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Abstract. A spatiotemporal point process model of rainfall Kolmogorov—Smirnov tests indicate that there is no signifi-

is fitted to data taken from three homogeneous regions in theant difference in the distributions of observed and simulated

Basque Country, Spain. The model is the superposition ofmnaximum flows at the same sites, thus supporting the use of

two spatiotemporal Neyman—Scott processes, in which rairthe spatiotemporal models for the intended application.

cells are modelled as discs with radii that follow exponen-

tial distributions. In addition, the model includes a parameter

for the radius of storm discs, so that rain only occurs when

both a cell and a storm disc overlap a point. The model isl Introduction

fitted to data for each month, taken from each of the three

homogeneous regions, using a modified method of momentRainfall and temperature data are required in the study of

procedure that ensures a smooth seasonal variation in the pAydrological systems — for example, in flood studies or in

rameter estimates. the analysis of urban drainage networks. However, histori-
Daily temperature data from 23 sites are used to fit acal records of data are always limited; for example, record

stochastic temperature model. A principal component analylengths may be too short to predict high return period events,

sis of the maximum daily temperatures across the sites indi®F data may be unavailable at sites of interest or only avail-

cates that 92 % of the variance is explained by the first com-Aable at time scales that are too coarse for the intended appli-

ponent, implying that this component can be used to accoungation. Hence, stochastic models are used to simulate data to

for spatial variation. A harmonic equation with autoregres- supplement or extend existing historical records; see, for ex-

sive error terms is fitted to the first principal component. The@mple,Gyasi-Agyei(2003, Cowpertwait(2009, or Burton

temperature model is obtained by regressing the maximun¢t al.(2008.

daily temperature on the first principal component, an indi- There is extensive literature on stochastic rainfall mod-

cator variable for the region, and altitude. This, together with€ls that includes models based on spatiotemporal point pro-

scaling and a regression model of temperature range, enabl&§SSes similar to the model used here. One of the earlier mod-

hourly temperatures to be predicted. Rainfall is included ase!S was based on a spatiotemporal Poisson proces€csee

an explanatory variable but has only a marginal influence@nd Isham(1988. This model does not explicitly allow for

when predicting temperatures. the clustering of rainfall events. Hence, most subsequent de-
A distributed model (TETIS; Frais et al., 2007) is cal- velopments have allowed for the temporal clustering of rain

ibrated for a selected catchment. Five hundred years of datgells using a Neyman—Scott or Bartlett—Lewis point process

are simulated using the rainfall and temperature model®f cell arrival times. These build on the work Bbdriguez-

and used as input to the calibrated TETIS model to obtain/turbe et al.(1987, who developed a methodology for the

simulated discharges to compare with observed discharge§lerivation of statistical properties that can be used in model
fitting. For example Northrop (1998 developed a spatial
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extension in which elliptical cells have occurrence times thatprocesses each form the basis of an independent cluster pro-
follow a Bartlett—Lewis process, whil€owpertwait(1995 cess, such as a Neyman—Scott or Bartlett—Lewis point pro-
developed a spatiotemporal model with cell arrival times oc-cess, the additional parameters due to the clustering can be
curring in a Neyman-Scott procegurton et al.(2010 ex- indexed to give different parameter sets for the different su-
tended the latter model to include a non-stationary mearperposed cluster point processes (Cowpertwait, 2004; Mor-
number of rain cells, which can approximate orographic ef-rissey, 2009). This can be generalised to a continuous proba-
fects.Cowpertwait(2010 developed a spatial generalisation bility density functionx (x) with corresponding Poisson rates
that allows a continuous distribution of storm types; this A(x) (and other functions for any parameters used for clus-
model also allows storms to have a defined spatial extenttering). The first approach (“discrete superposition”) is the
to provide an improved fit to sample cross-correlations, andsuperposition of a countable set of point processes, whilst
subsequently also extends the modél@onard et al(2008. the second approach (“continuous superposition”) is the su-
The reader can find further information on the developmentperposition of an uncountable set of point processes. Con-
of spatiotemporal point process rainfall modelsVifheater  tinuous superposition lends itself to an analysis of the func-
et al. (2005, Cowpertwait(2010, Burton et al.(2010, and tional relationships between different model parameters, and
the references therein. it has been used to generalise a spatiotemporal point process
The rainfall model described here is the superposed dismodel of rainfall (Cowpertwait, 2010). Discrete superposi-
crete storm-type analogy to the continuous storm-type modetion has been used to model the temporal rainfall process
used inCowpertwait(2010, and it is more mathematically (Cowpertwait 2004 Morrissey 2009 and is easier to im-
tractable and easier to implement. The model is a spatiaplement in practice because most of the model properties of
extension to the discrete superposed temporal point prothe independent processes can be summed to obtain those of
cess models discussed @owpertwait(2004 and Morris- the superposed process. Discrete superposition is suitable if
sey(2009. In the version used here, two independent superstorms are known to be of discrete distinct types. In this pa-
posed point processes are used to allow for different stornper, discrete superposition is applied to the spatiotemporal
types (e.g. convective and stratiform rain). The methodologyNeyman—Scott model developed @pwpertwait(1995 and
extends that used for the Thames study describedom- Leonard et al(2008. The superposed model is defined as
pertwait (2009: to account for larger geographical regions follows.
through the inclusion of a storm centre and radius for each of
the two superposed processes; a regionalisation procedurg;2 Model definition
and a temperature model to allow for further conditions that_ =~ ) ) )
may give rise to flooding (e.g. snowmelt). A modified method This is a stralghtforward extension of the previous _mod_el
of moments fitting procedure ensures that the parameter e§COWpertwait, 1995; Leonard et al., 2008) that essentially in-
timates vary smoothly across seasons. The models are irfludes indices to allow for different storm types.
tended for use in flood studies across the Basque Country, |€t Storm origins occur in a spatiotemporal Poisson pro-
including studies for large catchment areas that require spac€SS With rates per unit time per unit area. Suppose storms
tially representative series. In the last part of the paper, sim€@n be ofz independent types and that each storm origin is
ulated rainfall and temperature data are input into the TETISO! typei with probability «; (’,: L.on). ,
distributed catchment modeF(ane@s et al, 2007 and ob- Associated with each typestorm origin is a disc of ran-

served and simulated annual maximum flows compared.  d0m radiusRs;, where Rs; is an independent exponential
random variable with parametgg;. The arrival timegT;;}

of typei storm origins at an arbitrary point in the plane occur

in a temporal Poisson process with ratgper hour), where

Ai =2n§s,-/¢32j and{s; is the spatiotemporal rate for a type

i storm (e.g. see Cowpertwait, 2010). As outlined above, this

process is equivalent to the superpositiomdhdependent

isson processes, and so the overall process is Poisson with
n

2 Superposed spatiotemporal rainfall model
2.1 Superposed point processes

Independent stochastic point processes may be superposg&
(e.g. seeCox and Isham1988§ to give additional model pa- rater=>" A;.

rameters and, therefore, increased flexibility in model fitting. i=1l . .

For examples independent Poisson point processes with -Each typei storm consists of a marked point process of
ratesii, A2, ..., A, may be superposed to give a Poisson pro-"a" cel!s, denoted afUij, V"f",)’ Sijkr Lijkr Xijk, Reyji}
cess with overall rate. =iy +Az+-- +4,. Equivalently, a for the j-th occurrence of gtypestorm, where the marked
Poisson process with ratemay be the composition af in- process satisfies the following:

depender}t Poisson processes with raigg =1, ...,n), sgch a. {(Uiji, Vijx)} forms a 2-D Poisson process with rate
that a Poisson process selected at random hasiyatéth (per unit area per storm):;
n

probability o; =1; /A, where Y «; =1. When the Poisson
i=1
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b. (Uijk, Vijx) and Rc,;, form discs in 2-D space, where are stationary, whilst the physical rainfall process is non-
(Uijk, Vijk) is the disc centre anlic,;, is the disc radius  stationary in space and time. Non-stationarity in the physical
that is taken to be an independent exponential randonprocess can be accounted for by fitting the model to discrete
variable with parametefy;; spatiotemporal intervals that are sufficiently small to be ap-

proximately stationary. For example, the model can be fitted

to data taken over the period of a calendar month to account
for seasonal changes in rainfall. Analogously, the model can
be fitted to spatially homogeneous regions that are approxi-

d. Lij is the lifetime of thek-th cell, which is taken to be ~ Mately stationary. We adopt this approach, using the homo-
an independent exponential random variable with pa-9€N€ous regions found in the earlier study of daily rainfall

rameten;;, so that thet-th cell in the j-th occurrence of ~ data from the Basque Countrg¢wpertwaif 2011).
atypei storm terminates at a tim@  + L;x; and Based on the available model functions — see the
J ijk»

Appendix for details — the following properties are
e. X;jr is arandom variable representing the rain intensityused to fit the model: the mean rainfally(h); the
(depth per unit time) of thé-th cell in the j-th occur-  coefficient of variation, v(kh) =0 (h)/u(h); the coeffi-
rence of a type storm, whereX;;;, has mearg; and cient of skewness,k(h)=£(h)/o3(h); the autocorre-
remains constant throughout the cell lifetime and overlation, p(l, h)=y(, h)/o?%(h); the cross-correlation,
the area of the cell disc defined bk, Vijk), Rc,;; }- o(d, I, hy=y(d, 1, h)/o?(h); and the proportion of dry
] ) ] i intervals of widthh, (k). These functions are used at the
_ Rain occurs at a spatiotemporal pointy, y) if, and only 4,1y six-hourly, and daily aggregation levels{1, 6,
if, bqth a cell gnd storm dlsg overlap the point. The total in- 54 24) in Egs.A2)—(A5) and at the daily level for the pro-
tensity at spatiotemporal poim, (v, y) is then the sum of the oo dry Eq. A6). The autocorrelation is used at lag 1
m_tensmes of a;l cells alive at tlmetha_t haye discs overla_lp- and the cross-correlation at lag 0. In summary, the set of
E::g (xo’myt) eR% N?‘? th_atﬂ(]c) above |m|_2!|es(t}rfula\lcell arri/al properties for model fitting i = {11(1), v(h), k (h), p(1, h),
poir process$S; i} is the superposition eyman o(d, 0, h), p(24): h=1, 6, 24.
Scott point processes.
For the purpose of model fitting and simulation, the 3.2 Historical data and sample estimates
cell intensities X;;, are taken to be independent ex-
ponential random variables each with survivor function The data for the project came from 357 sites: 123 records
P(Xijk > x)=e¢~*/% and moments given bE[X{jk]:r!O{ of hourly data for the period 1985-2010, and 234 records
(r=0,1,2,..). For each typestorm the number of cell§; of daily data for the period 19142010 (Fi. About 73 %
that overlap a pointin 2-D spad® is a Poisson random vari-  of the data were missing over this period, with most miss-
able with mean; =27 ¢¢; /¢§J. (Cowpertwait, 1995). Fur- ing in the earlier part (1914-1985). (The fitted model can
thermore, since the rate of storm arrivals is also related to thée used to fill in the missing data and disaggregate the daily
spatiotemporal rate of storngs; and the mean storm radius data to hourly values; Cowpertwait, 2006.) Sample estimates
lips; by A; :2n§s;/¢§j, it follows that both spatiotemporal of the properties for model fitting were found for each ho-
rates,¢s;, and¢c;, are functions of other model parameters mogeneous region and for each month by pooling all avail-
and do not need to be fitted separately. Hence, the superposadble data for the month and region. A weighted average,
spatiotemporal model is summarised by the following set ofbased on the number of available observations, of the sample
independent parameteks;, vi, Bi, ni, ¢ci, ¢si, 6i;i =1, ..., properties at the daily level of aggregation was calculated by
n}. combining the estimates from the daily data with those from
Although there are many possible storm types that couldthe hourly series. For sample properties at aggregation lev-
be envisaged, usually it is sufficient in practice to have justels smaller than 24 h (i.e. at the 1- and 6-h levels), estimates
two storm typesH =2 in the above) to broadly correspond from the hourly series were used. In summary, the following
to two distinct types of storms: convective and frontal sys-set of sample estimates was found for each month and region:
tems. However, a further storm type can be associated WithE = {/1(1), O(h), & (h), o1, h), pd, 0, h), p(24): h=1, 6,
a spatial region — for example, to account for a third type of 24}.
precipitation event caused by orography.

C. Sijk is the arrival time of theé-th cell in the j-th occur-
rence of a type storm, wheresS;;; — 7;; are indepen-
dent exponential random variables with paramgter

3.3 Modified method of moments

3 Model fitting For each homogeneous region, the model parameters are es-
timated using a modified method of moments procedure that
3.1 Properties used in model fitting minimises the sum of squares:

The statistical properties of the spatiotemporal rainfall model
are given in the Appendix (Eq#2-A6). These properties
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B c. For each parameter, the estimate for yhth month is

’ e e adjusted to be the mean of the equivalent estimate of
€60 ° 9o adjacent months (e.g. the January estimatie,a6 the

s 0, mean of the February and December estimateg of

I
<

Il
<o

<
©

0" c8g6 B d. The parameters are re-estimated using the adjusted es-
oo . timates from (b) as starting values when minimising
doco, @ Eq. (1). The minimisation is constrained with bounds
. for each parameter set& above and below the start-
e . ing value of the parameter; e.g; is constrained by
o (1—a/100 A1 < A1 < (1L +a/100)A1, wherei; is the
estimate of.1 obtained in step (b).
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Easting /m e. Steps (b)—(c) are iterated times to give a sample of

estimates for each parameter.
Fig. 1. Locations of gauges used in the study (taken from the three P

homogeneous region€wpertwait 2011): hourly data ¢), daily  f. For each parameter, the median of théerated esti-
data (lightly shaded), temperature daéagnd gauges used to cali- mates from step (d) is used as the final estimate.
brate the TETIS catchment modéDj.

Stage 2: estimation of spatial parameters

8\? g\? Using the estimates di;, v;, i, ni: i =1, ..., 3 obtained
E 1—=) +(1-= Q) i "

g R J in Stage 1 above, the cell and storm radii parametg¢s (
g€g andes;) are estimated for each month by minimising ER. (

where g is a model function ang is the equivalent sam- With G={p(d, 0, h) : h=1, 6, 24;d € D}, by pooling data

ple estimate taken from the historical data. The model pa_from all available pairs of sites in the region when calculat-

rameters are estimated for each homogeneous region in thrd@d the sample cross-correlations and Beof correspond-
ing distances. The estimates for the spatial parameters can be

stages.

g taken to be the same in each region (so the estimates only
Stage 1: estimation of temporal parameters based on vary with season), in which cagse=G1U G, UGz in Eq. (1),
dimensionless properties whereG; ={p(d, 0, h) : h=1,6,24,d € D;} andD; is the

set of distances for all pairs of sites in tlwth region (=1,
Initially, G is F minus the mean and cross-correlation 2, 3). The estimates ¢h;, v;, B, n;: i =1, ..., 3 for the j-th
p(d, 0, h), so that dimensionless temporal properties are fit-region are used in the calculation®@f={p(d, 0, 1) : h=1,
ted to estimate the parametdss, v;, Bi, n;: i =1, 2} for 2 6,24,d € Dj}.
storm types. When minimising EqL) it is likely that there
are a number of local minima so that two sets of parame-Stage 3: estimation of the scale parameter

ter estimates may give similar fits to the sample properties_ )
(e.g. seevanhaute et al.2012. This can result in the esti- Finally, the scale parameteiis taken to be the same for each

mates not following a smooth variation over seasons, whichStorm type and is estimated for each month from the sample
is particularly undesirable in a regionalisation where com-mean hourly rainfalfi(1) using the relation:
parisons between the estimates from different regions (and. A
months) are required. Hence, the procedure below is a modi? = w1/ <’\1V1/’71 + A2 V2/’72) : )
fication of the minimisation procedure used in previous work ) _ )
(e.g. Cowpertwait, 2006), to ensure a smoother variation of! NiS can vary for different sites or, when the regions are
the parameter estimates over seasons whilst retaining a goddearly homogeneous, can be kept the same over a whole
fit to the sample properties. Fitting to the dimensionless temJ€dion. Since? is a function of the mean rainfall, it can be
poral properties is carried out in a series of steps as follows.2djusted on a site-by-site basis when good estimates of the
site means are available.
a. At the very least the parameter estimates must all be
greater than zero, and so a constrained minimisation o8.4 Fitted rainfall model
Eq. (1) is necessary. So the first step in fitting is to place

wide arbitrary bounds on the parameters and then minJsing the fitting procedure in Stage 1 above, a range of dif-
imise Eq. Q). ferent parameter sets were used to fit two storm types to the

_ _ _dimensionless sample properties from each region. It was
b. Step (a) is repeated for each month to gives twelve estifound that the mean number of cells per storm per site could
mates for each of;, v;, B;, andn; (i =1, 2). be kept the same for the different storm types (i£= o)
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Fig. 2. Parameter estimates plotted against iteration (January; cenFig. 3. Temporal parameter estimates for the three regions: cen-
tral region), illustrating Step (e) in the fitting procedure witk 50 tral region (red), southern region (blue) and north-eastern region
iterations. The median (red line) is the overall parameter estimate. (green).

Table 1. The percentage of explained variand%zx for regres-

without a loss in overall goodness-of-fit to the sample prop-SiO” models of the mean rainfall. (Based on 4275 site-months of

erties. The fit to the dimensionless properties gave estimate@Pservations.)

of A1, B1, 11, A2, B2, n2 andv (=vy=1vy), for each month

and each region, which are shown in F3gand tabulated for Variables in model R?1%

the central region in Tabl2. To illustrate the iterations from Altitude 8.0

Step (d), plots are given for=50 iterations for the January Region 25.8

estimates in the central region, where correlation between Month 44.9

pairs of estimates, probably due to local minima, is evident Month, Region 70.8

as the peaks tend to occur at the same iteration @Figrol- Altitude, Month, Region  70.9

lowing Stage 2 in SecB.3, ¢; and¢s were estimated and are

given in Table2. The fitted and sample properties are given

in Figs.4-6. rainfall when this is available, which is the approach used in
Initially, it seemed appropriate that the scale paramgter Sect.5.

which is a function of the mean rainfall (Eg), should de- The resulting parameter estimates reflect some expected

pend on altitude as found in previous studies (Egwpert-  characteristics of the rainfall process. For example, over the
wait, 2009. So the mean rainfall was found for each month summer months, there is a general increase in both the cell
for each of the 357 sites (Fid) and regressed on altitude intensity parameter estimate)(@nd the cell duration param-
and indicator variables for the month and region. The regreseters (), whilst there is a general decrease in the number
sion models were fitted using weighted least squares wittof cells () per storm (Fig.3). This corresponds with the
weights corresponding to the number of observations used texpected increase in summer convective storms that tend to
calculate the mean rainfall. The results indicated that altitudehave fewer, shorter duration @/raincells, but of higher in-
was not needed as an explanatory variable when the regiotensity (Fig.3).

and month were included in the model (Talle (Even a Differences between the two fitted storm types can also be
regression model with 72 interacting terms only improved discerned. For example, type 1 storms are less frequent than
R? by 2% when altitude was included.) This result provided type 2 storms because, in geneval < > (Fig. 3). In addi-
further support for the regionalisation procedu@pert-  tion, type 1 storms have cells that are less clustefee:(3,)

wait, 2011). The scale parameter was therefore treated as thand of longer duration7f < 72). Type 1 storms are there-
same within a homogeneous region and is shown plotted irfore more representative of stratiform rain, which would tend
Fig. 3. However, as noted in Stage 3 of the fitting procedure,to be more persistent. It should, however, be mentioned that
this parameter can be estimated directly from the site meaihese classifications of storm types are partially for additional
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Table 2. Parameter estimates for the central region.

month A1 D B1 i1 A2 B2 2 éc os 0
1 0.000117 101 0.0114 2.26 0.0113 0.156 425 0.252 0.0165 5.60
2 0.000312 102 0.0312 3.30 0.0112 0.198 346 0.238 0.0168 3.76
3 0.00113 110 0.0440 2.13 0.0103 0.273 18,5 0.236 0.0144 1.28
4 0.00120 456 0.0635 3.17 0.0172 0.410 23.2 0.227 0.0132 3.37
5 0.00119 29.5 0.0540 2.10 0.0149 0.434 214 0.224 0.0137 3.89
6 0.000345 26.3 0.0587 2.13 0.00694 0.236 15.2 0.226 0.0143 6.66
7 0.000155 21.6 0.0234 4.21 0.00554 0.403 39.0 0.237 0.0197 20.8
8 0.000219 33.2 0.0337 3.56 0.00822 0.447 446 0.240 0.0210 12.0
9 0.000134 30.1 0.0481 2.33 0.00751 0.260 21.4 0.235 0.0224 9.65
10 0.000311 63.0 0.0301 3.05 0.0114 0.324 32.8 0.238 0.0218 5.71
11 0.000352 140 0.0313 2.73 0.0111 0.173 224 0.255 0.0179 2.44
12 0.000155 126 0.0136 1.28 0.0123 0.196 22.2 0.263 0.0160 2.24

flexibility in the model parameterisation, to obtain a good
fit to the data, and that properties similar to those observed
for convective storms could result, by chance, in simulations
for any storm type in the model (because all the variables
in the model are random). However, a general tendency for
storm characteristics of a particular type is ensured through
this classification and is supported by observing the clear dis- *1
tinction in the resulting estimates for the different storm types § *|
(Fig. 3).

There are also regional differences in the parameter esti- |
mates. For example, the north-eastern (green) region has a " |©=
consistently higher rate of storm arrivalg) (whilst the cen- o
tral (red) region has a higher number of cells per storm dur-
ing the winter months (lower left-hand plot in Fig). Also,
whilst the north-eastern region has a tendency to experience
more storms, over the summer the cells are generally less i in- I
tense, as indicated by a lower valueéoflower right-hand
plot; Fig. 3). If 11 is interpreted as a rate for stratiform storm : :
occurrence, then the north-eastern region receives the hlghest
rainfall of this type. The southern region has notably fewer _|< .
storms over the summer months, having the lowest valueof L~ —
A2 (upper right-hand plot; Fig). These regional differences S T .
are most likely to be due to the presence of both the ocean to
the north and the Cantabrian Mountains separating the north- =
ern and southern regions.

In general, the fit to the sample properties is very good
(Figs.4 and5). Again, seasonal and regional difference are : 1
evident in the figures. For example, there is a notable differ- | , |
ence between the southern (blue) and north-eastern (green)
regions: the southern region has lower values of autocorre- °|
lation but notably higher values of skewness, the proportion —
dry, and the coefficient of variation, especially over the sum-
mer months (Figs4 and5). This corresponds to fewer more Fig. 4. Fitted (x) and observed (lines) second order properties for
intense events (lower,, v, higherd; Fig. 3) characteristic the central region (red), southern region (blue) and north-eastern
of summer convective storms. However, a clear corresponfedion (green).
dence between any selected parameter estimate and the sam-
ple estimates is generally lacking, but this is essentially due
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Fig. 5. Fitted (x) and observed (lines) skewness and proportion of
dry days for the central region (red), southern region (blue) and
north-eastern region (green).

to the model properties (Eq82—-A6) being functions of all
the model parameters.

The fit to the sample cross-correlations is given in Big.
where it can be seen that the curves decay with distance, as =1, : :
expected. The spatial estimateg andés) are the same for ' R
all three regions, so the slight difference in the curves for the_ _ ) _
different regions is due to the differences in the temporal pa-F'g' 6. Flttgd (lines) and observed hqurly cross-correlations for the

. : . o central region (red), the southern region (blue) and the north-eastern
rameter estimates obtained in Stage 1 of the fitting procedurgegion (green).
(and given in Fig3).
Some exceptions to the general goodness-of-fit may be ob-

served - the most notgble being an over-estimation in theagainst the standardised Gumbel variate. (FjgAlthough
proportion of dry days in the summer months for the cen-gome |ack-of-fit can be seen in the very largest value, where
tral and southern regions (lower right-hand plotin g.A 6 ghserved value exceeds the simulated values, in gen-
dry period requires an arbitrary definition, since the modelg g the results indicate that the model performs satisfacto-
may generate very small values (and gauges usually requirgyy \yith respect to the extremes, because the observed val-
as_maII accumulation.of rajnfall before tipping). In thi_s anal- a5 fall within the range of simulated values (Fig. This,

ysis, an observed daily rainfall of Ies.s than 0.1mm is takentogether with the goodness-of-fit to properties up to third or-
to be dry —an amount that could easily be lost due to evapOyer (Figs.4 and5), indicates that the fitted model may be
ration. The distribution of daily rainfall is largely determined g ;itaple for flood studies. In Sect. 5, the model is further val-

by the first three sample moments. These are closely matchegated against properties, such as peak flow discharges, that
by the model in the central region; hence, the lack-of-fitto the; .o important in the intended application.

proportion dry may be of small practical significance.
It is useful to consider the fit to observed extreme values,
since these are not used in the fitting procedure and are imy  Stochastic temperature model
portant when simulating high flows. Using the estimates in
Table 2, one thousand years of hourly rainfall were simu- 4.1 Models for the first principal component
lated for the daily sites in the central region. These were ag-
gregated to daily values and the annual maxima found forin weather generators, stochastic temperature models have
each site. The median of the annual maxima across the sitdseen related to rainfall (e.g. sé&lsby et al, 2007). Al-
was then calculated; these were ordered in 20-year blockthough a rainfall variable is used in the following, our re-
for simulated and observed (1951-2010) series and plottedults indicate that it is a poor predictor of temperature for
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Table 3. Percentage of variance explained by the first five principal
- components of maximum daily temperature and total rainfall.

150
I

PC1 PC2 PC3 PC4 PC5

Temperature 92 24 091 057 049
Rainfall 71 60 32 28 21

100
L

o bl

50

SR |

%
F:
-

Daily annual maximum rain / mm

-1 0 1 2 3 4 5

Reduced Variate

Fig. 7. Median annual maxima of sites in the central region. The ob-
served ) consists of three samples of 20yr. The simulated (blue
circles) are based on 50 samples of 20yr (1000yr of simulated
data). o

First principal component
0
1

the Basque Country, and so we consider an alternative ap- jime ! years

proach, based on principal components, that can also be used . . o

to generate multisite temperature series. Principal compoFid- 8 The first ten years of the first principal component score of
nents have been used in other studies of the spatial variatiof{' Maximum daily temperature. The line (in red) is the fitted value
. - . given by the harmonic model (E8).

in temperature series, e.g. sBenzi et al.(1997. The ap-

proach described herein differs in that it provides a method

of constructing a full spatiotemporal temperature model thaty ., cos(2; 71/365), wherer is time measured in days and
can be used to simulate multisite hourly temperature series gk the first principal component score of the maximum daily

any location in a region. _ temperatures. The first harmonic was fitted by least squares
There were 23 sites with (near-) complete records of dailyang js given by

maximum temperatures, and total rainfall, for the period

1985-2010 (Fig.1). This was used to form a matrix of z; = 2.1sin(2xt/365 + 4.7 cos(2nt/365 + a;, 3)
9490 rows and 23 columns of maximum daily temperatures, ) . . .

from which the principal components of the daily tempera- wherea; is the re5|dual_error series. (Two harmonic mod-
ture data were extracted (based on the correlations betwedf|S Were fitted to the first component score of maximum
the sites). In addition, the principal components of the da”ydally temperature by least squares regression. The first, given

rainfall totals were also found and the percentage of variancé‘bove’ contaln_ed only the flrs_t harmonic, whilst the second
associated with each component extracted (Taple contained the first 20 harmonics and was thus notably more

The first principal component accounts for 92 % of the complex. When compared to the simpler model, the more

variance in the temperature data, whilst the second compgE@MPlex harmonic model only improved the adjusted

nent only accounts for 2.4 % of the variability (TaBle This ~ 2Y 2%, and so the simpler model above was selected in
high first value, followed by a subsequent low value, indi- preference.)

cates that the spatial variation of the temperatures is mainly bA plotdof the f|r_st tin years of thﬁ fltt_eo_l Vall_JdeS agﬁlnsrt] the
accounted for in a single component. In contrast, daily rain-oPServed scoresis shown in Féywhere itis evident that the
fall has a lower first component of 71 % followed by val- harmonic model successfully follows the seasonal variation

ues that are higher than the corresponding values for temi-n the first principal component. There is evidence of random

perature (Tabl@). This is due to the rainfall process having Variation about the curve, and so a stochastic component is
more between-site spatial variability than temperatures. Con[equ_lred fora,. A best-fitting autoregressive moqlel,_based on
sequently, a spatial temperature model need not contain th&1@ximum likelihood, was therefore found and is given by
same level of complex?ty as the spatiotemporal rainfall modela[ — 0.77a;_1 — 0.13a,_ + 0.074a,_3 + 0.039,_4 + w;, (4)
of Sect.2.2 The first principal component was therefore used
as the basis for a spatiotemporal temperature model. wherew; is the residual error series.

Harmonic curves were fitted to the first principal com-  The correlogram of the residuals of the fitted AR(4) model
ponent to account for seasonality. Theth harmonic indicates that the model successfully accounts for the auto-
is given by z,=sin(2i7t/365+ ¢)=s; Sin(2i wt/365) correlation in the residual series of the fitted harmonic model
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Correlogram of residuals from fitted AR(4) model Table 4. Regression model for maximum daily temperatufes)(
; Variable Coefficient Standard error
N Intercept 19.3 0.011
S Region 0.826 0.014
© NE Region —0.646 0.015
« PC1 Score —1.48 0.0010
) < Altitude —0.00519 0.000031
Rain —0.00283 0.00064
S Residual SE: 2.21 on 218 265 degrees of freedom, adjusted
R2:90.5%.
S e
é 1‘0 2‘0 3‘0 4‘0
ag 4.3 Hourly temperature model

Fig. 9. Correlogram of the residuals of the fitted AR(4) model. For this part of the study hourly temperatures were required.

From the available temperature data, most of the data were
: . . . at the daily level. Nevertheless, a total of 45607 values of
(Fig. 9). Furthermore, there is no evidence of any per5|stenct?1Ourly tem};)eratures were available for model fitting.

or seasonal variation, indicating that the harmonic model Let T be the maximum daily temperature. Hourly tem-
combined with the AR(4) model provides a good fit to the max ally temp . yten _
peratures can be related to this using the following equation:

first principal component score of the data (Fig.The sam-
ple variance of the AR(4) residuals, which is needed in sim-7, — ;... — |A| A, (5)
ulations, is 3.7.

whereT; is the temperature at tinrg(in hours;t =1, ..., 24),
4.2 Spatial daily temperature model A is the temperature range over the day apds the mean

, ) i scale factor at time (0 <&, <1). Note that the scale factor

The maximum daily temperature at each site was regressegl oqres the maximum daily temperature is retained. The
on the following variables: altitude, region (as an indica- .5ja factop, is taken to be constant for different months and
tor variable), the first principal component score (P&, sites and is estimated by taking the mean®i— 7;)/A
and daily rainfall. The fitted regression model is shown in for each hour over all the records. This does result in the

Table4. _ - N maximum temperature occurring at the same time each day,
All variables are statistically significant (Tab#. How- s yhis s unlikely to be of practical importance in the sim-

ever, some of the variables are statistically significant be'ulations. The estimates fdr, are as follows: 0.906, 0.930,

cause of the large numbers of observations, but they are N 953 0.974.0.993. 1.000. 0.966. 0.879. 0.724. 0.520. 0.318
of practical significance. For example, if the rainfall vari- 5154 0 0457 0. 0.0195. 0.0932. 0.208 0.352 0.502. 0.633.

able is removed, there is no changeRf to four signifi- 731" 0797 0.843, 0.878 (in order from the first hour,
cant figures, implying that the rainfall variable can be left 00:00-01:00 UTC, after midnight).

out when predicting maximum daily temperatures. (This is The rangeA was regressed on the maximum daily tem-
also reflected in the very low coefficient for the rainfall vari- perature, month (as an indicator variable), and the daily rain-
able; Tabled.) Overall, the fitted model explains more than ¢ (Taple 5). The regression model for predicting the tem-
90 % of the variance in the daily temperatures, which im- perature ranged has a lowerR? compared to the model
plies the model provides a good fit to the data. In addition, agor predicting maximum daily temperature (Tale Nev-
expected, the model predicts lower temperatures at higher as yhejess, it provides a method for distributing the hourly

titudes and higher tempe'ratures.in the south (and margina"¥emperatures over a day, conditional on the predicted max-
lower temperatures for higher rainfall). imum temperatures, and may be adequate in practice. As ex-

Maximum daily temperatures can therefore be simulatedyecteq; the model predicts a greater range of temperatures
at any site by first simulating a series of autoregressive term§ o the maximum temperature is high, which would typ-

(Eg. 4), adding these to the harmonic equation for the firStjo. . occur during the summer months (see the coefficient

principal component (Eq) and then using the simulated ¢, the maximum temperature in TatB Also, the predicted

first compongnt (PC1) as a predictor in the reg'ression modtqlange (when the explanatory variable for maximum temper-
(Table4). Rainfall can probably be left out of this procedure ature takes the same value in both winter and summer) is

without any practical effect on the results. greater in winter, as would be expected for a maritime cli-
mate with higher temperature drops at night during winter
months. For example, the coefficient for February is 0.62,
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Table 5.Regression model for daily temperature rarft@)( heavy rainfall and flooding. The catchment covers a surface
of 342 kn? running from south to north along 65 km of main
Variable Coefficient SE stream. Upstream, close to the Aitzkorri Sierra, the valley is
Intercept 0267 0056 narrow and_ ste_ep (ayergge slope of 1._5%). Do_wnwards and
Max temperature 0563 0.0028 after receiving its main tributary, the _Ibal-Eder Rlv_er, the val-
rain —0.257 0.030 ley widens and flattens before reaching the Atlantic (E@).
Feb 0.622 0.068 There are three gauges in the catchment that are known to
Mar 0.330 0.067 provide reliable data (FidL.0). However, the available record
Apr —0.0728 0.068 lengths, which range from 13 to 22 yr, are too short to confi-
May -1.39 0.070 dently extrapolate high return period events that are needed
Jun —3.10 0.073 to design protection measures against flood damage. Conse-
Jul —4.03  0.075 quently, the Urola basin is a good example for a case study.
Aug —4.45 0.076
Sep —-3.08 0.073 . - P
Oct _284 0070 5.2 Calibration of the distributed catchment model
gg\é _6_13;53 g:gg; The TETIS_ model was selected to sirr)ulate the hydrological
processes in the River Urola baskréin@s et al.2007). The
Residual SE: 2.90 on 45594 of freedom, adjustéd model is a conceptual distributed catchment model that di-

23.6%. vides the catchment into square cells, each characterised by

six tanks linked vertically. Each tank represents the different
compared to-4.45 for August, indicating a lower range for water storages in the terrestrial phase of the hydrological cy-

August and, hence, a higher temperature drop in Februar le. Water flows downstream from each cell until reaching
' ’ he river channel. A more detailed description of the model
(Tables). p

is available inFran@s et al(2007) or Vélez et al(2009.
Three main parameters are responsible for the model out-

5 Case study and validation put: (1) the static storage capacity, which controls the amount
of water lost due to evapotranspiration in the long-term and
5.1 Urola catchment the initial losses in the case of a flood; (2) the soil hydraulic

conductivity, which affects the amount of infiltration and the

In forthcoming projects, the fitted rainfall and temperature velocity of interflow discharge; and (3) the subsoil hydraulic
models will be coupled with a hydrological catchment model conductivity, which determines the amount of percolation
to simulate long flow series for the purpose of evaluatingand the velocity of the base flow discharge. These parameters
design discharges in flood studies. This approach removebave been estimated for the region and the model shown to
the need to explicitly assign antecedent conditions, such asuccessfully predict surface water rundffflez et al, 2009.
soil moisture, which are a significant source of uncertainty There are five variables that define the initial conditions
(Michele and Salvador€002 Boughton and Droop2003 for each simulation, corresponding to the initial level in
Camici et al, 2011). In the following case study, this ap- each tank. To avoid over-parameterising the model, follow-
proach is adopted using the spatiotemporal rainfall and teming Beven and Binley1992, values are obtained for the ini-
perature models to simulate data for input to a distributedtial conditions by simulating a sufficiently long antecedent
catchment model. period; soil moisture conditions for long daily simulations

A flood risk assessment is needed for the Urola basinwere used (in part to reduce computational times) as initial
which requires the establishment of different design dis-states in the hourly simulations. In addition to these variables,
charges. The catchment is located in the north of the Iberiathe model has nine further correction factors that are used to
Peninsula. The region is characterised by an oceanic climatgdjust the way the three main parameters affect the hydro-
which is humid and temperate without a dry season. Thdogical processes and the value of other variables needed in
mean annual rainfall in the catchment ranges from 1200 tcsimulations, such as the evapotranspiration and the overland
1600 mm, while the mean annual temperature varies betweeand channel flow velocities. These correction factors are cal-
11.5°C in the upper part of the valley and 13G in the  ibrated using a set of recorded events. The Nash—Sutcliffe ef-
lower part. Usually rainfall occurs due to the advection of ficiency coefficient (0IR?) is used to assess goodness-of-fit.
North Atlantic fronts coming from the north-west and hit- In general, an acceptable value ®f is 0.6 and a value ex-
ting the slopes of the Cantabrian Mountains, located only 30-ceeding 0.8 is indicative of an excellent ftappenberger and
60 km from the coast. This results in uniform and moderateBeven 2004). A unique set of correction factors was sought
precipitation. However, persistent and very intensive convecfor 13 flood events (discussed in the next section). When
tive phenomena can also take place due to the combinatiothis is achieved, assuming high over&f values are main-
of polar air and high sea surface temperatures, leading teéained, the fitted model should be of practical value in flood
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Fig. 10. Location of the Urola catchment and gauges used to calibrate the distributed catchment model in the validation of the stochastic
models.

studies. Furthermore, as the model is distributed and relies o TETIS were adjusted to match the flows at each of the
three maps of parameters that have been estimated along thieree sites, taking into account botR &d the absolute peak
whole basin, discharges can be estimated at ungauged locafror (sim — obg/obs, where “sim” and “obs” are abbrevi-
tions Beven 1985. Calibrating the model to heavier events ations for simulated and observed flows respectively). The
helps ensure that a satisfactory fit is obtained to annual maxAiztu (B1Z1) and Ibai-Eder (B1Z2) sites were calibrated first
imum discharges, which are important in the intended appli-and simulated series from these sites used to calibrate the
cation. Although this may result in some reduced goodnessinter-watershed between them and the Aizarnazabal (B2Z1)
of-fit for smaller events, continuous daily simulations of 9 site. Based on the three optimum models, a regionalisation
historical years gave&k? values of 0.75, 0.69, and 0.80 for procedure was used to obtain a unique set of correction fac-
B1z1, B1Z2, and B2Z1, respectively (similar to those ob- tors that could be applied to the whole catchment and set of
tained by \klez et al., 2009), indicating an overall satisfac- observed events. An iterative process was used to reach op-
tory fit (in particular, with respect to soil moisture conditions timum values of the correction factors for the whole basin
which are important in the simulation of peak discharges). to ensure an overall goodness-of-fit, without a significant re-
duction inR2. Hence, the correction factors used in this study

5.3 Fitted TETIS model differed from those in ¥lez at al. (2009); for example, in

) this study a single regionalised correction factor for overland
From 2901’ there were 13 flood events in the. Urola catch-q,, (0.06) was used for the whole basin, which differed from
ment, with data available from three gauges (B@. These  yho anproach in #lez et al. (2009) in which model calibra-
events form 'the baS|§ of t_he calibration used here; Fhelr Maifisn was for the most downstream station, thus leading to
features, which are given in Taliecover arange of different 01 model performance at upstream sites. These differing

antecedent conditions and rainfall intensities. Maximum andapproaches are due, in part, to different objectives: the ob-

minimum temperatures are also available from those gauge?ective here is to produce models for flood studies, whilst the

enabling the estimation of potential evapotranspiration byqpie tive in \elez et al. (2009) is to produce models for water
means of the Penman—Monteith equation and the simplifi-

; resources.
cations suggested by the FAGllen etal, 199§. The absolute peak errors ang? values obtained in
Starting with a multiple-event automatic calibration pro-

‘ the model calibration are given at the bottom of Table
cess bazsed on th(_e SC_:E'UA al_gorlthbu@n et a"-1994) and Although there are some events where the comparison is
meanR*< as an objective function, the nine correction factors
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Table 6. Summary of event calibration data for the TETIS model.

P. Cowpertwait et al.: Regionalised spatiotemporal rainfall and temperature models

Dec Feb Jan Nov Dec Mar Mar Jun Jan Sep Nov Jun Nov
2002 2003 2004 2004 2005 2006 2007 2008 2009 2009 2009 2010 2011
Start date 1Dec 28Jan 22Jan 9Nov 28Dec 10 Mar 7Mar 31May 25Jan 17 Sep 5Nov 14 Jun 3 Nov
End date 7Dec 6Dec 26Jan 13Nov 31Dec 14Mar 10 Mar 3Jun 30Jan 20Sep 12Nov 18Jun 7 Nov
Prev. 5-day 15.6 15.2 414 7.8 0.0 325 5.6 7.8 55.6 10.6 27.6 21.0 16.5
rainfall (mm)
Total 2459  228.6 68.0 132.0 64.7 92.4 73.6 78.5 92.7 96.2 209.2 117.7 248.2
rainfall (mm)
Max 24 h 65.0 51.0 33.3 49.3 30.8 56.9 40.8 43.2 52.1 77.0 49.7 79.7 109.7
rain (mm)
B1Z1 max 43.8 54.3 26.2 29.1 45.3 38.9 32.1 62.0 46.4 12.8 54.4 55.1 51.2
flow (m3s—1)
B2Z1 max 158.8 139.2 85.8 92.1 123.6 146.4 66.9 127.9 168.6 23.4 170.5 1759 460.2
flow (m3s~1)
B1Z2 max - - 22.0 22.1 27.8 30.7 18.9 37.3 30.6 4.8 26.9 22.4 51.5
flow (m3s~1)
B1Z1 flow 11.96 11.93 4.18 3.16 2.17 5.04 3.37 29 6.22 0.70 10.53 3.45 5.12
vol. (hnP)
B2Z1 flow 45.38 51.92 16.21 12.49 8.5 20.74 8.49 955 24.73 2.53 28.4 13.26  39.22
vol. (hm?)
B1Z2 flow - - 412 2.96 2.29 4.72 2.65 2.15 3.98 0.54 5.08 1.90 6.07
vol. (h?)
Goodness-of-fit calibration measures
B1Z1
R? 0.76 0.68 0.77 0.05 0.97 0.81 0.64 0.83 0.93 0.42 0.86 0.92 0.67
Abs. peak error 0.07 0.14 0.12 0.4 0.12 0.11 0.37 0.34 0 0.72 0.05 0.09 0.42
B271
R2 0.87 0.71 0.65 0.77 0.96 0.93 -0.93 0.49 0.98 0.41 0.81 0.97 0.78
Abs. peak error 0.08 0.04 0.27 0.22 0.07 0.02 0.79 0.05 0.09 0.56 0.1 0.15 0.42
B1z2
R? - - 0.12 0.49 0.78 0.64 0.6 0.68 0.8-1.02 0.51 0.85 0.84
Abs. peak error - - 0.55 0.21 0.24 0.15 0.36 0.19 0.12 0.94 0.03 0.01 0.05
Table 7. Summary statistics for annual maximum flows3(smL).
Site obs/sim min  lower  median mean upper max  No. of
quartile quartile values

B1z1 observed 20.7 31.50 39.80 41.91 51.2 66.3 13

B1z1 simulated 11.3 27.10 38.45 42.25 520 192.6 500

B2Z1 observed 62.8 87.32 129.00 141.70 160.1 460.2 16

B2Z1 simulated 22.1 79.95 126.00 143.70 185.1 7785 500

B1Z2 observed 9.1 19.35 26.40 29.90 35.1 59.4 22

B1z2 simulated 5.6 17.67 29.45 35.77 458 229.6 500

poor, probably due to a deficient rainfall representation, thecatchment during major flood eventBrath et al, 2004).
overall fit is good with a media? of 0.77, 0.78 and 0.64 at As an example, Figll gives the simulated and observed
sites B1Z1, B2Z1 and B1Z2, respectively, which are abovehydrographs for the six largest flood events recorded at the

the acceptation threshold. The absolute peak errors are alshizarnazabal (B2Z1) gauge.

satisfactory. In general, taking into account that 13 events
have been used in calibration, the model can be regarded
as suitable for representing the hydrological response of the

Hydrol. Earth Syst. Sci., 17, 479494, 2013

www.hydrol-earth-syst-sci.net/17/479/2013/



P. Cowpertwait et al.: Regionalised spatiotemporal rainfall and temperature models 491

Table 8. Kolmogorov—Smirnov test statistic to compare distributions of the annual maximum ﬂo%\ss—ém

B1Z1, obs B2Z71, obs B1Z2, obs B1Z71, sim B2Z71, sim B1Z2, sim
B1Z1,o0bs 0.00 (1.000) 0.94 (0.000) 0.45 (0.088) 0.18 (0.783 0.86 (0.000) 0.37 (0.064)
B2Z1, obs - - 0.00 (1.000) 1.00 (0.000) 0.86 (0.000) 0.23 (.03679) 0.90 (0.000)
B1Z2, obs - - - - 0.00 (1.000) 0.34 (0.018) 0.89 (0.000) 0.17 (0.556
B1Z1, sim - - - - - - 0.00 (1.000) 0.75 (0.000) 0.21 (0.000)
B271, sim - - - - - - - 0.00 (1.000) 0.78 (0.000)
B1Z2, sim - - - - - - - - - 0.00 (1.000)

Values in bold type are for the simulated (sim) and observed (obs) distributions from the same sjtevaltres for the tests are given in brackets.
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Fig. 11.Calibration plots for the distributed catchment model: com-
parisons between observed (solid line) and fitted (dashed red lin
hydrographs for the largest six events at the Aizarnazabal (B2Z1

site.

5.4 Flow simulations and validation of spatiotemporal
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Fig. 12. Quantile plots for the distributions of annual maximum
flows: B1Z1 ¢), B2Z1 (+), B1Z2 (). (The values plotted have
equal probabilities.)

region were selected (Tab®. The estimates of (Table2;
Sect.3.3 Stage 3) were multiplied by 1.08, 1.04 and 1.08 for
sites B1Z1, B2Z1 and B1Z2, respectively, to achieve exact
fits to the annual mean rainfalls at each site (this is equiva-
lent to just scaling simulated rainfall series at these sites by
these factors). Five hundred years of hourly multisite rainfall
and temperature data were simulated at the three sites. The
simulated rainfall and temperature series were then used as
input to the calibrated distributed catchment model to create
a series of simulated discharges for each of the three sites.
The annual maximum flows were extracted from the simu-

ecorded at the gauges for each site. Summary statistics for
the distributions of the maximum flows are given in Table
and guantile plots in Figl2.

In general, the distributions of the simulated annual max-
imum flows compare favourably to distributions of the ob-
served maximum flows (Figl2). Some over-estimation in
the mean (and median) maximum flow for site B1Z2 is evi-

}ated series and compared with the annual maximum flows

The Urola catchment overlaps the central and north-easterdent in Fig.12 and in Table7, and a t-test of the difference
homogeneous regions (Fid). However, the majority of in the mean values gave a possibly significant result with a
the catchment, and the upper part of the catchment thap value of 0.08. A Kolmogorov—Smirnov test statistic for the
contributes the most to the flows, is contained in the cen-differences in distributions of maximum flows was found for
tral region. Hence, the parameter estimates for the centrakach pair of distributions. This provides a more formal test of
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the differences seen in Tableand Fig.12. The test statistic

1
andp values are given in Tablg ) n

Table8 shows that there is no statistical evidence of a dif- Y,/ (x) = Z / Yi(x, n)dr, (A1)
ference in the distributions of the annual maximum flows for ’:1(]'71);1

data at the same sites (shown in bold type). The table also . _ ) ) _ )

shows that the test is capable of discerning differences in thé/nereYi(x, 1) is the rainfall intensity at point and time
distributions at different sites; e.g. compare the results fof’ due to typei storms (=1, ..., n). Since the superposed
the observed flows at B1Z1 and B2Z1. Some of the differ-Processes arellndepend.ent, statlstlca! properties of the aggre-
ences are possibly significant; e.g. the test statistic for the obgated time serles_follow just by summing the various proper-
served flows at sites B1Z1 and B1Z2 hag salue of 0.088  U€S that were derived by_Cowpertwalt (1995, 1998), Leonard
(Table 8). This is probably because the sites are the clos-8t @l- (2008), and Rodriguez-iturbe et al. (1987), and are
est and have the same scale factor and, hence, the same &fven below Cowpertwaif 1993 1998.

semble temporal rainfall properties. Whilst it is interesting to n .

note variations in the distributions at different sites, the most, (n) = Z E {Y,-(,h)(x)} —n Z 2 vty /i (A2)
important validation statistic is the measurement of the dif- i=1 i=1

ference in simulated and observed distributions at the same "

?iteélfor)which there is no statistical evidence of a difference,, (7 | p) = Z COViYi(jh)(x)’ Yi(f]z_)H (y)}

Table8). o '

= P i,d 0,1, h
6 Conclusions ; (#si> d) [V( )

In summary, spatiotemporal rainfgll quels were fitted to  _2); {1 — p(%i, d)} V; E(ijk) A; (h, l)/n?} (A3)
data from three homogeneous regions in the Basque Coun-

try. In general, good fits were obtained to sample properties n

of the observed rainfall series. The first principal componenty (I, h) = y(0, I, h) = Z [)\i ni—3Ai(h, D)

explained 92 % of the variability in daily temperatures and i=1

was hence used as predictor in the spatiotemporal tempera- {21)1, E (X'Z‘k) +02p202) (f;? _ 77-2>}

ture model. A distributed model was calibrated for the Urola Y E

catchment. Using the spatiotemporal models, hourly rainfall — A 9;'2 Bi(h, 1) vl?/ {,Bi (ﬁl? — '7,2> }] (A4)

and temperature data were simulated for three sites in the

catchment and flows generated using the simulated data aghere A;(h, 0)=(hn; + ¢ " — 1); Bj(h, 0)=(hBi +
input for the catchment model. The distribution of observede—f" — 1); for />0, A;(h, 1)=3(1— e7if)2e=nh(=D
annual maximum flows, taken from the site gauges, com- /2
pared favourably to simulated maximum flows. The mod-and B;(h, 1)=3(1— e Fil2e=Ahl=D; p(g, d):% S/

els are therefore validated for the catchment and can be us 0

e . —
with confidence in further studies; these will include obtain- ﬂ + ¢d/(2 cos_y)} exp{—q?d/(Z cosy)} d.y’ and d B llx —
y|l is the spatial separation of the pointsand y in the

ing high return period discharges for river networks in the lane. The variance is the special case0. aiven b
Basque Country that will be used to predict flood risks within p2 ' ) P » 9 Y
o (h)=Var{Yj X)}=y(, 0, h). The P(¢s;,d) term ap-

the European Flood Directive framework. ;Y i S
pearing in Eq. A3) above is due to the defined storm extent
and has the effect of reducing the cross-correlation at large
Appendix A spatial distances (Leonard et al., 2008). The third central mo-
ment is as follows:

Statistical properties of the rainfall model n

S & = E[{Y;h)(x) - M(h)}s} _ Z [6)»,~ v,-E<X,-3jk)
In model fitting it is usually necessary to use equations =

for aggregated properties, because rainfall data are usuall . o
samr?lgd gver d?scr%te time intervals (or aggregated to dis-y (mh =24 nihe ™" 4 2e mh) /i + 3%i6;
crete time intervals in the case of tipping bucket data). Let 9 5 4 5 2\ 2
{Yi(jh)(x)} be the aggregated time series of rainfall due to type (XU") vi Q1Cmis Bis b/ {Zni bi (ﬂ" B ’7,~) }
i storms at poink = (x, y) € R?in the j-th time interval of 33 4 ) )
width #, and lety "’ x) be the total rainfall in thg-th inter- +Ai 07V Q2 (ni. Bis h) / {2'% Pi (n,- — B )

val due to the superposition of thestorm types. Then,

(i — B @Bi + i) (Bi + 2m) ” (A5)
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where Q1 and Q> are high-order polynomials in; and g; Camici, S., Tarpanelli, A., Brocca, L., Melone, F., and Moramarco,
and are given irCowpertwait(1998. For exponential cell T.: Design soil moisture estimation by comparing continuous and
intensities, £(X?Z,) and E(X},) are replaced by @ and storm-based rainfall-runoff modeling, Water Resour. Res., 47,

3 . . . Lo ~ WO05527,d0i:10.1029/2010WR009292011.
66; respectively. The probability that an arbitrary time inter Cowpertwait, P. S. P.: A generalized spatial-temporal model of rain-

val[(j — DA, jh]isdry atapointis obtained by multiplying fall based on a clustered point process, P. Roy. Soc. Lond. A, 450,
the probabilities of the independent processes and is given by 163-175, 1995.
the following: Cowpertwait, P. S. P.: A Poisson-cluster model of rainfall: High or-
00 der moments and extreme values, P. Roy. Soc. Lond. A, 454,
L 885-898, 1998.
p(h) =exp| — Z Ai / {1—pi(h, D} dr Cowpertwait, P. S. P.: Mixed rectangular pulses models of rainfall,
i=1 0 Hydrol. Earth Syst. Sci., 8, 993—-10060i:10.5194/hess-8-993-

h 2004 2004.

Cowpertwait, P. S. P.: A spatial-temporal point process model for
+ / (1= pi@t, O} dr ’ (A6) the Thames catchment, London, J. Hydrol., 330, 586-595, 2006.
0 Cowpertwait, P. S. P.: A spatial-temporal point process model with
_ a continuous distribution of storm types, Water Resour. Res., 46,

where p;(h, 1) =expl—v; + v;e PO 4oy (1 - W12507,doi:10.1029/2010WR009728010.
e P, andwi(1)=1— Bi{e ' —e M} /[{n; — i} {1 — Cowpertwait, P. S. P.. A regionalization method based on a
e~Fi'}] (Cowpertwait, 1995; Egs. 2.17 and 2.19). cluster probability model, Water Resour. Res., 47, W11525,

doi:10.1029/2011WR011082011.
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