori,
unknown. In order to find it, that is, in order to determine the
local-scale fluxes and vegetation density that are in equilib-
rium with the hillslope-scale conditions, we use an iterative
procedure. For a given set of initial climatic conditions and
soil properties, long-term averages of annual fluxes of water
and latent heat of evapotranspiration, as well as of vegeta-
tion density, are estimated at the local scale for each one of
the pixels of the study domain. Once the vertical fluxes and
vegetal density are estimated at the local scale through the
vertical water budget, the mutual lateral effects of vegetation
and fluxes are evaluated. As mentioned before, those mutual
effects are predicated on the assumption that vegetation and
fluxes exert mutual feedback within the hillslope. Evaluation
of lateral effects allows estimation of an updated set of in-
puts (e.g., water input from uphill, feedback of soil moisture
on albedo) and soil parameters (e.g., feedback of vegetation
density on soil hydraulic conductivity) that are used to per-
form the subsequent iteration. A flow chart of the simulation
procedure is provided in Fig. 2.

Because the configuration of the local (i.e., at the pixel
scale) water fluxes is obtained by redistributing the available
global (i.e., of the entire domain) water input, the global wa-
ter budget is actually satisfied at each step of the iterative
procedure. Analogous reasoning can be made with respect to
the latent heat evapotranspiration flux.

3.2 1-D water budget: vertical fluxes and forcings

The water budget at any pixel of our study domain is quan-
tified using a one-dimensional physically based mechanis-
tic representation of soil moisture dynamics as forced by a
stochastic climate (Eagleson, 1978a, b, c, d, e, f, g). It de-
scribes the relationship between annual amounts of precip-
itation, runoff (both surface and groundwater), infiltration
and evapotranspiration as a function of volumetric soil mois-
ture and soil and vegetation characteristics (additional details
are provided in Appendix). In doing so, the model assumes
that the soil–vegetation system is in a long-term equilibrium
with climate, and that the value of long-term equilibrium soil
moisture maximizes vegetal biomass and minimizes vege-
tation stress (Eagleson, 1978f). It is indeed the assumption
of long-term climate–soil–vegetation equilibrium that made
Eagleson’s model our optimal choice for the characteriza-
tion of the 1-D vertical dynamics. Although it can be argued
that the short-term behavior of the biotic system is driven by
short-term climatic forcings (e.g., few large pulses of pre-
cipitation), the vegetation patterns we are interested in are
observed across long time spans, suggesting that they are the
result of a long-term adaptation process.

Eagleson’s water balance model characterizes the soil in
terms of the following hydraulic parameters: total porosity,
pore size distribution index, surface retention capacity, satu-
rated hydraulic conductivity and saturated matric potential.
The model describes the climate drivers as a function of:
mean storm intensity, mean storm duration, mean time be-
tween storms, rainy season length, mean and variance of
storm depth, mean annual precipitation and mean annual
potential evapotranspiration.

In Eagleson’s model, the role of vegetation in the water
balance is captured through the plant transpiration efficiency,
kv, defined as the ratio between the potential rate of transpira-
tion to the potential rate of bare soil evaporation and through
the fractional vegetation cover or vegetation density,M.

The output of the model is characterized by long-term av-
erages of the water fluxes (i.e., evapotranspiration, surface
runoff and groundwater runoff) as well as the long-term equi-
librium soil moisture content and the vegetation density. The
estimation of vegetation density and water fluxes is predi-
cated on the assumption that the soil–vegetation system is
in a long-term equilibrium with climate, and that the value
of long-term equilibrium soil moisture maximizes vegetal
biomass and minimizes vegetation stress (Eagleson, 1978f).
The water balance model is summarized in Eqs. (1)–(22) of
Eagleson (1978f).

3.3 2-D spatial feedbacks characterization: horizontal
fluxes and interactions

The climate–soil–vegetation system is very complex and
governed by strong feedbacks between all elements of
the system. Plants affect the physical structure of the
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Fig. 2. Schematic of the 1-D vertical budget model and the 2-D lateral interactions with flowchart of the simulation procedure of the soil–
climate–vegetation system.

soil–vegetation system by perturbing the thermal and aero-
dynamic properties of the canopy layer as well as the soil
structure (i.e., texture, porosity, connectivity, hydraulic con-
ductivity, etc.). These perturbations in turn lead to changes in
the water and energy fluxes in the neighborhood of the plant
that may promote or inhibit the establishment of surround-
ing vegetation. We focus only on a subset of factors that we
hypothesize are the main drivers of the process of vegeta-
tion pattern formation and evolution. These factors are: (1)
modification of the spatial distribution of soil hydraulic con-
ductivity by vegetation, (2) infiltration of surface runoff, a
phenomenon known as run-on infiltration, (3) spatial recon-
figuration of soil albedo, (4) spatial soil moisture redistribu-
tion due to roots, and (5) redistribution of nutrients.

Although fire, livestock, and other such external forces
may be the main cause determining vegetation patterns in
some instances, vegetation patterns as those shown in Fig. 1
are observed even in the absence of such forces. Therefore,
our work focuses on the feedbacks and interactions between
vegetation, soil, and hydro-climatic processes only.

3.3.1 Effect of vegetation on soil hydraulic conductivity

The soil hydraulic characteristics vary depending on the pres-
ence or absence of vegetation and on the evolution of vege-

tation density. Plants influence erosion and sediment trans-
port by limiting the effect of wind and slowing the surface
runoff velocity, therefore constituting areas of potential sedi-
ment accumulation. In addition, the superficial soil of a veg-
etated area is much richer in litter and organic debris, there-
fore it is richer in nutrients and more porous and permeable.
Permeability of deeper layers is also affected by the presence
of roots and rotting roots, which create preferential routes
for infiltrated water (Boaler and Hodge, 1962; Bromley et
al., 1997). All of these effects have been observed in areas
characterized by vegetation patterns, where vegetated soil ex-
hibits higher permeability than adjacent bare soil, which of-
ten has a highly impermeable superficial crust (Valentin et
al., 1999). The range of hydraulic conductivity of an area
characterized by vegetation patterns can be very wide, often
spanning several orders of magnitude and subjected to ran-
dom variations within very short distances (Bromley et al.,
1997). Soil permeability at a site, therefore, is a function of
vegetation density (see schematization in Fig. 3a).

We model the saturated hydraulic conductivity as a con-
tinuous function of vegetation densityMX at the given point
X as follows:

KsX =

i=10∑
i=1

[
ai + bi · (MX − 0.1 · i) · I[0.1(i−1),0.1i) (MX)

]
,
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Fig. 3. Qualitative schematization of the interactions between soil,
climate and vegetation.(A) Effect of vegetation on soil permeabil-
ity. (B) Effect of vegetation on run-on infiltration.(C) Effect of soil
moisture on soil reflectance.(D) Effect of roots on soil moisture.
(E) Other spatial interactions (effect of vegetation on wind, light,
nutrients, etc.).

(1)

whereI[α,β)(M) is the indicator function such that:

I[α,β) (M)=

1,α ≤M < β

0, otherwise
.

(2)

The choice of the coefficientsai andbi of Eq. (1) is aimed at
obtaining a piecewise continuous function spanning a range
of saturated hydraulic conductivity values compatible with
observations as reported in the literature (Bromley et al.,
1997) which, for the sites where vegetation patterns emerge,
are typically found in the interval 10−6 to 10−3 cm s−1 over
a range of vegetation density ranging between 0 and 1.

3.3.2 Run-on infiltration of surface runoff

A non-uniform spatial distribution of hydraulic conductivity
affects both the vertical water fluxes as well as the water in-
put of downstream points through the process of run-on infil-
tration. Surface runoff plays a key factor in the development
of soil and vegetation. Part of the surface runoff can pond
in small depressions or be trapped in areas of litter deposi-
tion downhill and infiltrate (Bromley et al., 1997) (see also
schematization in Fig. 3b). The amount of surface runoff that

Fig. 4. (A), (B), (C) Aerial photographs of natural patterns (Tiger
Bushes) in Niger (13◦20′ N, 2◦04′ E). (D), (E), (F) Digitized rep-
resentation of the vegetation covers of the natural patterns corre-
sponding respectively to(A), (B) and(C). (G), (H), (I) Simulated
patterns.

infiltrates depends on many factors, such as soil properties,
topography, overall water input, characteristics of the rain
event and so on. The runoff produced accumulates along the
hillslope, causing erosion and sediment transport.

Thus, the long-term water balance at each pointX consid-
ers a water input,PX, given by the sum of the long-term av-
erage precipitationmPA atX and the average surface runoff,
RsY , coming from the uphill locationY :

PX =mPA +RsY,

Y =X+ ∇FX · ds
, (3)

whereFX is the topographic elevation function of the domain
evaluated at the pointX and∇ is the gradient operator.

3.3.3 Effect of vegetation on albedo

Albedo is a characteristic of the reflecting surface and,
among other things, depends on soil moisture and on vegeta-
tion characteristics including vegetation density. Wetter and
more densely vegetated soils are usually darker and less re-
flective (Fig. 3c) and, therefore, are characterized by lower
albedo. While albedo may have both a negative and a posi-
tive dependence on vegetation density depending on the color
of bare soil that characterizes the region of study (Rechid
et al., 2009), its dependence on soil moisture is clearer, wet
terrain usually being less reflective than dry terrain (Lobell
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and Asner, 2002; Wang et al., 2005). For soil–vegetation sys-
tems, less absorbed net energy means less available energy
for sensible heating and for evaporating water. Consequently,
all else being equal, higher albedo corresponds to lower po-
tential rate of evapotranspiration.

We express the total albedo,ρT, as an exponentially de-
creasing function of the long-term mean of soil moisture such
that:

ρTX = ρ∗

TX −A ·

[
e−s0X/B − e−1/B

]
, (4)

whereρ∗

T is the total (i.e., all-frequency) surface albedo for
saturated soil ands0X is the soil moisture, whileA andB
are coefficients whose value depends on the properties of the
surface. This formulation accounts explicitly for the depen-
dence of albedo on soil moisture and implicitly for its depen-
dence on vegetation through the dependence of soil moisture
on vegetation density. For our simulations,ρ∗

T was set to 0.25,
A to 0.11 andB to 0.3 (Lobell and Asner, 2002).

3.3.4 Soil moisture redistribution by roots

The root configuration is peculiar of each vegetation species
and is affected by the plant’s age and health, as well as the
soil characteristics, water availability, temperature, and other
environmental factors. Developing a model of moisture re-
distribution by roots that encodes all of these spatially and
temporally varying effects is a complex task that goes be-
yond the scope of this work. We propose a basic approach
based on the simplifying assumption that the root character-
istics of the vegetation populating the domain are spatially
uniform and that soil moisture can be rerouted out of a pixel
into another by root networks only if they extend across the
pixel borders (Fig. 3d). We model the net exchange of water
input,PX, at each point as:

dP

dX

∣∣∣∣
X

=
ξR − 1

4
·

d(M · kv ·P)

dX

∣∣∣∣
X

, (5)

wherekv represents the transpiration efficiency andξR repre-
sents the degree to which roots extend over the four adjacent
pixels as the ratio of the rooted area to the characteristic area
of the pixel:

ξR =
Aroots

Acell
(6)

The parameterξR defines a range of root actions and allows
us to take into account the process of subsurface water trans-
fer between adjacent pixels promoted by root systems.

Equation (5) implies that roots spreading across the bor-
ders of a cell can uptake a fraction of the soil moisture of the
neighboring cell in a way that is proportional (proportionality
being given by the parameterξR) to the vegetation density of
the contiguous pixelsand to their transpiration efficiencies.

3.3.5 Effect of vegetation on transpiration efficiency

The interactions between individual plants are multifold and
may lead to positive and negative feedbacks on vegetation
density. While, on the one hand, plants compete for water and
nutrients through roots and for light through foliage (Barbier
et al., 2008; Holmgren et al., 1997), they can also protect
each other from extreme fluctuations of temperature and hu-
midity, from the action of surface runoff, from mechanical or
herbivore damages, and can improve soil properties through
litter formation, augmented soil porosity and nutrient replen-
ishment (Holmgren et al., 1997; Borgogno et al., 2009) (see
also Fig. 3e).

In this study we express the cumulative effect of those in-
teractions as a function of their impact on the transpiration ef-
ficiency,kv, following the reasoning that the net result of fa-
cilitation/competition should be to improve/worsen water use
efficiency by increasing/decreasing the quantity of biomass
that can be produced out of a certain amount of transpired
water.

Therefore, we model the transpiration efficiency,kvX, at a
certain pointX, as a function of: a base value for the tran-
spiration efficiency,kv; the local vegetation density,MX; the
vegetation density of surrounding points,MU,MD,ML ,MR,
the hillslope-scale vegetation density at the initial time step,
M; the local surface runoff,RsX; the surface runoff of imme-
diately upslope and downslope,RsU , RsD; and the hillslope-
scale average surface runoff for uniform vegetation density
at the initial step,Rs. This function has the following form:

kvX = max
{
0.5,min

{
1,kv +

[
(1kvX)1 + (1kvX)2

+
(
+(1kvX)31kvX

)
4 + (1kvX)5

]}}
, (7)

where:

(1kvX)1 = −α1 ·
MX −M

M
(8)

(1kvX)2 = −α2 ·
MU +MD +ML+MR − 4 ·M

M
,

where


U =X+ ∇FX · ds
D =X− ∇FX · ds
L=X+2X · ds
R =X−2X · ds
where2X⊥∇F

(9)

(1kvX)3 = −α3 ·
Rs−RsX

mPA
(10)

(1kvX)4 = −α4 ·
RsU −RsX

mPA
,whereU =X+∇FX ·ds (11)

(1kvX)5 = α5 ·
RsD −RsX

mPA
,whereD =X− ∇FX · ds (12)
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Equations (8) and (9) describe the change of the local tran-
spiration efficiency at pointX as a function of the vegetation
density at both the point itself and at the adjacent ones. The
presence of the negative sign in Eqs. (8) and (9) derives from
the fact that the presence of vegetation in the given pixel and
in its neighborhoods is assumed to produce a facilitation ef-
fect for further establishment of vegetation.

Equations (10), (11) and (12), on the other hand, reflect
the effect of surface runoff through the processes of erosion
and sedimentation of both soil particles and nutrients. The
negative sign in Eqs. (10) and (11) are suggested by the fol-
lowing considerations: (1) when a given location (i.e., pixel)
is subjected to a surface runoff,RsX, larger than the average
surface runoff corresponding to uniform density,Rs, it is con-
currently subjected to soil erosion and nutrients deprivation;
(2) when a given pixel is subjected to a surface runoff,RsX,
lower than the surface runoff of the upstream pixel,RsU , it
benefits from the partial deposition of incoming soil particles
and nutrients and (3) when a given pixel is subjected to a sur-
face runoff,RsX, lower than the downstream pixel,RsU , it is
subjected to an accelerated superficial flow which exposes it
to nutrients and soil loss.

4 Simulation of the system

The climate–soil–vegetation system was simulated under
various combinations of climatic forcing, soil parameters and
lateral interaction functions (Eqs. 8 through 12) in order to
explore the conditions controlling the mechanism of pattern
emergence and evolution. We present results of the simula-
tion of the system on a study domain of 50x50 pixels, repre-
senting a hillslope of about 105 m2. Boundary conditions of
the system are: (1) for all domain borders, fractional vegeta-
tion coverage is kept equal to the initial uniform solution (ob-
tained by using the domain-averaged inputs and equal to the
vegetal density of each pixel at the preliminary step of simu-
lation); (2) for upstream and lateral borders, water fluxes are
kept equal to the initial uniform solution; and (3) free flow
condition for the downstream boundary, allowing complete
drainage downhill.

We used the model both to simulate real sites character-
ized by the presence of vegetation patterns and for a non
site-specific system (the latter in order to evaluate the system
sensitivities to each mechanism considered.) Unless other-
wise stated, simulations were carried out on a constant slope
domain whose hydraulic properties and climatic forcing are
reported in the “base conditions” column of Table 1. In order
to incorporate the typical random spatial variability of soil
conductivity (Bromley et al., 1997), a random component is
superimposed to the value ofKsX(n) obtained with Eq. (1).

5 Results and discussion

5.1 Spatial analysis

In order to compare different typologies of patterns and ob-
jectively measure the individual impact of the climatic and
hydraulic properties of the system on pattern emergence and
characteristics, we explore the following spatial characteris-
tics of vegetation fields:

– Probability density functions (PDFs) and conditional
PDFs of vegetation density at the pixel level.

– Power spectral density functions of the vegetation den-
sity fields.

– Number, size and shape of vegetation clusters.

5.1.1 PDFs and conditional PDFs of vegetation density

PDFs of the vegetation density at the pixel scale can be used
to evaluate how different a given vegetation field is from the
typical field that would be produced if the plants were dis-
tributed randomly and independently in space. In this case,
we may assume that the vegetation density of each pixel is a
one to one function of the number of plants present within the
pixel itself. Following this assumption, the PDF of the pixel
vegetation density throughout the domain would be normally
distributed with mean equal to the average pixel vegetation
coverage1. For self-organized vegetation patterns, the pres-
ence of a clump of vegetation at a certain point in space has
an impact on the vegetation establishment in its neighbor-
hood. Therefore, presence of self-organized structures can be
inferred from the analysis of conditional PDFs of the vege-
tation density. We do so by evaluating the PDF of vegetation
density for all those pixels having at least one neighbor char-
acterized by vegetation density higher than the overall do-
main average. The same conditioning is done on the neigh-
borhood of a pixel characterized by vegetation density lower
than the domain average. In order to detect spatial anisotropy,
conditional PDFs are evaluated for the x-direction (by look-
ing at the vegetation density of the two adjacent pixels in
the x-direction), for the y-direction, and for all directions.
The analysis of the conditional PDFs along the two orthog-
onal directions provides a useful metric to investigate spatial
anisotropy. For example, the x-direction PDF conditional on
neighbors having larger than average density investigates the
correlation between vegetation groups and their neighbors
along the x-axis; if the x-direction conditional PDF is shifted
towards larger densities when compared to both the overall
PDF and the y-direction conditional PDF, it is evidence that
vegetated patches tend to extend along the x-direction.

1 This is a consequence of the Central Limit Theorem.

www.hydrol-earth-syst-sci.net/17/63/2013/ Hydrol. Earth Syst. Sci., 17, 63–84, 2013
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Table 1.Climate, soil and vegetation properties of the system.

Niger tiger bushes Somalia bands Base conditions

Soil

Total soil porosity,n [-] 0.4 0.42 0.4
Pore size distribution index,m [-] 0.4 0.42 0.4
Pore disconnectedness index,c [-] 8.0 7.8 8.0
Surface retention capacity,h0 [cm] 0.1 0.1 0.1
Saturated matric potential,9(1) [cm] 20 14 25
Depth of the water table,Z [cm] ∞ ∞ ∞

Climate

Mean storm duration,mtr [days] 0.05 0.2 0.2
Mean time between storms,mtb [days] 10 10 10
Mean number of storms,mv [-] 14.9 14.7 19.6
Length of the rainy season,mτ [days] 150 150 200
Parameter of the gamma distribution of storm depth,k [-] 0.6 0.6 0.6
Surface temperature [◦K] 300 300 300
Screen height temperature [◦K] 300 300 300
Specific humidity [-] 0.01 0.01 0.01
Cloud fractional coverage [-] 0.0 0.1 0.1
Surface net radiation [W m−2] 280 260 270
Mean precipitation,mPA [cm] 56 16 40

Vegetation

Base value of transpiration efficiency, 0.75 0.75 0.75

5.1.2 Analysis of vegetation clusters

We arbitrarily define a cluster of vegetation as a group of ad-
jacent pixels characterized by vegetation density larger than
the domain average density. In defining a cluster, only those
pixels in the von Neumann neighborhood of any given pixel
are considered. For each cluster defined as above, we cal-
culate the size,Si , (that is, the number of pixels that com-
pose theith cluster), the span along the x- and y-directions,
the shape ratio (as the ratio between the span along the x-
direction and the span along the y-direction) and the fraction
of area filled (as the ratio between the cluster size and the
product between the span along the two directions). We also
calculate the total number of clusters present in the whole
domain.

This definition of clusters allows us to compare observed
and simulated vegetation clumps with the clumps resulting
from a homogeneous binomial process with probabilityp
such that:

p =

NCLUSTERS∑
i=1

Si

SizeDOMAIN
. (13)

We arbitrarily define a vegetation pattern as a clustered con-
figuration whose average cluster size is higher than the 0.975
quantile of the cluster size distribution of the correspond-
ing (through thep found in Eq. 13) uniform binomial pro-

cess. In addition, based on the statistical characteristics of
the clumps of vegetation, we distinguish three types of pat-
tern as follows:

– Spots: a pattern whose shape ratio is within the range
0.6–1.6.

– Bands: a pattern whose shape ratio is lower than 0.6 or
higher than 1.6.

– Labyrinths: a pattern whose largest cluster is embedded
in a rectangular area of at least 75 % of the domain and
whose fraction of area filled is less than 0.75.

This classification implies that spots are structures whose di-
mensions in the x- and y-directions are similar (and, thus,
characterized by shape ratios close to 1), while bands are
characterized by having a dominant dimension (either on x
or y). Labyrinthine patterns, on the other hand, are charac-
terized by a few big clumps of vegetation (thus the reason
why we look at the areal span of the largest cluster) embed-
ding several patches or stripes of bare soil (thus the reason
why we look at the area of the cluster effectively filled with
vegetation).

5.2 Simulated patterns versus natural patterns

Below, we present a quantitative comparison between simu-
lated vegetation patterns and natural patterns observed in two
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African locations, namely an area of Niger near Niamey and
a region of Somalia near Garoowe.

5.2.1 Niger

The area situated about 45 km south of Niamey, the capital
of Niger, is known for the characteristic vegetation patterns
known as tiger bushes. The average annual precipitation of
the region is 56 cm, half of which falls at an intensity higher
than 35 mm h−1 and a third above 50 mm h−1 (Bromley et
al., 1997). Soil is gravelly sandy loam and is highly prone
to crusting in bare areas, while vegetation is concentrated in
stripes of a few tens of meters wide and a few hundred meters
long (Bromley et al., 1997).

The model parameters for these simulations correspond to
the climatic and hydraulic characteristics of the area reported
in the above literature and are shown in Table 1 (values of
temperature, specific humidity and cloud coverage in the ta-
ble were arbitrarily assigned in order to match the observed
value of potential evapotranspiration). In addition, soil hy-
draulic conductivity at each pixel was calculated as a func-
tion of the vegetation density at that pixel and was set to
span a range of 3× 10−7 to 9.5× 10−6 m s−1 for the crusted
bare soil and a full canopy coverage, as suggested by field
measurement (Bromley et al., 1997) and estimations from
grain analysis (Casenave and Valentin, 1992). Values for the
parameters of Eq. (4) through Eq. (12) are provided in Ta-
ble 2. Since the above literature does not provide enough in-
formation for the estimation of all the parameters listed in
the table, the remaining parameters (in particular the ones of
Eq. 8–12) values were chosen within ecologically reasonable
bounds (see Sect. 3.3.5) to tune the model output in order to
qualitatively match the observations.

Google Earth aerial photographs of this region of Niger
were used to infer field observations. A few random study
areas were sampled from the vast region characterized by the
presence of tiger bushes, all of which have a surface area of
about 105 square meters (see Fig. 4). The vegetation den-
sity at every pixel was estimated from the gray color levels
of the digitized picture pixels mapped to the intervalM = 0
for those pixels characterized by bare soil, andM = 1 for
those characterized by full coverage. Photos, whose original
resolution was of about 400× 400 pixels, were then further
processed in order to match the resolution of our study grid.
This was done by superimposing our study grid on the orig-
inal photo and averaging the fractional coverage of the set
of pixels of the original photo that fell within the bounds of
each pixel of our 50× 50 grid.

An initial qualitative comparison between simulations and
observations is presented in Fig. 4, where three original aerial
photos are shown together with their digitized vegetation
density maps and three sample results from our simulations.
The figure shows a good qualitative agreement between nat-
ural and simulated patterns in terms of typical shape and di-

mension of the vegetation structures and in the overall spatial
configuration of the patterns within the study domain.

Results of several simulations exhibited a noteworthy sen-
sitivity of the emerging patterns to changes in the spatial in-
teraction functions and in particular to the dependence ofkv
(Eq. 9) and hydraulic conductivity on vegetation (Eq. 1). Dif-
ferences between patterns in Fig. 4g and f, for example, are
due to changes of about 5% in the coefficients of the Eq. (9);
Fig. 4h was obtained by increasing the soil conductivity in
the interval corresponding to a fractional cover only in the
range of 0.3 to 0.5 by about 10 %, keeping the overall span
of the range fixed between 3× 10−7 to 9.5× 10−6 m s−1.
The above considerations suggest that the combination of
the mechanisms of run-on infiltration (mainly driven by plant
feedback on soil conductivity) and facilitation (due to plants’
improved efficiency in water use) is extremely important not
only for the formation of patterns in the study area, but also
for their shape and dimension. Thus, given that the global
(i.e., climatic) conditions are favorable to pattern formation,
the peculiar patterning is driven by the local feedbacks.

An analysis of the spatial distribution of water fluxes and
soil moisture content is provided in Fig. 5. In particular,
Fig. 5a shows the value of the average effective input at each
pixel, computed as average precipitation plus the run-on and
adjusted to account for the effect of roots as in Eq. (5). As
shown, many areas receive an amount of water several times
higher than the actual mean precipitation from the low per-
meable pixels located upstream, in accordance with field ob-
servation of concentration factors (ratio between the effec-
tive amount of water received and the actual precipitation)
as high as 3 and 4 (Bromley et al., 1997). In addition, the
higher values of groundwater runoff observable in correspon-
dence of the vegetated patches (shown in Fig. 5b) confirm
that vegetation favors the infiltration of the hillslope run-on.
Taken together, the extra water input from upstream and the
enhanced permeability of the more vegetated soil trigger a
positive feedback for further vegetal biomass establishment,
confirming that surface water redistribution due to infiltra-
tion of run-on is one of the main drivers of pattern formation,
(Boaler and Hodge, 1962; Valentin et al., 1999; Casenave
and Valentin, 1992). The latter result will be further investi-
gated later in the paper. In accordance with published results
(Borgogno et al., 2009), our simulation shows that the aver-
age soil moisture content is higher in the areas under vege-
tated patches (especially in their uphill side) than in the sur-
rounding bare soil (Fig. 5c); this, in turn, creates suitable
conditions for the sustainment and/or further development
of vegetation.

As shown in Fig. 6, both observed and simulated PDFs of
vegetation density are bimodal, supporting the observation
that vegetation density is not normally distributed around the
mean, as it would be expected if plants were spatially dis-
tributed as a homogeneous point process across the domain.
Bimodality is more evident when the PDF of vegetal cover is
conditioned on the neighbor pixel having a vegetation cover
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Table 2.Model parameters.

Niger tiger bushes
Somalia bands Base conditions

A B C

a1 [cm s−1] 3 × 10−5 3× 10−5 3× 10−5 9× 10−6 2× 10−5

a2 [cm s−1] 5 × 10−5 5× 10−5 5× 10−5 1× 10−5 4× 10−5

a3 [cm s−1] 8 × 10−5 7× 10−5 7× 10−5 3× 10−5 8× 10−5

a4 [cm s−1] 3 × 10−4 4× 10−4 4.5× 10−4 1× 10−4 3× 10−4

a5 [cm s−1] 6 × 10−4 6.5× 10−4 6.8× 10−4 7× 10−4 8× 10−4

a6 [cm s−1] 8 × 10−4 8× 10−4 8.5× 10−4 9× 10−4 9× 10−4

a7 [cm s−1] 8.2× 10−4 8.2× 10−4 8.7× 10−4 9.1× 10−4 9.2× 10−4

a8 [cm s−1] 8.4× 10−4 8.4× 10−4 8.9× 10−4 9.2× 10−4 9.4× 10−4

a9 [cm s−1] 8.6× 10−4 8.6× 10−4 9.1× 10−4 9.3× 10−4 9.6× 10−4

a10 [cm s−1] 8.8× 10−4 8.8× 10−4 9.3× 10−4 9.4× 10−4 9.8× 10−4

b1 [cm s−1] 2 × 10−4 2× 10−4 2× 10−4 1× 10−5 2× 10−4

b2 [cm s−1] 3 × 10−4 2× 10−4 2× 10−4 2× 10−4 4× 10−4

b3 [cm s−1] 2.8× 10−3 3.3× 10−3 3.8× 10−3 7× 10−4 2.2× 10−3

b4 [cm s−1] 3 × 10−3 2.5× 10−3 2.3× 10−3 6× 10−3 5× 10−3

b5 [cm s−1] 2 × 10−4 1.5× 10−3 1.7× 10−3 2× 10−3 1× 10−3

b6 [cm s−1] 2 × 10−4 2× 10−4 2× 10−4 1× 10−4 2× 10−4

b7 [cm s−1] 2 × 10−4 2× 10−4 2× 10−4 1× 10−4 2× 10−4

b8 [cm s−1] 2 × 10−4 2× 10−4 2× 10−4 1× 10−4 2× 10−4

b9 [cm s−1] 2 × 10−4 2× 10−4 2× 10−4 1× 10−4 2× 10−4

b10 [cm s−1] 2 × 10−4 2× 10−4 2× 10−4 1× 10−4 2× 10−4

α1 0.01 0.01 0.01 0.03 0.01
α2 0.019 0.02 0.018 0.05 0.02
α3 0.03 0.03 0.03 0.04 0.03
α4 0.03 0.03 0.03 0.04 0.03
α5 0.09 0.09 0.09 0.08 0.09
ξR 1.5 1.5 1.5 1.25 1.5

Fig. 5. (A) Ratio between the effective amount of water received and annual precipitation for the simulated pattern in Fig. 4g.(B) Long-term
groundwater runoff on the study domain for the simulated pattern in Fig. 4g.(C) Long-term soil moisture content during the rainy season on
the study domain for the simulated pattern in Fig. 4g.

higher than the domain average. The latter suggests that the
vegetal density of each pixel is more likely to be higher
than the average, providing that it is in the neighborhood
of a pixel whose cover is also higher than the spatial aver-
age. The opposite is true when the condition is on the neigh-
bor pixel having a density that is lower than the average. A
slight prevalence of structures in the x-direction (perpendic-
ular to the domain slope) is apparent from the analysis of the

conditional PDFs for the pattern under analysis. This is ap-
parent from both the qualitative observation of natural and
simulated structures (Fig. 4a, d and g) and from the anal-
ysis of the directional conditional PDF in Fig. 6. Looking
at the interval 0<M < 0.1, in fact, the PDF of the vege-
tal density of pixels, being in the x-direction neighborhood
of a pixel with vegetal density higher than the domain aver-
age, shows a lower density than the y-directional conditional
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Fig. 6. Global and conditioned PDF analysis of the Niger patterns. Panels(A/B): natural, and(C/D): simulated vegetation; panels(A/C):
density higher than global average, and(B/D): density lower than global average.(A) PDFs of vegetation density for the natural pattern
shown in Fig. 4a (as digitized in Fig. 4d): global PDF (black line) and PDFs of vegetation density conditioned on having a neighbor pixel with
vegetation density higher than the global average for all directions (blue line), x-direction (red line) and y-direction (green line).(B) PDFs of
vegetation density for the natural pattern shown in Fig. 4a (as digitized in Fig. 4d): global PDF (black line) and PDFs of vegetation density
conditioned on having a neighbor pixel with vegetation density lower than the global average for all directions (blue line), x-direction (red
line) and y-direction (green line).(C) PDFs of vegetation density for the simulated pattern shown in Fig. 4g: global PDF (black line) and
PDFs of vegetation density conditioned on having a neighbor pixel with vegetation density higher than the global average for all directions
(blue line), x-direction (red line) and y-direction (green line).(D) PDFs of vegetation density for the simulated pattern shown in Fig. 4g:
global PDF (black line) and PDFs of vegetation density conditioned on having a neighbor pixel with vegetation density lower than the global
average for all directions (blue line), x-direction (red line) and y-direction (green line).

Fig. 7. Power spectral densities of the vegetation density field; fre-
quencies (in the horizontal axis) are expressed in terms of number
of wavelengths present within the domain length and width.(A)
Average of the 1-D power spectral densities of the vegetation den-
sity for the natural pattern shown in Fig. 4a along the x-direction
(black line) and y-direction (red line).(B) Average of the 1-D power
spectral densities of the vegetation density for the simulated pattern
shown in Fig. 4g along the x-direction (black line) and y-direction
(red line).

PDF. Conversely, for the same interval of fractional cover-
age, higher density is shown for the PDF of the vegetal den-
sity of pixels being in the x-direction neighborhood of a pixel
with vegetal density lower than the domain average.

Fig. 8. (A) Aerial photograph of a natural vegetation pattern in So-
malia (7◦43′ N, 48◦02′ E); (B) Digitized representation of the veg-
etation cover of the natural pattern in(A). (C) Sample simulated
pattern.

Spectral analysis of the vegetation density fieldM(x,y) is
provided for both natural and simulated patterns in Fig. 7.
Average of the one-dimensional spectral densities, evaluated
for both the x-direction and the y-direction, are provided
along with the two-dimensional power spectrum. Peak spec-
tral densities appear in correspondence with the lower fre-
quencies, capturing the presence of the large-scale structures.
In agreement with the analysis of the directional PDFs, spec-
tral analysis confirms the presence of a slight anisotropy in
the pattern shape, for both the natural and the simulated case,
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by detecting a prevalence of structures recurring at frequen-
cies between 2 and 6 (that is, 2 to 6 structures per domain
length) along the y-direction.

The analyses of the characteristics of the vegetation clus-
ters of both natural and simulated vegetation fields, whose
results are reported in Table 3, show that two out of three
natural patterns (Fig. 4d and e) fall within our definition of
spots, while the pattern in Fig. 4f is labyrinthine. Simulated
patterns, however, are all spotted, even though the one shown
in Fig. 4i, whose largest cluster covers the 68 % of the do-
main, almost meets the requirement for being classified as
labyrinthine.

5.2.2 Somalia

Vegetation stripes are a widespread occurrence on the So-
maliland plateau (Boaler and Hodge, 1962) and in the Punt-
land area (Borgogno et al., 2009). The area is semi-desert
and characterized by an arid climate with precipitation highly
variable in space and time (Muchiri, 2007). The area selected
is located about 30 km west of Garoowe, the administrative
capital of the Puntland region of Somalia and is characterized
by annual precipitation ranging between 10 and 20 cm yr−1,
mostly occurring in the period of May–September (Muchiri,
2007). Dominant soils are Gypsisol and Calcisol (Venema,
2007), according to the FAO definition, and are characterized
by hydraulic conductivity that can be as low as a few cm/day,
but can span two orders of magnitude. These kinds of soil
are also very susceptible to crusting and cracking (Driessen
et al., 2001).

A study area of about 5× 105 m2, located at 7◦43′ N,
48◦02′ E and characterized by the presence of vegetation
stripes was selected from the Puntland area near Garoowe.
In comparison to the Niger case, the climate is drier (pre-
cipitation being less than one third that of the Niger case)
and patterns – in this case well-defined stripes – occur at a
slightly larger scale. In accordance with the climatic and soil
information reported above, the simulations of the area used
the parameters shown in Tables 1 and 2. Results of the simu-
lations were compared to the observed patterns, as shown in
Fig. 8 through Fig. 10.

As done for the case of the Niger tiger bushes, a sam-
ple aerial photograph was processed in order to obtain es-
timates of the vegetal density at a 50× 50 study grid, and
compared with the simulated results (Fig. 8). The comparison
shows a good qualitative match between observed and sim-
ulated vegetal spatial configurations. Dimensions and shape
of the bands and of the inter-band gaps are similar, although
the vegetation structures emerging from the simulations look
slightly sharper than the observed ones. In addition, orien-
tation of the bands perpendicular to the slope is clearer in
the simulations than in the observations. This is because, al-
though the direction of the natural and simulated slope was
set to coincide, the natural topography presented some ir-
regularities, and the simulations were performed on a reg-

ular slope. Nevertheless, both in the observed and simulated
case, the configuration of vegetal density is characterized by
stripes of vegetation a few tens of meters wide downslope
from and extending across the entire study domain.

Compared to the previously analyzed case of the Niger
tiger bushes, the directionality of the Somaliland plateau veg-
etation patterns is more noticeable, both in the observations
and in the simulations. Moreover, the total amount of vegeta-
tion (integrated across the domain) is smaller than in the case
of the Niger tiger bushes, as easily noticeable from the com-
parison of the PDFs of the vegetal density shown in Figs. 6
and 9. Analysis of the PDFs in Fig. 9 also shows that the
presence of multiple modes is less evident here than in the
case of the Niger tiger bushes, when the unconditioned PDF
of the vegetation density is considered. However, multiple
modes become apparent in the conditional PDFs of both the
observed and the simulated vegetation fields, especially with
respect to the PDF in the x-direction conditioned on neighbor
density higher than the domain average. As observed in the
case of the Niger patterns, the presence of multiple modes in
the conditional PDFs and, in general, the fact that the condi-
tional PDFs look different than the unconditional PDF, im-
plies that the vegetation at a given pixel has an impact on
the vegetation distribution of its neighborhood. In particu-
lar, the probability of finding a pixel whose fractional cover-
age is higher than the average is greater in a neighborhood
of pixels that are themselves characterized by above-average
density, supporting the observation that vegetation tends to
form clumps rather than being distributed completely ran-
domly in space. In addition, the PDF conditioned on x-
direction neighbor density higher than the domain average,
shows higher density for values of vegetation in the upper
end of the domain interval than the other (conditional and
unconditional) PDFs; this confirms the prevalence of stripes
of vegetation in the x-direction itself, that is, perpendicular
to the domain slope.

Spectral analysis (Fig. 10) supports the conclusions drawn
from both the qualitative analysis and the analysis of the
PDFs of the vegetation density, showing the presence of fre-
quencies between 5 and 10 cycles along the domain only
along one direction. However, comparisons between the
spectral densities of the observed and simulated vegetation
field also imply that the prevalence of stripes perpendicular
to the main slope is higher in the simulated field than the ob-
served. Since the only anisotropic effect present in our model
is topographic (through the surface runoff production and
run-on infiltration), and the shape of the natural pattern seems
to indicate that the governing mechanism of pattern forma-
tion is topographic and gravitational, we attribute the dis-
crepancy between observations and simulations to the irreg-
ularities of the natural topography of the observed area with
respect to the regular slope used in the simulated domain.

Statistical analysis of the vegetation clusters, whose results
are reported in Table 3, show that both natural and simulated
patterns are banded.
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Table 3.Cluster analysis for natural and simulated patterns in Niger and Somalia.

Niger Somalia

Natural Simulated Natural Simulated

Figure 4d 4e 4f 4g 4h 4i 15b 15c
Number of clusters 21 20 29 22 30 14 49 24
Average cluster size 42 38 38 37 32 90 15 28
Range 0.025–0.975 quantile of
cluster size for binomial process

[1–18] [1–12] [1–35] [1–14] [1–24] [1–74] [1–12] [1–9]

Shape ratio 1.4 1.5 1.1 1.2 1.4 1.2 1.9 2.6
Percentage of domain filled by the
largest cluster

0.35 0.34 0.78 0.57 0.18 0.68 0.36 0.15

Fraction of area of the largest cluster
filled with vegetation

0.51 0.35 0.37 0.42 0.63 0.44 0.21 0.23

Cluster type Spots Spots Labyr Spots Spots Spots Bands Bands

Table 4. Statistical analysis of the vegetation clusters for the fields of vegetation obtained with hydraulic conductivity functions, modified
from the base conditions through Eq. (14).

CoefficientA −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

Number of clusters 11 19 112 109 61 54 80 61 90
Range 0.025–0.975 quantile of
cluster size for binomial process

[1–24] [1–20] [1–26] [1–25] [1–21] [1–25] [1–22] [1–23] [1–25]

Shape ratio 1.2 1.5 7.0 9.1 5.9 5.0 3.7 6.2 4.9
Percentage of domain filled by
the largest cluster

0.56 0.36 0.40 0.43 0.24 0.35 0.28 0.36 0.29

Fraction of area of the largest
cluster filled with vegetation

0.27 0.43 0.47 0.50 0.48 0.32 0.38 0.36 0.41

5.3 Analysis of the hypothesized pattern-promoting
dynamics

5.3.1 Impact of climate forcings

In order to explore the effect of the climate forcing on pat-
tern formation and spatial characteristics of the vegetation
distribution, the system was simulated by varying the cli-
matic forcing, while keeping everything else fixed. All the
inputs for these simulations are reported in the column titled
“base conditions” of Tables 1 and 2. The soil–climatic condi-
tions referred to here as base conditions are arbitrary and not
representative of a specific site. We investigated the impact
of two climatic components: mean annual precipitation and
mean annual net radiation (through the impact that the latter
has on potential rates of evapotranspiration).

Simulations showed that the shape and the presence of pat-
terns at the hillslope scale depend not only on the mean an-
nual precipitation but also on the characteristics of the rainy
events (mean storm duration, mean time between storms,
mean storm intensity, etc.). Below, we focus our analysis
only on the dependence on the mean annual precipitation.

Figure 11 shows the result of the statistical analysis of the
vegetation fields obtained for a range of mean annual pre-
cipitation of 26 to 85 cm (the range was selected to be wide
enough to detect the transition from bare hillslope to patterns
and to densely vegetated hillslope without patterns).The vari-
ation in mean annual precipitation was achieved by varying
the mean storm duration only and leaving the mean storm
intensity unchanged. All the other parameters of the model,
both climatic and hydraulic, were kept at the values set for
the “base conditions”. Figure 11a shows that patterns of veg-
etation start to emerge for mean annual precipitation higher
than 32 cm and that cease to exist when mean precipitation
approaches 60 cm per year. Nearly all the patterned fields are
banded, as shown in Fig. 11b, and none presents labyrinthine
characteristics, as shown in Fig. 11c and d. Three sample
fields obtained for annual precipitation of 70, 48 and 32 cm
per year are presented in Fig. 12 for a visual interpreta-
tion of the transition from undistinguishable patterns to self-
organized structures.

Net radiation has the opposite effect, that is, patterns start
to emerge as the net radiation increases, everything else being
equal (Figs. 13 and 14). Patterns emerge as net radiation ex-
ceeds 230 W m−2. As net radiation increases, and, therefore,

www.hydrol-earth-syst-sci.net/17/63/2013/ Hydrol. Earth Syst. Sci., 17, 63–84, 2013
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Fig. 9. Global and conditioned PDF analysis of the Somalia patterns. Panels(A/B): natural, and(C/D): simulated vegetation; panels(A/C):
density higher than global average, and(B/D): density lower than global average.(A) PDFs of vegetation density for the natural pattern
shown in Fig. 8a (as digitized in Fig. 8b): global PDF (black line) and PDFs of vegetation density conditioned on having a neighbor pixel with
vegetation density higher than the global average for all directions (blue line), x-direction (red line) and y-direction (green line).(B) PDFs of
vegetation density for the natural pattern shown in Fig. 8a (as digitized in Fig. 8b): global PDF (black line) and PDFs of vegetation density
conditioned on having a neighbor pixel with vegetation density lower than the global average for all directions (blue line), x-direction (red
line) and y-direction (green line).(C) PDFs of vegetation density for the simulated pattern shown in Fig. 8c: global PDF (black line) and
PDFs of vegetation density conditioned on having a neighbor pixel with vegetation density higher than the global average for all directions
(blue line), x-direction (red line) and y-direction (green line).(D) PDFs of vegetation density for the simulated pattern shown in Fig. 8a:
global PDF (black line) and PDFs of vegetation density conditioned on having a neighbor pixel with vegetation density lower than the global
average for all directions (blue line), x-direction (red line) and y-direction (green line).

Fig. 10.Power spectral densities of the vegetation density field; fre-
quencies (in the horizontal axis) are expressed in terms of num-
ber of wavelengths present within the domain length and width.
(A) Average of the 1-D power spectral densities of the vegetation
density for the natural pattern shown in Fig. 4a along the x-direction
(black line) and y-direction (red line).(B) Average of the 1-D power
spectral densities of the vegetation density for the simulated pattern
shown in Fig. 8c along the x-direction (black line) and y-direction
(red line).

climatic conditions become more arid, clumps of vegetation
decrease in number and increase in average size.

Neither precipitation nor net radiation is, by itself, suffi-
cient to characterize the aridity of a given climate. In order to
incorporate both parameters, therefore, like Eagleson (1978)
we define potential humidity, PH, as the ratio between the
annual precipitation and the domain-averaged annual poten-
tial evapotranspiration, and estimate the relationship between
PH and the spatial characteristics of the simulated vegeta-
tion fields. Results of the statistical analysis of the vegetation
clusters as a function of PH are reported in Fig. 15. We notice
that vegetation patterns arise for PH values between 0.2 and
0.3 and that, for the other climatic and hydraulic conditions
characterizing this set of simulations, all patterns are banded.

In general, the analysis of Figs. 11, 13, and 15 supports
the observation that patterns arise in arid areas, that is, in
water-limited environments, agreeing with all the available
literature on the topic. For wetter climates, in fact, (as oc-
curs here for PH higher than 0.3) the vertical water input is
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Fig. 11.Statistical analysis of the vegetation clusters for the fields
of vegetation obtained by varying annual precipitation.(A) Mean
size of clusters and range 0.025–0.975 quantile of the mean cluster
size corresponding to a binomial process with the same percent-
age cover.(B) Mean ratio between the span in the x-direction and
the span in the y-direction of each cluster; red line represents the
boundary between spots and bands.(C) Percentage of the domain
filled by the largest cluster; red line represents the minimum fraction
of area filled for the field to be considered labyrinthine.(D) Fraction
of area of the largest cluster filled by vegetation; red line represents
the maximum fraction of the largest cluster that can be filled for the
field to be considered labyrinthine.

Fig. 12. Effect of precipitation on pattern formation.(A) P =

32 cm yr−1; (B) P = 48 cm yr−1; (C) P = 70 cm yr−1.

enough to support a substantial amount of vegetation even
in the absence of surface water redistribution or mechanisms
of facilitation/competition. When this occurs, the impact of
those dynamics of surface water redistribution and facilita-
tion/competition becomes comparatively less important (that
is, the lateral interactions are overpowered by the vertical wa-
ter and energy fluxes) and does not induce the emergence
of recognizable patterns. As the conditions become more
arid, that is, for lower PH values (in our simulations for
0.2<PH<0.3), the water input from lateral redistribution
becomes determinant for the amount of vegetation that es-
tablishes at each pixel; moreover, the benefits of the facil-
itation mechanisms that exist in the neighborhood of veg-
etated pixels become (comparatively to more humid condi-
tions) more significant and, thus, promote vegetation rear-
rangement and pattern formation. For the lowest PH values,

Fig. 13.Statistical analysis of the vegetation clusters for the fields
of vegetation obtained by varying average net radiation.(A) Mean
size of clusters and range 0.025–0.975 quantile of the mean cluster
size corresponding to a binomial process with the same percent-
age cover.(B) Mean ratio between the span in the x-direction and
the span in the y-direction of each cluster; red line represents the
boundary between spots and bands.(C) Percentage of the domain
filled by the largest cluster; red line represents the minimum fraction
of area filled for the field to be considered labyrinthine.(D) Fraction
of area of the largest cluster filled by vegetation; red line represents
the maximum fraction of the largest cluster that can be filled for the
field to be considered labyrinthine.

Fig. 14.Effect of net radiation on pattern formation.(A) Net radia-
tion= 210 W m−2; (B) Net radiation= 250 W m−2; (C) Net radia-
tion= 290 W m−2.

that is, for the most arid conditions explored in this analysis,
the climate conditions are so adverse to vegetation establish-
ment that the study hillslope tends to be too scarcely vege-
tated for the facilitation/competition dynamics to take place,
ultimately resulting in the absence of patterns.

5.3.2 Temporal dynamics

Some vegetation patterns tend to migrate uphill (Worral,
1959, 1960; Valentin et al., 1999; Sherrat, 2005). Although
we do not explicitly include a time description of the system
evolution, our modeling approach has an implied time evolu-
tion, therefore allowing inferences about the development of
the system over time from its evolution through the numeri-
cal iterative process. Once a pattern is established, in fact, the
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Fig. 15.Statistical analysis of the vegetation clusters for the fields
of vegetation as a function of the ratio between annual precipita-
tion and annual potential evapotranspiration.(A) Mean size of clus-
ters and range 0.025–0.975 quantile of the mean cluster size cor-
responding to a binomial process with the same percentage cover.
(B) Mean ratio between the span in the x-direction and the span
in the y-direction of each cluster; red line represents the boundary
between spots and bands.(C) Percentage of the domain filled by
the largest cluster; red line represents the minimum fraction of area
filled for the field to be considered labyrinthine.(D) Fraction of
area of the largest cluster filled by vegetation; red line represents
the maximum fraction of the largest cluster that can be filled for the
field to be considered labyrinthine.

vegetal density at each pixel can either remain fixed (or not
change significantly in between simulation steps), or it can
undergo changes that – although significant at the pixel level
– do not alter the macroscopic structure of the pattern itself,
as in the case of vegetation structures that migrate across the
domain.

In order to analyze this effect, we tracked the evolution
of the vegetation field corresponding to the base conditions
through different iteration steps, as shown in Fig. 16. The fig-
ure shows the vegetation field at the 45th, 50th, 55th and 60th
iteration step of our simulation procedure on a domain sloped
from top to bottom in the figure. In this regard, we emphasize
the fact that slope is only included to determine the direction
of the surface run-on, as outlined in Eq. (3). It is evident that
the patterns have already been established by the 45th step
of the iteration, shown in Fig. 16a, and that the stripes mi-
grate uphill as the simulation progresses. In addition to the
migration, we notice that most bands are convex downslope,
in accordance with many observations (Worral, 1959). As re-
ported in the cited literature, pattern migration is induced by
the effect of surface run-on ponding and infiltration in the
uphill part of the stripes, which in turn creates a favorable
opportunity for uphill expansion or migration of the vegeta-
tion. This claim is supported by the analysis of the spatial
distribution of soil moisture and water fluxes (not shown),

confirming the presence of wetter soils and higher infiltra-
tion in the uphill portion of the vegetation bands, which as
the simulation progresses, creates a favorable environment
for further vegetation establishment and a positive feedback
for the uphill expansion of the vegetation clumps. The drier
conditions observed in the downhill portion of the bands, cre-
ated by the fact that most of the available run-on has already
infiltrated, result in the creation of adverse conditions that
inhibit vegetation establishment.

However, a pattern migration was not observed in all the
simulated cases. Several simulations (not shown) developed
patterns that, once established, did not exhibit any tendency
to migrate from their original location. This is attributed to
the predominance of the local inhibition dynamics present
in the uphill portion of vegetation clusters. In those cases,
in fact, it has been observed for the pixels immediately up-
hill of a clump of vegetation that the inhibition effect, due
to the terms in Eqs. (10) and (11) (which reflect the effect of
soil erosion due to the surface runoff), overpower the facilita-
tion due to the presence of vegetation immediately downhill.
In the real world, the strength of those inhibiting/facilitating
factors would be determined by: overland flow velocity, soil
texture, nutrients content, amount of litter produced by the
vegetation, characteristics of the vegetation crown its impact
on light exposure, etc. All those factors are not explicitly
taken into account here, but are implicitly considered in the
magnitude of coefficients in Eq. (8) through Eq. (11) and in
their relative strength with respect to the processes directly
impacting the water fluxes.

5.3.3 Impact of hydraulic conductivity

Regions where vegetation patterns occur are characterized by
soils whose permeability is highly variable in space, being
higher in areas of vegetated soil and lower where the soil
is bare (HilleRisLambers et al., 2001; Bromley et al., 1997;
Valentin et al., 1999; Boaler and Hodge, 1962; Saco et al.,
2007). We account for the effect of plants on the permeability
of the soil by expressing hydraulic conductivity as a function
of vegetation density. In order to explore the impact that a
vegetation-dependent hydraulic conductivity has on pattern
formation, we consider the following three cases: (1) hy-
draulic conductivity determined at each pixel as a function
of vegetation according to Eq. (1) (base conditions); (2) spa-
tially uniform hydraulic conductivity equal to the spatial av-
erage corresponding to the base conditions; and (3) hydraulic
conductivity at each pixel, randomly sampled from a uni-
form distribution spanning the same range of hydraulic con-
ductivities as in the base conditions. The first case encodes
the vegetation-hydraulic conductivity feedback, the last two
cases do not.

As shown in Fig. 17a, no patterns emerged in the case of
constant hydraulic conductivity. Similarly, no well-defined
structures emerged in the case of spatially random hydraulic
conductivity. In this latter case, the spatial variability of the
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Fig. 16.Pattern migration. The evolution of a pattern is tracked through iteration steps (use red lines as reference):(A) 45; (B) 50; (C) 55;
(D) 60.

Fig. 17. Effect of hydraulic conductivity on pattern formation.
(A) Uniform hydraulic conductivity.(B) Hydraulic conductivity
randomly variable in space.(C) Hydraulic conductivity variable in
space as a function of vegetation density.

resulting vegetation density is higher than in the case with
constant conductivity (as apparent in Fig. 17b) but with a
distribution that does not present the bimodality and asym-
metry of distributions with well-defined patterns (Fig. 22).
In particular, the vegetation that arises in the case of spa-
tially random hydraulic conductivity (Fig. 17b) traces the
spatial distribution of the hydraulic conductivity itself (pixels
with higher conductivity soils are more vegetated than those
where the soil is less permeable). In both cases in Fig. 17a
and b, the absence of feedback between vegetation and the
hydraulic properties of the soil prevents well-defined patterns
from emerging, even when all the other spatial effects are in
play. This result indicates that the ability of vegetation to af-
fect the soil properties is crucial to promote water redistri-
bution via runoff production and infiltration. Although not
shown, in fact, no patterns were observed in the hypothetical
case of perfectly horizontal hillslope, simulating the extreme
condition of absence of redistribution of surface run-on. This,
along with the previous findings, individuates in the mecha-
nisms of surface runoff production and surface run-on infil-
tration the primary drivers of the phenomenon for a given set
of climatic conditions.

Once it has been established that dependence of hydraulic
conductivity on vegetation density is essential to promote the
water flux redistribution necessary to produce patterns, we
investigate the role played by the shape of the function in
Eq. (1) in the ultimate vegetation configuration. To this pur-
pose, we simulate the system with a set of alternative func-
tions of the type in Eq. (1). Those equations were obtained
from the base condition equation (whose parameters are re-

 

Fig. 18. Hydraulic conductivity functions for the base conditions
(black), compared with the functions obtained through Eq. (14) with
coefficientsA= 0.4 (red) andA= −0.4 (blue).

ported in Table 2) by using the following transformation:

{Ks (M)}i = max{lb,min{ub, [1+Ai

·sin(π ·M)] · {Ks (M)}Base Conditions
}}
, (14)

where {Ks(M)}i is the hydraulic conductivity function of
simulation i, lb and ub are the lower and upper bound of
the base condition function, respectively, andAi represents
a scaling factor. Such formulation allows us to simulate the
system using hydraulic conductivity functions that span the
same range as that of the base condition, while varying the
shape of those functions, as shown in Fig. 18.

Eight simulations were performed using hydraulic con-
ductivity functions obtained through Eq. (14), with coeffi-
cientsA equal to:−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3 and
0.4. The statistical analysis of the vegetation clusters, shown
in Table 4, shows the impact that the shape of the hydraulic
conductivity function has on the spatial configuration of the
vegetation. As shown in Fig. 18, patterns emerge only for
A≥ −0.3, and are banded only forA≥ −0.2 (A= −0.3
produces a spotted configuration according to our cluster
classification criteria). No labyrinthine configurations were
found with the analyzed set of conditions (the model, how-
ever, is able to reproduce patterns for other combinations of
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Fig. 19. Effect of local plants’ interactions on pattern formation.
(A) No interactions.(B) Spatially variable (function of neighbors’
vegetation and surface runoff) interactions.

climatic and soil conditions, not included in this paper). As
shown in Fig. 18, the functions obtained through Eq. (14) are
not significantly different from that of the base conditions,
even in the two limit cases ofA= −0.4 andA= 0.4. Never-
theless, even these small differences have a strong impact on
the system response. For example, in the case ofA= −0.4,
which leads to no patterns, the PDF of the resulting vege-
tation density distribution has modes atM ≈ 0.1 (bare soil
patches) andM ≈ 0.45 (vegetated clumps). Those two val-
ues ofM correspond to the range for which the slope of the
hydraulic conductivity function of the base conditions (i.e.,
A= 0) is higher than for the caseA= −0.4. In the base
conditions simulation, this large function gradient allows ar-
eas withM ≈ 0.4 to be sufficiently permeable to favor wa-
ter infiltration and further vegetation establishment, trigger-
ing the positive feedback which ultimately promotes pattern
formation. In the case ofA= −0.4, instead, the soil perme-
ability required to favor run-on infiltration would be reached
in areas with vegetal coverM > 0.7, which is too high to
be sustainable, given the climatic and the hydraulic proper-
ties of the system. Other simulations performed on different
sets of climatic and hydraulic conditions support this find-
ing and indicate that each set of climatic and hydraulic con-
ditions requires the hydraulic conductivity function to have
a particular shape for the vegetation configuration to be pat-
terned. Specifically, the hydraulic conductivity function must
be such that: (1) the permeability for low vegetated areas
(e.g.,M < 0.2) promotes the formation of surface runoff
without allowing further establishment of vegetation (and,
thus, positive feedback on permeability) and (2) the vege-
tated areas (e.g.,M > 0.4) are permeable enough to allow
run-on infiltration and sustain (for the given climatic condi-
tions) their vegetal coverage and/or promote further vegeta-
tion establishment.

Fig. 20.Effect of soil moisture redistribution due to roots on pattern
formation.(A) No roots redistribution.(B) Roots are able to reroute
the soil moisture from adjacent less vegetated areas.

5.3.4 Impact of local interactions

The effect of interactions between adjacent clumps of veg-
etation was modeled, as indicated before, by allowing the
transpiration efficiency of the vegetation at a certain pixel
to depend on the vegetal density of the nearby pixels (see
Eq. 7). We explored the effect of this spatial interaction on
pattern formation by examining the evolution of the system
in its absence, and comparing it with the results obtained for
the base conditions, which includes it. Figure 19 shows that
even in the absence of spatial interactions between plants in
adjacent pixels, the system evolves towards a patterned con-
figuration. However, the shape of the pattern and the total
amount of vegetation arising in the domain are different in
the two cases, as also evident in Fig. 22. This suggests that
the net effect of the spatial interactions encoded in Eq. (8)
through Eq. (12) (protection from temperature and humidity
fluctuations, protection from soil erosion, protection from the
mechanical damages due to winds and animals, enhancement
of soil fertility through litter formation and nutrient replen-
ishment and so on) is important for the ultimate configuration
of patterns and total amount of biomass produced, although
not essential for the emergence of the patterns themselves.

In order to investigate the individual effect of each of the
interactions of Eq. (7), we carried out five simulations of the
system, each one performed by setting one of the coefficients
αi of Eq. (8) through Eq. (12) equal to zero. A statistical
analysis of the vegetation clusters obtained in those five cases
is compared to the base conditions in Table 2. Notably, the
simulation obtained withα2 = 0, which corresponds to the
absence of facilitation due to surrounding vegetation, does
not lead to the formation of patterns, whereas all the other
cases do; the emerging banded patterns are of different shape
and dimension, although never in a measure that results in
the transition to spots or labyrinths, at least for the set of
soil–climatic conditions considered here.

5.3.5 Impact of soil moisture redistribution due to roots

In order to investigate the role of the soil moisture redistri-
bution due to the presence of roots, we compare the spatial
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Fig. 21. Effect of spatially variable reflectance on pattern forma-
tion. (A) Uniform reflectance, that is, constant albedo.(B) Spatially
variable albedo.

 

Fig. 22.PDFs of the vegetation density for the cases of: base condi-
tions (black); no water redistribution due to roots (red); no spatially
variable albedo (blue); hydraulic conductivity randomly distributed
in space and independent from the vegetal density (green); no lateral
facilitation and competition effects through transpiration efficiency
(cyan).

distribution of vegetation obtained by allowing vegetation
from each pixel to extract water from up to 12.5 % of the
area of each of the four adjacent pixels (ξR =1.5) with the
one resulting from neglecting this effect (ξR =0). Results of
this comparison are presented in Fig. 20. It is noticeable that
the patterns that arise when this effect is neglected are nearly
indistinguishable from the ones arising in the base conditions
case. However, a deeper analysis (Fig. 22) shows that the
PDF of the vegetation density obtained in the case where,
due to roots, no competition for available soil moisture is
considered, has a lower mode for the bare soil interval than
the base condition case, with an average vegetation (aver-
age of the pixel vegetation density across the domain) being
roughly equal (0.209 against 0.208). Since the magnitude of
this effect is much lower than the cases previously analyzed,
the overall conclusion is that roots effect has a minor promot-
ing effect on the formation of patterns.

5.3.6 Impact of albedo

Modeling the soil reflectance as a function of soil moisture
content was aimed at incorporating the mutual effect that spa-
tially variable water fluxes and vegetation have on the lo-
cal potential rate of evapotranspiration. Figure 21 presents a
comparison between a case in which this effect is modeled as
proposed in Eq. (4); the case in which this effect is neglected,
the reflectance being set constant in space and equal to the
average of the values of reflectance of each pixel of the base
condition case. Although a spatially variable reflectance de-
termines a spatially variable absorbed net radiation and, thus,
affects the energy budget of the entire hillslope, the patterns
obtained in the two cases described above are qualitatively
indistinguishable. The analysis of the PDF of vegetal density
shown in Fig. 22, however, suggests that the vegetal config-
uration over the hillslope deviates from the base condition.
In particular, the fact that the PDF obtained with a constant
albedo shows higher modes (for both low vegetation and high
vegetation) than the base condition case, indicates that a net
reflectance that increases as soil moisture decreases has a
minor negative impact on the formation of patterns. Given
that both distributions are bimodal and that that patterns are
clearly present in both, the case with higher modes corre-
sponds to the one where the patterns are more marked, since
it is more likely for the vegetation density to take values close
to the two modes (representing the bare soil conditions and
the vegetated patches).

6 Summary and conclusions

In this study we proposed a mechanistic modeling of those
hydro-thermo-dynamics that, at the hillslope scale, are re-
sponsible for the phenomenon of vegetation pattern forma-
tion and evolution. The model performs the water and energy
balance of a hillslope and accounts for vertical and horizon-
tal water fluxes. The dynamics, inducing the emergence of
vegetation patterns, are explicitly identified and modeled and
their individual impact on the phenomenon is quantified.

Our results show that the proposed model is able to repro-
duce the types of naturally occurring patterns referred to as
bands, spots and labyrinths. The model was satisfactorily val-
idated by comparing simulations with observed natural pat-
terns in the areas of Niger near Niamey and Somalia near
Garoowe.

The analyses of the processes involved in the forma-
tion of patterns suggest that the phenomenon is primar-
ily driven by run-on infiltration and local mechanisms of
facilitation/competition existing among adjacent vegetation
groups. Nonetheless, even in the presence of those mecha-
nisms, patterns arise only when the climatic conditions, par-
ticularly annual precipitation and net radiation, are favorable.
In particular, we found that, with decreasing precipitation or,
conversely, increasing net radiation, the system drifts from
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fully vegetated with undistinguishable vegetation structures
to self-organized patterns. When the behavior of the system
is analyzed as a function of the potential humidity, which in-
corporates both the effect of precipitation and radiation, we
found that patterns emerge when the potential humidity index
is within a certain range (that for our simulated condition was
found to be between 0.2 and 0.3), while no distinguishable
patterns arise for climatic conditions too arid or too humid.

In the range of climatic conditions favorable for the for-
mation of self-organized vegetation structures, the peculiar
spatial features of patterns are determined by the characteris-
tics of the spatial interactions induced by run-on infiltration,
facilitation/inhibition dynamics between adjacent vegetation
groups, effects of nutrient and litter transport and deposi-
tion, competition for soil moisture through roots, and effects
of spatially inhomogeneous surface reflectance. Nonethe-
less, our study indicates that the surface run-on infiltration is
the dominant dynamic. No self-organized structures, in fact,
were observed in the absence of any surface runoff produc-
tion and subsequent run-on infiltration; moreover, the system
was found to be extremely sensitive to the relationship be-
tween vegetation density and soil permeability, that is, to the
feedback between plants and soil. Only when that feedback is
appropriate for the given set of forcing dynamics, can it trig-
ger the process of surface runoff formation and run-on infil-
tration that is necessary to moisten some soil patches enough
to promote further establishment of vegetation which, in turn,
will further facilitate water infiltration. Although this is not
the only process which could potentially lead to soil mois-
ture redistribution in space (e.g., effect of roots or the effect
of gradients in the hydraulic conductivity which is not con-
sidered in this study), it is no surprise that it is the one with
the largest impact. In fact, both the simulations and the cited
literature, indicate that the water input at each point in space
can be several times larger than the mere precipitated wa-
ter when the input from upslope is considered in the water
budget. In a water-limited environment, this extra water in-
put can make a great difference for vegetation establishment,
provided that it can actually infiltrate the soil and not simply
run downhill.

As for the impact of the other dynamics, we found that
the effect of facilitation/competition due to vegetation inter-
actions, soil erosion and nutrient transport has the highest
impact on the phenomenon and has an influence on the ul-
timate shape of patterns; among those dynamics, the effect
of facilitation due to the presence of surrounding vegetation
was found to be the more significant. Effects of roots and
albedo are comparatively less important but still have an im-
pact on pattern definition, evolution and on the total vegeta-
tion coverage that establishes on the domain.

Appendix

The original water balance model of Eagleson is a one-
dimensional representation of soil moisture dynamics as
forced by a stochastic climate (Eagleson, 1978e, d, c, b, a,
g, f). The model describes the relationships between annual
amounts of precipitation, surface and groundwater runoff, in-
filtration and evapotranspiration as a function of soil mois-
ture and soil and vegetation characteristics. The description
is physically based and only accounts for processes operating
in the vertical direction across the soil–atmosphere interface.
t∫

0
{i(t)− eT(t)−

∂
∂t

[Vss(t)−Vrg(t)]}dt =
t∫

0
[rs(t)+ rg(t)]dt

The water balance equation for a control volume compris-
ing a soil column and its surface is:

t∫
0

{
i (t)− eT (t)−

∂

∂t

[
Vss(t)−Vrg (t)

]}
· dt

=

t∫
0

[
rs(t)+ rg (t)

]
· dt, (A1)

wherei(t), eT(t),Vss(t),Vrg(t), rs(t) andrg(t) are the instan-
taneous values of storm intensity, evapotranspiration rate,
volume of water storage in the surface, volume of water stor-
age in the subsurface, surface runoff rate, and groundwater
runoff rate.

In order to obtain an analytical solution of Eq. (A.1), it is
assumed that the system is in equilibrium with climate in its
mean value. Therefore, taking the expectation of Eq. (A.1)
leads to (Eagleson, 1978f):

mPA −E[ETA] = E[RsA] +E[RgA] (A2a)

or, equivalently

E[IA] =mPA −E[RsA] = E[ETA] +E[RA], (A2b)

wheremPA,E[IA],E[ETA],E[RSA] andE[RgA] are the ex-
pected volumes of precipitation, infiltration, actual evapo-
transpiration, surface runoff and groundwater runoff, respec-
tively. Expressions for these water balance components (Ea-
gleson, 1978b, c, d, e) are analytical functions of soil mois-
ture and a small number of climatic, vegetation, and soil pa-
rameters, as listed in Table 1. Compact functional expres-
sions of the main components of the water balance Eq. (A.2)
as derived by Eagleson are repeated below. However, we re-
fer the reader to the original papers (Eagleson, 1978a, b, c, d,
e, f, g) for detailed expressions.

Surface runoff:

E[RSA] = max{0,mPAe
−G−2σ0(σ+1)σ−σ

−E[ErA ]} (A3)

Groundwater runoff:

E[RgA
] =mτK(1)s

c
o − Tw (A4)
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Capillary rise from the water table:

w =K(1)

[
1+

3/2

mc− 1

][
ψ(1)

Z

]mc

(A5)

Infiltration:

E[IA] =

{
mPA[1− e−G−2σ0(σ + 1)σ−σ

] if RsA > 0
mPAotherwise

,

(A6)

where0() is the Gamma function, andG andσ are the gravi-
tational and the capillary infiltration parameters, respectively
(Eagleson, 1978c, e).

Potential evapotranspiration:

E[EPA] =mνmtb[1−M(1− kv)]ep (A7)

Actual evapotranspiration:

E[ETA ] =

{
E[E∗

PA]J (Ee,M,kv,0) if RsA > 0
E[EPA]J (Ee,M,kv,h0) otherwise,

(A8)

whereE[E∗

PA] = E[EPA −ErA ] is potential evapotranspira-
tion from soil moisture, andE[ErA] is potential evaporation
from surface retention.

The functionJ () in Eq. (A.80) is the evapotranspiration
efficiency function, that is, the ratio of actual to potential
evapotranspiration. It depends on the bare soil evaporation
effectiveness,Ee, – itself a function of soil moisture, soil hy-
draulic characteristics, and vegetation characteristics (Eagle-
son, 1978d),

J (Ee,M,kv,ho)=
(1−M)E[Es] +ME[Ev]

mtbep(1−M +Mkv)
(A.9), (A9)

whereE[Es] is the actual evaporation from the bare soil
fraction andE[Ev] is actual transpiration from the vegetated
fraction.

For a given climate, vegetation type and soil characteris-
tics, the water balance Eq. (A.2) are functions of the aver-
age soil moisture content,so, and the fractional vegetation
coverage,M. For each soil, vegetation type and climate, the
unique set ofso andM that satisfies (A.2) and closes the
water balance is obtained by imposing the condition that the
fractional vegetation coverage adjust to the current climate
so as to minimize vegetation water stress while maximizing
biomass production (Eagleson, 1978f).

Equation (A.2) through Eq. (A.9) characterize the mean
water balance for a given soil, vegetation type and climate.
These equations may also be used to characterize the water
balance of any given year in a first order approximation
by substituting annual values of precipitation and potential
evapotranspiration for their corresponding means (Eagleson,
1978a, g).

Edited by: E. Zehe
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