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Abstract. There are a number of statistical techniques that
downscale coarse climate information from general circula-
tion models (GCMs). However, many of them do not repro-
duce the small-scale spatial variability of precipitation ex-
hibited by the observed meteorological data, which is an im-
portant factor for predicting hydrologic response to climatic
forcing. In this study a new downscaling technique (Bias-
Correction and Stochastic Analog method; BCSA) was de-
veloped to produce stochastic realizations of bias-corrected
daily GCM precipitation fields that preserve both the spatial
autocorrelation structure of observed daily precipitation se-
quences and the observed temporal frequency distribution of
daily rainfall over space.

We used the BCSA method to downscale 4 different daily
GCM precipitation predictions from 1961 to 1999 over the
state of Florida, and compared the skill of the method to re-
sults obtained with the commonly used bias-correction and
spatial disaggregation (BCSD) approach, a modified version
of BCSD which reverses the order of spatial disaggrega-
tion and bias-correction (SDBC), and the bias-correction and
constructed analog (BCCA) method. Spatial and temporal
statistics, transition probabilities, wet/dry spell lengths, spa-
tial correlation indices, and variograms for wet (June through
September) and dry (October through May) seasons were
calculated for each method.

Results showed that (1) BCCA underestimated mean daily
precipitation for both wet and dry seasons while the BCSD,
SDBC and BCSA methods accurately reproduced these char-
acteristics, (2) the BCSD and BCCA methods underesti-
mated temporal variability of daily precipitation and thus did
not reproduce daily precipitation standard deviations, tran-
sition probabilities or wet/dry spell lengths as well as the

SDBC and BCSA methods, and (3) the BCSD, BCCA and
SDBC methods underestimated spatial variability in daily
precipitation resulting in underprediction of spatial vari-
ance and overprediction of spatial correlation, whereas the
new stochastic technique (BCSA) replicated observed spatial
statistics for both the wet and dry seasons. This study under-
scores the need to carefully select a downscaling method that
reproduces all precipitation characteristics important for the
hydrologic system under consideration if local hydrologic
impacts of climate variability and change are going to be rea-
sonably predicted. For low-relief, rainfall-dominated water-
sheds, where reproducing small-scale spatiotemporal precip-
itation variability is important, the BCSA method is recom-
mended for use over the BCSD, BCCA, or SDBC methods.

1 Introduction

General circulation models (GCMs) are considered robust
tools for simulating future changes in climate and for devel-
oping climate scenarios for quantitative impact assessments
(Wilks, 1999; Karl and Trenberth, 2003; Fowler et al., 2007).
General circulation modeling continues to be improved by
the incorporation of more aspects of the complexities of
the global system. However, GCM results are generally in-
sufficient to provide useful prediction of climate variables
on the local to regional scale needed to assess hydrologic
impacts because of significant uncertainties in the model-
ing process (Allen and Ingram, 2002; Didike and Coulibaly,
2005). The coarse resolution of existing GCMs (typically
> 100 km by 100 km) precludes the simulation of realistic cir-
culation patterns and representation of the small-scale spatial
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variability of climate variables (Christensen and Christensen,
2003; Giorgi et al., 2001; Johns et al., 2004; Lettenmaier,
1999; Wood et al., 2002). Furthermore, mismatch of the spa-
tial resolution between GCMs and hydrologic models gener-
ally precludes the direct use of GCM outputs to predict hy-
drologic impacts.

To overcome this limitation of GCMs, a number of down-
scaling methods have been developed. It has been shown
that fine-scale downscaled results provide better skill for hy-
drologic modeling (Andréasson et al., 2004; Graham et al.,
2007; Wood et al., 2004) and agricultural crop modeling
(Mearns et al., 1999, 2001) than using the coarse-resolution
GCM output directly. Downscaling techniques are catego-
rized by two approaches: (1) statistical downscaling using
empirical relations between features simulated by GCMs at
grid scales and surface observations at subgrid scales and (2)
dynamic downscaling using regional climate models (RCMs)
based on physical links between the climate at large and
smaller scale. While dynamical downscaling provides physi-
cally consistent local climate simulations, it is computation-
ally expensive. Furthermore current RCMs’ predictions typi-
cally include systematic biases which require bias-correction
after the dynamic downscaling, calling into question the use-
fulness of the additional computational burden (Hwang et al.,
2011, 2013). As a result, RCM experiments for large ensem-
bles of GCM simulations over multiple future scenarios are
relatively scarce (Chen et al., 2012). To overcome these lim-
itations statistical downscaling methods are often preferred
(Hay et al., 2002; Wilby and Wigley, 1997). The primary
advantage of statistical downscaling techniques is that they
are computationally inexpensive, and thus can be easily ap-
plied to large ensembles of GCM simulations. Additionally
statistical downscaling can provide local climate information
at any space or time resolution of interest that observations
are available to be used for bias correction. Thus they can
be used to generate data specifically over existing hydrologic
and agricultural model grids for climate change impact stud-
ies (Fowler et al., 2007; Murphy, 1999; Wilby et al., 2004).

Although much progress on downscaling precipitation
predictions has been made, current challenges include the
need to represent realistic levels of temporal and spatial
variability at multiple scales (e.g., daily, seasonal and inter-
annual variability, Timbal et al., 2009); the simultaneous
downscaling of correlated climate variables (i.e. precipita-
tion and temperature, Zhang and Georgakakos, 2012); and
the representation of extreme events (Yang et al., 2012; Katz
and Zheng, 1999). In particular, accurately representing the
spatial patterns of daily precipitation can be an important fac-
tor for predicting hydrologic response to climatic forcing at
the watershed scale (Bacchi and Kottegoda, 1995). For exam-
ple, spatially uniform rainfall over large regions may result
in higher evapotranspiration losses and lower surface runoff
and recharge than spatially variable rainfall with same areal
mean precipitation (Smith et al., 2004).

Statistical downscaling approaches are often applied at a
temporally aggregated scale (e.g., monthly or seasonally)
rather than daily or sub-daily timescales because of high
data-handing costs and deficiencies in GCM daily results
(Wood et al., 2002; Maurer and Hidalgo, 2008). When ap-
plied at a daily timescale, the direct use of GCM results
makes them quite susceptible to model biases (Ines and
Hansen, 2006). Means of addressing the problem include
aggregating GCM predictions into seasonal or sub-seasonal
means, downscaling to the target grid scale or station net-
work, and then using a weather generator (Wilks, 2002;
Wood et al., 2004; Feddersen and Andersen, 2005) or using
methods which re-sample the historic data to disaggregate
in space and time (Salathe et al., 2007; Maurer et al., 2010;
Zhang and Georgakakos, 2012). Generally using a weather
generator to generate daily climate sequences exhibits no
skill at reproducing spatial correlation (Fowler et al., 2007).
The use of historic analogs is constrained by the requirement
that a sufficiently long observation record exists so that rea-
sonable analogs can be found (Zorita and Storch, 1999).

Bias-Corrected Spatial Downscaling (BCSD; Wood et al.,
2004; Maurer, 2007) is a widely used technique to downscale
GCM results and it has been extensively applied to assess
hydrologic impacts of climate change in the US (Christensen
et al., 2004; Wood et al., 2004; Salathe et al., 2007; Mau-
rer and Hidalgo, 2008). BCSD generally preserves relation-
ships between large-scale GCM results and local-scale ob-
served mean precipitation trends. Although this method was
originally developed for downscaling monthly precipitation
and temperature, in principle, daily GCM output can also
be downscaled directly using this method. However realis-
tic spatial variability of daily precipitation events may not be
reproduced by this method because it is designed to preserve
only the observed temporal statistics at the timescale chosen
for downscaling and the spatial disaggregation process is es-
sentially a simple interpolation scheme.

The constructed analog method (CA; Hidalgo et al., 2008)
is a technique developed to directly downscale daily GCM
products to assess hydrologic implications of climate sce-
narios. Hidalgo et al. (2008) showed that CA exhibited
considerable skill in reproducing observed daily precipita-
tion and temperature statistics but underestimated the mean
and standard deviation of daily precipitation over the south-
east US. Maurer and Hidalgo (2008) compared CA and
BCSD method and demonstrated that CA showed better skill
than BCSD, particularly in reproducing extreme temperature
events. However both methods showed limited skill in repro-
ducing daily precipitation extremes. Subsequently, Maurer
et al. (2010) introduced the Bias-correction and Constructed
Analog (BCCA) method which improved the CA method by
removing the biases attributed to GCMs and showed better
accuracy in simulating hydrologic extremes.

Abatzoglou and Brown (2012) modified the BCSD
method by changing the order of the bias-correction and
spatial disaggregation procedures. That is, they interpolated
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Fig. 1. The study domain and the center location of grids for the
GCMs and gridded observation data used in the study. Note that
the grid resolutions and configurations for BCCR, CGCM, CNRM-
CM3, and MIROC3.2 are identical.

GCM outputs onto a fine grid first and then the fields were
bias-corrected using the CDF mapping approach for each
fine-scale grid cell (i.e. the target resolution of downscaling).
This simple modification (hereafter referred to as SDBC)
improved the downscaling skill for reproducing local-scale
temporal statistics. However the SDBC method does little to
improve skill in reproducing spatial variability because the
same approach (interpolation) as used in BCSD is employed
for spatial disaggregation.

The methods mentioned above have been widely used
for hydrologic, natural resource and agricultural applica-
tions and they are available online for the entire United
States (see e.g.,http://gdo-dcp.ucllnl.org/downscaled_cmip_
projections/dcpInterface.html#Welcome). Furthermore the
BCSD method was adopted for use in the recent US Global
Change Research Program’s National Climate Assessment
Report (http://ncadac.globalchange.gov/). However the abil-
ity of these methods to predict regional hydrologic response
in rainfall-dominated watersheds should be carefully exam-
ined since they are not designed to reproduce the small-scale
spatial variability of daily rainfall that is known to be impor-
tant for accurately partitioning rainfall into evapotranspira-
tion, surface runoff and groundwater recharge in these sys-
tems. This paper presents a new statistical downscaling tech-
nique (Bias-Correction and Stochastic Analog Method, here-
after BCSA) that preserves both the temporal and the spatial
statistics of daily precipitation. The BCSA method is used
to downscale daily precipitation predictions from 4 retro-
spective GCM simulations over Florida and the skill of the
method is compared to downscaled results obtained using the
BCSD, BCCA, and SDBC techniques.

2 Data

Daily gridded climate observations at 1/8 degree spatial res-
olution (∼ 12km) over Florida were obtained from Maurer
et al. (2002) for the 1950–1999 study period. The Maurer
et al. (2002) data include daily and monthly precipitation,
maximum, minimum, and average temperature, and wind
speed and are archived in netCDF format athttp://hydro.engr.
scu.edu/files/gridded_obs/daily/ncfiles/. These data represent
spatially averaged values over each 12 km grid cell, and were
derived directly from observations. Maurer et al. (2010) pre-
viously demonstrated the utility of these data to bias-correct
and downscale GCMs using the BCSD and BCCA meth-
ods. In this study, these gridded observation data were used
to both bias-correct daily GCM results and to estimate the
observed spatial correlation structure for use in the BCSA
method.

Retrospective daily predictions for four different GCMs
(i.e. BCCR-BCM2.0, GFDL-CM2.0, CGCM3.1, and
CCSM3) from the World Climate Research Programme’s
(WCRP’s) Coupled Model Inter-comparison Project phase 3
(CMIP3) multi-model data set were selected for downscaling
using the BCSD, SDBC, and BCSA methods, based on avail-
ability and previous use in both statistical and dynamical
downscaling experiments (e.g., Maurer et al., 2007; Mearns
et al., 2012). GCM results downscaled on a daily basis using
BCCA were obtained directly from “Downscaled CMIP3
and CMIP5 Climate and Hydrology Projections” archive
at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
(Maurer et al., 2007). Only two GCMs consistent with the
models used for BCSD, SDBC, and BCSA (i.e., GFDL-
CM2.0 and CGCM3.1) were available for BCCA and thus
two additional GCMs (i.e., CNRM-CM3, and MIROC3.2)
were randomly selected for comparison. The GCMs selected
for this study are shown in Table 1. The grid resolutions for
the GCMs range from 1.4◦ to 2.8◦. Figure 1 shows how each
model grid configuration of GCMs and gridded observation
covers the study domain over Florida. As will be shown in
Sect. 5 differences in skill among GCM data were found
to be insignificant compared to differences in skill among
statistical downscaling techniques. Thus use of consistent
GCMs for the BCCA method does not affect the major
findings and conclusion of the study.

3 Statistical downscaling methods

3.1 Bias-Correction and Spatial Downscaling at daily
scale (BCSD_daily) method

The BCSD method is an empirical statistical technique that
was developed by Wood et al. (2002, 2004) and has been
used by Ines and Hansen (2006), Salathe et al. (2007), and
Maurer and Hidalgo (2008). As described above, the method
was originally designed to downscale monthly precipitation
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Table 1.GCMs used in this study.

Modeling Group, Country WCRP
CMIP3*
I.D.

Acronym Applied statis-
tical downscal-
ing methods

Grid resolution Primary reference

Bjerknes Centre for Climate Research,
Norway

BCCR-
BCM2.0

BCCR For BCSD,
SDBC, BCSA

2.8◦ × 2.8◦ Furevik et al. (2003)

US Dept. of Commerce/
NOAA/Geophysical Fluid
Dynamics Laboratory, USA

GFDL-
CM2.0

GFDL For all methods 2.0◦ × 2.5◦ Delworth et al. (2006)

Canadian Centre for Climate Modeling
& Analysis, Canada

CGCM3.1 CGCM For all methods 2.8◦
× 2.8◦ Flato and Boer (2001)

National Center for Atmospheric
Research, USA

CCSM3 CCSM3 For BCSD,
SDBC, BCSA

1.4◦ × 1.4◦ Collins et al. (2006)

Meteo-France/Centre National de
Recherches Meteorologiques, France

CNRM-
CM3

CNRM-
CM3

Only for BCCA 2.8◦ × 2.8◦ Salas-Melia et al.
(2005)

Center for Climate System Research,
National Institute for Environmental
Studies, and Frontier Research Center
for Global Change, Japan

MIROC3.2 MIROC3.2 Only for BCCA 2.8◦ × 2.8◦ K-1 model developers
(2004)

WCRP CMIP3*: World Climate Research Programme’s Coupled Model Inter-comparison Project phase 3.

and temperature. However in this study we employed the
methodology at a daily timescale and evaluated its skills
for reproducing the spatial and temporal statistics of daily
precipitation. The technique will be referred to as the
BCSD_daily hereafter.

BCSD_daily consists of two separate steps for bias-
correction and spatial downscaling. In the first step raw GCM
predictions are bias-corrected at the large GCM grid scale us-
ing the CDF mapping approach (Panofsky and Brier, 1968).
In order to apply this approach to bias-corrected daily pre-
cipitation, data corrections for precipitation amount and fre-
quency (i.e., the number or percentage of rainy events) are of-
ten separately conducted (e.g., Ines et al., 2011; Teutschbein
and Seibert, 2012). In particular this is necessary when using
parametric distributions of rain events for the CDF mapping
process. However nonparametric transformation using em-
pirical distributions has also been used for bias-correction,
often with better skill in reducing biases in than paramet-
ric distribution mapping approaches (Gudmundsson et al.,
2012). Empirical CDF mapping was conducted in the study
as follows: (1) CDFs of observed daily precipitation data (in-
cluding “0” data) were created individually for each month
at the coarse GCM scale using the spatial average of avail-
able observed data from Maurer et al. (2002) within each
GCM grid. Thus 12 observed monthly CDFs were created for
each GCM grid cell; (2) CDFs of simulated daily precipita-
tion were created for each GCM grid cell for each month; (3)
daily grid cell predictions were bias-corrected at the large-
scale GCM resolution using CDF mapping that preserves the
probability of exceedance of the simulated precipitation over

the grid cell, but corrects the precipitation to the value that
corresponds to the same probability of exceedance from the
spatially averaged observation over the GCM grid. Thus bias-
corrected rainfallx

′

t,i on dayt at gridi was calculated as

x
′

t,i = F−1
obs,i

(
Fsim,i

(
xt,i

))
, (1)

whereF(·) andF−1(·) denote the empirical CDF of daily
precipitation data and its inverse, and subscripts “sim” and
“obs” indicate GCM simulation and observed daily rainfall,
respectively. Because the observed CDFs include “0” values
the procedure reproduces the probability of occurrence for
all magnitudes of precipitation events, including zero rain-
fall events. Thus rainfall frequency (number of rainy days) is
reproduced. The bias-correction procedure is schematically
represented in Fig. 2. The examples of daily raw and bias-
corrected precipitation provided in the figure illustrate that
the bias-correction process removes both bias in the precip-
itation predictions and the tendency of the climate model to
underpredict dry days and overpredict the number of low vol-
ume rainfall days (Hwang et al., 2011).

In the next step of the BCSD_daily process anomalies (i.e.,
the ratio of simulated precipitation field to observed tempo-
ral mean precipitation field) of the bias-corrected GCM out-
put were calculated for each grid cell. These anomalies were
then spatially interpolated to the local-scale resolution using
an inverse distance weighting technique (Shepard, 1984). Fi-
nally these fine-scale anomalies were re-scaled with the mean
precipitation field at the fine grid scale resolution.
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Fig. 2. Schematic representation of bias-correction procedure and examples of the raw, bias-corrected, and observed daily predictions for a
wet (July, left column) and dry (January, right column) month. In the top panel of figure, Prob(Gobs= 0) is the observed fraction of days with
no precipitation. Any predictionxt,i of which CDFsim,i

(
xt,i

)
is less than Prob(Gobs= 0) will be substituted with “0” and thus frequency of

al daily rainfall events is corrected in the process.

3.2 Bias-Correction and Constructed Analog (BCCA)
method

The constructed analog (CA) technique creates a library of
observed daily coarse-resolution climate anomaly patterns
for the variable to be downscaled, then selects a set of ob-
served coarse-resolution analogs with patterns that closely
match the simulated anomaly pattern that must be down-
scaled. A linear combination of the selected, observed daily
coarse-resolution climate anomalies’ patterns is used to esti-
mate a coarse resolution analog to the simulated anomaly.
A downscaled anomaly is then generated by applying the
same linear combination to the corresponding set of high-
resolution observed climate anomaly patterns. The CA ap-
proach retains daily sequencing of weather events from the
GCM results and various alternative climate variables (e.g.,
geopotential heights, sea level pressure) can be considered
as predictors to construct the best analog. A significant lim-
itation of the CA approach, as originally developed, is that
the biases exhibited by the GCM (resulting from imper-
fect model parameterization of physical processes or inad-

equate topographic representation in the model) are recon-
structed in the downscaled fields (Hidalgo et al., 2008; Mau-
rer and Hidalgo, 2008). In order to overcome this draw-
back, Maurer et al. (2010) suggested a hybrid method, BCCA
combining statistical bias-correction at the coarse scale (as
used in BCSD) prior to applying the constructed analog
method. However, BCCA may not accurately reproduce the
mean and variance of precipitation at the downscaled resolu-
tion. This is because anomaly patterns of the bias-corrected
GCM (instead of the bias-corrected GCM, itself) are used to
choose analogs and historical records corresponding to the
analogs are combined using linear regression without further
bias-correction at the fine resolution. In this study, we used
previously developed BCCA results available over the en-
tire US from http://gdo-dcp.ucllnl.org/downscaled_cmip3_
projections/. As mentioned in Sect. 2, the BCCA results are
not available for BCCR-BCM2.0 and CCSM3 that we used
for other statistical methods, thus GFDL, CGCM, CNRM-
CM3, and MIROC3.2) were used from this data set (Table 1).
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3.3 Spatial Downscaling and Bias-Correction (SDBC)
method

The SDBC method developed by Abatzoglou and Brown
(2012) was the third previously published methodology eval-
uated in this study. As described above, the SDBC method is
a modified version of the BCSD method in which the order
of bias-correction and spatial disaggregation is reversed. That
is, GCM outputs are interpolated to the fine grid scale using
inverse distance weighting first and then the interpolated pre-
cipitation fields are bias-corrected using the CDF mapping
approach described above but using observations at the local
grid scale. This modification improves the downscaling skill
in reproducing local temporal statistics since bias-correction
is conducted at the local grid scale.

3.4 Bias-Correction and Stochastic Analog (BCSA)
method

In this study a new spatial downscaling technique was devel-
oped to generate spatially correlated downscaled precipita-
tion predictions which preserve both the temporal statistical
characteristics as well as the small-scale spatial correlation
structure of observed precipitation fields. The technique will
be referred to as the BCSA method hereafter. Because the
spatiotemporal features (e.g., frequency, spatial patterns, and
correlation) of precipitation events may change monthly or
seasonally, the BCSA process was performed using temporal
and spatial statistics calculated separately for each month.

i. The first step in the BCSA procedure was to gener-
ate an ensemble of synthetic precipitation fields for
each month that honor the observed spatiotemporal
statistics as follows: gridded precipitation observa-
tions were transformed from their observed empiri-
cal (non-Gaussian) distributions into standard normal
variables using the normal score transformation ap-
proach (Goovaerts, 1997; Deutsch and Journel, 1998):

x∗

t,i = G−1(
Fobs,i

(
xt,i

))
, (2)

wherex∗

t,i is the normal score transform ofxt,i (i.e.,

observed daily precipitation on dayt at gridi), G−1 (·)

is the inverse transform function of the standard Gaus-
sian CDF andFobs,i (x) denotes the empirical CDF of
daily gridded observation for gridi.

ii. Pearson’s correlation coefficientsρ for the normal
score transform variables for all pairs of grid cell ob-
servations over the study domain were calculated for
each month using the following equation:

ρi,j =
1

N

∑N
t=1

(
x∗

t,i − x̄∗

i

)(
x∗

t,j − x̄∗

j

)
σ ∗

i σ ∗

j

, (3)

whereN is the number of data points (days) available
for each grid cell,x̄∗

i andσ ∗

i denote the temporal mean
and standard deviation of normal scores for gridi, re-
spectively. The full correlation matrix that consists of
all the calculated pair-wise correlations was then as-
sembled:

ρ =

ρ1,1 · · · ρ1,n

...
. . .

...

ρn,1 · · · ρn,n

 , (4)

wheren is the number of grid cells.

iii. The symmetric positive-definite correlation matrix
ρ was factored using the Cholesky decomposition
method (Taussky and Todd, 2006) that decomposes the
matrix into the product of a lower triangular matrix and
its conjugate transpose:

ρ = LL ∗, (5)

whereL is a lower triangular matrix with strictly pos-
itive diagonal entries, andL∗ denotes the conjugate
transpose ofL .

iv. Vectors with elements corresponding to each grid cell
were randomly generated from independent Gaussian
distributions for each dayt (r t ) then transformed into
pair-wise correlated vectors (r

ϕ
t ) by multiplying with

the calculated factorization matrixL∗. The random
vector for each day,r t , containsn elements corre-
sponding to each grid cell.

r
ϕ
t = r tL∗ (6)

The elements ofrϕ
t generated by this process honor the

observed spatial correlation but have zero mean and
unit variance.

v. Spatially correlated normal score variablesr
ϕ
t were

back-transformed to their observed empirical distribu-
tions using the CDF of the corresponding gridded ob-
servations using the following equation:

x̂t,i = F−1
obs,i

(
Fnorm,i

(
x

ϕ
t,i

))
, (7)

wherex
ϕ
t,i is the element ofrϕ

t for grid i, Fnorm,i(·)

denotes the empirical CDF (approximately normal) of
the generated normal scores for gridi, andx̂t,i is the
precipitation estimation for dayt and gridi. This pro-
cedure was repeated for every grid cell to get ensem-
bles of daily precipitation fields that preserve the em-
pirical daily precipitation CDFs for each grid and spa-
tial correlation structure of the observed precipitation
field as well.

vi. Step (iv) and step (v) are repeated to create an ensem-
ble of 3000 replicates of spatially distributed precipi-
tation fields for each month.
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Next the raw daily GCM predictions were bias-corrected
at the large GCM grid scale using the same empirical CDF
mapping approach (Eq. 1) as used in BCSD_daily method.
Finally, for each day that the coarse-scale bias-corrected
GCM results predicted non-zero rainfall, a realization from
the appropriate monthly ensemble was selected for which
the spatial mean of the generated precipitation field most
closely matched the coarse-scale bias-corrected GCM re-
sult. Any difference between the spatial mean precipitation
of the best-fit generated precipitation field and the coarse-
scale bias-corrected GCM precipitation (generally < 0.1 mm)
was removed by multiplying the generated field by a scaling
factor (i.e., spatial mean of bias-corrected GCM field/spatial
mean of precipitation field chosen from the ensemble). For
days that the coarse-scale bias-corrected GCM results pre-
dict zero rainfall over the domain each local-scale grid was
assigned zero rainfall.

4 Assessment of downscaling skill

The temporal mean, 50th percentile, 90th percentile, and
standard deviation of the daily precipitation time series for
observed and downscaled predictions were calculated for
each grid cell and mapped over the state of Florida to
evaluate the spatial distribution of these temporal statistics
for both the wet season (June through September) and the
dry season (October through May). Mean error (ME), root
mean square error (RMSE), correlation (R) of these pre-
dicted statistics were calculated over the state of Florida for
each of these quantities. In addition to these daily precip-
itation statistics, day-to-day precipitation patterns and per-
sistence/intermittence of events are important for most hy-
drologic applications. Daily transitions between wet and dry
states were thus calculated for both the observed data and
predictions (e.g., raw GCM data, bias-corrected GCM re-
sults, and downscaled results) using the first-order transition
probability (Haan, 1977) and the numbers of events per year
with specific wet/dry spell durations were also estimated over
the study area for both the wet and dry seasons to investigate
daily precipitation occurrence patterns.

In terms of spatial features, observations and predictions
were evaluated using several indices indicating spatial stan-
dard deviation, correlation, and variability (Hubert et al.,
1981). The Moran’s I (Moran, 1950; Thomas and Huggett,
1980) index, a commonly used statistical index for identify-
ing spatial dependence, was calculated using the following
formula:

It =
N∑

i

∑
j wij

∑
i

∑
j wij

(
xt,i − x̄t

)(
xt,j − x̄t

)
∑

i

(
xt,i − x̄t

)2
, (8)

wherext,i andxt,j refer to the precipitation in stationi and
j on dayt , respectively.x̄t is the overall spatial mean precip-
itation on dayt . wij is an adjacency weight based on inverse
distance weighting. TheI values are between−1 and 1. Like

the correlation coefficient,I is positive if bothxt,i andxt,j

lie on the same side of the mean (above or below), while it is
negative if one is above the mean and the other is below the
mean (O’Sullivan and Unwin, 2003).

Geary’s C (Griffith, 2003) was calculated as a measure of
spatial variance of precipitation among grid cells, as follows:

Ct =
(N − 1)

2
∑

i

∑
j wij

∑
i

∑
j wij

(
xt,i − xt,j

)2∑
i

(
xt,i − x̄t

)2
. (9)

C values range between 0 and 2. The spatial autocorrelation
is positive ifC is lower than 1, negative ifC is between 1 and
2, and zero ifC is equal to 1.

In this research averageI andC indices were calculated
for the wet and dry season over the study period from 1961
to 1999. Moran’sIt and Geary’sCt represent measures of
spatial autocorrelation for each spatial field at dayt , how-
ever the relationship between the geographical distance and
correlation are not measured by these statistics. We used the
variogram, defined as the expected value of the squared dif-
ference of the values of the random field separated by dis-
tance vectorh, to describe the degree of spatial variability
exhibited by each spatial random field. The experimental var-
iogram 2γ (h) for the observed and simulated precipitation
data was calculated for both the wet and dry seasons using
the following formula (Goovaerts, 1997):

2γ (h) =
1

N (h)

N(h)∑
α=1

[x (uα) − x (uα + h)]2 , (10)

whereN(h) denotes the number of pairs of observations (or
predictions) separated by distanceh available on the same
day over the season, andx(uα) andx (uα + h) are the ob-
served (or predicted) precipitation at locationsuα anduα+h,
respectively, on the same day in that season.

5 Results and discussion

5.1 Evaluation of temporal variability

Gridded annual total precipitation observations, spatially av-
eraged over the state of Florida, ranged from 1048 mm to
1657 mm with a mean of 1343 mm over the study period
from 1961 to 1999. The standard deviation of the spatially
averaged annual total observation time series was 152 mm.
Figure 3 compares the spatially averaged annual total pre-
cipitation time series and mean monthly precipitation of raw
GCM outputs, bias-corrected GCM results at the GCM scale,
and gridded observation (Gobs) over the study period. Bias-
correction was conducted at the GCM grid scale using Gobs
spatially averaged to each GCM resolution. Recall that bias-
correction at the GCM scale is conducted only for BCSD,
BCCA, and BCSA. The SDBC method interpolates the raw
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Fig. 3. Comparison of spatially averaged annual total precipitation time series (left column) and the mean monthly precipitation (right
column) over Florida for gridded observation (Gobs, thick black lines), raw GCM outputs (upper row), and bias-corrected GCM results
(bottom row). Units in mm. The bright and dark gray zones represent the total data range and 5th to 95th percentile of Gobs at the 12 km grid
scale over Florida. Mean error and correlation of GCM annual time series and mean mean error of monthly precipitation compared to Gobs
are represented in the legend of each panel.

GCM results to the local scale first and then bias-corrects
the interpolated results at the fine resolution. Figure 3 indi-
cates that the GCM outputs are significantly biased in terms
of mean precipitation amount (ME of annual total precipita-
tion from −263 mm for CCSM3 to 521 mm for BCCR) but
reproduce the observed seasonality of precipitation (i.e., an-
nual cycle of mean precipitation) with high correlation (from
0.83 for BCCR to 0.98 for CGCM). Bias-correction signif-
icantly improves the accuracy of monthly mean precipita-
tion. However, the temporal correlation of the time series
was not improved because the CDF mapping approach does
not change the temporal pattern or timing of precipitation
events. Note that predicted annual time series from GCM
simulations in retrospective mode (i.e., “hindcast”) are not
expected to reproduce the actual annual time series for the
study period since they do not use actual observed initial
conditions or boundary conditions in the simulations. As a
result the correlation between the observed and raw GCM
annual time series ranges from−0.16 to 0.35 (see Fig. 3).
Table 2 compares the mean and standard deviation of obser-
vation, raw GCMs, bias-corrected GCMs, and downscaled
bias-corrected GCM spatially averaged annual precipitation
over the state of Florida. The BCCA method underestimated
the observed mean annual precipitation over the study period
by 8 % (CGCM3) to 11 % (CNRM-CM3) while the rest of

methods reproduced the mean annual precipitation, with er-
rors less than±20 mm (< 2 % of observed mean annual pre-
cipitation). The temporal standard deviation was slightly un-
derestimated by the BCSD results (114 mm to 147 mm over
the GCMs) and BCCA (128 mm to 147 mm), and overesti-
mated by SDBC results (153 mm to 247 mm). The SDBC
method overestimates the temporal standard deviation of spa-
tially averaged annual total precipitation because the large-
scale daily GCM precipitation predictions are spatially dis-
aggregated by interpolation and then bias-correction at the
downscaled grid resolution. Thus each fine-scale grid cell
preserves the precipitation percentile event predicted by the
large-scale GCM, exaggerating the spatial extent of high and
low percentile events.

Figures 4 and 5 compare the spatial distribution of mean
precipitation for the wet (June to September) and dry sea-
sons (October through May) over the study period and show
that mean climatology was accurately reproduced over the
state of Florida by the BCSD_daily, SDBC, and BCSA meth-
ods (ME < 0.1 mm). These results are expected since the
CDF mapping bias-correction technique employed in these
methods is designed to fit the predictions to historic mean
climatology. Meanwhile, the BCCA results closely repro-
duced the spatial pattern of observed mean precipitation for
both seasons (R about 0.9), but slightly overestimated mean
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Table 2.The mean and standard deviation (Stdev.) of spatially averaged annual total precipitation over the state of Florida for the raw GCM
outputs, bias-corrected GCM results (at GCM scale), and downscaled results using 4 different statistical downscaling methods.

Units: mm Mean and Stdev. of spatially averaged annual total precipitation (Mean± Stdev.)

Period: 1961–1999 Gobs: 1343± 152

Raw GCM Bias-corrected Downscaled GCM results

Results GCM results BCSD_daily BCCA SDBC BCSA

BCCR 1862± 157 1352± 133 1359± 147 – 1356± 233 1356± 178
GFDL 1554± 192 1357± 186 1359± 165 1227± 147 1357± 247 1357± 187
CGCM 1446± 115 1363± 130 1362± 132 1239± 128 1361± 223 1360± 167
CCSM3 1073± 85 1365± 139 1363± 114 – 1361± 153 1359± 125
CNRM-CM3 1431± 136 1366± 176 – 1190± 133 – –
MIROC3.2 1761± 149 1362± 153 – 1236± 134 – –

precipitation in the southern part of the state and underesti-
mated in the central/northern part of the state in the wet sea-
son (ME from−0.8 mm to−1.0 mm), and underestimated
mean precipitation over the entire state in the dry season (ME
from −0.5 mm to−0.6 mm).

The spatial distribution of the temporal standard devia-
tion of precipitation showed significant differences among
the downscaling methods. Figures 6 and 7 compare the spa-
tial distribution of the temporal standard deviation of the
daily precipitation time series over the state of Florida for
the wet and dry seasons over the study period, respectively.
While the SDBC and BCSA results accurately reproduced
the standard deviation for both the wet and dry seasons
(ME ≤ 0.1 mm), the BCSD_daily results significantly un-
derestimated the standard deviation for both seasons (av-
erage ME over the GCMs:−4.4 mm for wet season and
−2.7 mm for dry season). The BCCA results improved over
the BCSD_daily results but still underpredicted the daily pre-
cipitation standard deviation (average ME:−3.7 mm for wet
season and−2.1 mm for dry season) because the linear re-
gression scheme used to construct the analogs in BCCA at-
tenuates extreme events and thus decreases temporal vari-
ance.

Figures 8 and 9 show the spatial distributions of 90th per-
centile (5–20 mm) and 50th percentile (< 3 mm) of total daily
precipitation for the observation data and downscaled es-
timates for the wet season, respectively. The results show
that the BCSD_daily and BCCA method underestimated the
observed 90th percentile daily precipitation amount (aver-
age ME over the GCMs:−4.5 mm for both methods) and
overestimated the 50th percentile of daily precipitation (av-
erage ME: 2.3 mm for BCSD_daily and 0.9 mm for BCCA)
because of their tendency to overestimate the occurrence
of small rainfall events. On the other hand, the SDBC and
BCSA method reasonably reproduce both the 90th percentile
and 50th percentile daily precipitation (ME <±0.2 mm for
all cases).

Figure 10 compares the full CDFs of daily precipitation for
an arbitrarily selected grid located in west central Florida.
This figures indicates that errors in the frequency distri-
bution of BCSD_daily and BCCA daily precipitation (un-
der/overestimation shown in Fig. 8 and Fig. 9) tend to be
more severe for more extreme events (e.g., < 50th percentile
and > 95th percentile; note that the 50th percentile of the all
data corresponds to the 5th to 20th percentile of rain events,
see Fig. 10 for example). The full CDFs of all GCM results
downscaled using the SDBC and BCCA methods accurately
fit the observed CDF.

The inaccuracies in the temporal variability produced by
the BCSD_daily method are caused by the interpolation
scheme used to disaggregate the bias-corrected GCM predic-
tions which produces smooth downscaled results. The tem-
poral standard deviation at downscaled locations correspond-
ing to the center point of the GCM grid produces slightly
higher temporal variability (Figs. 6 and 7) because the in-
terpolation procedure produces less smoothing at these loca-
tions. This weakness of the BCSD_daily method is improved
by exchanging the order of the bias-correction and interpo-
lation procedures (i.e. SDBC) as shown in Fig. 6 through
Fig. 9. When the interpolated GCM results are bias-corrected
using fine-scale gridded observations at the last step of the
downscaling process, the final results reproduce the full
observed CDF and thus both the observed temporal mean
and temporal standard deviation. Although SDBC has been
recently introduced for downscaling daily GCM products
(Abatzoglou and Brown, 2012), explicit insight into these
distinctions between the BCSD_daily and SDBC downscal-
ing frameworks was not provided by the previous studies.

In addition to reproducing temporal statistics of daily
rainfall, day-to-day precipitation patterns are also important
for most hydrologic applications. Daily transitions between
wet and dry states were estimated for the observed gridded
data, the raw GCMs, bias-corrected GCMs and the down-
scaled bias-corrected GCM predictions obtained using the
BCSD_daily, BCCA, SDBC, and BCSA methods. Fig. 11
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Fig. 4. Spatial distribution of the mean of gridded observation (Gobs), BCSD_daily, BCCA, SDBC, and BCSA daily precipitation for wet
season (June through September), units in mm. Mean error (ME), root mean square error (RMSE), and correlation (R) of the bias-corrected
predictions are reported on each map.
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Fig. 5. Spatial distribution of the mean of gridded observation (Gobs), BCSD_daily, BCCA, SDBC, and BCSA daily precipitation for dry
season (October through May), units in mm. ME, RMSE, andR are reported on each map for the bias-corrected predictions.

Hydrol. Earth Syst. Sci., 17, 4481–4502, 2013 www.hydrol-earth-syst-sci.net/17/4481/2013/



S. Hwang and W. D. Graham: Development and comparative evaluation of a stochastic analog method 4491

 

 

ME: -4.0  
RMSE: 4.1  
R: 0.70 

ME: -3.9  
RMSE: 4.1  
R: 0.58 

ME: -3.4  
RMSE: 3.6  
R: 0.65 

ME: -3.4  
RMSE: 3.6 
R: 0.61 

ME: <0.1 
RMSE: 0.5  
R: 0.94 

ME: <0.1 
RMSE: 0.4  
R: 0.95 

ME: <0.1 
RMSE: 0.4  
R: 0.97 

ME: <0.1 
RMSE: 0.4  
R: 0.96 

ME: -4.6 
RMSE: 4.7  
R: 0.41 

ME: -4.2  
RMSE: 4.4  
R: 0.41 

ME: -5.1  
RMSE: 5.3  
R: 0.27 

ME: -3.8  
RMSE: 4.0 
R: 0.59 

ME: <0.1 
RMSE: <0.1  
R: >0.99 
 

ME: <0.1 
RMSE: <0.1  
R: >0.99 

ME: <0.1 
RMSE: <0.1  
R: >0.99 
 

ME: <0.1 
RMSE: <0.1  
R: >0.99 
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Fig. 7. Spatial distribution of the temporal standard deviation of Gobs, precipitation predictions downscaled using BCSD_daily, BCCA,
SDBC, and BCSA for dry season (October through May), units in mm. ME, RMSE, andR are reported on each map for the bias-corrected
predictions.
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Fig. 8. Spatial distribution of the 90th percentile daily precipitation of Gobs, BCSD_daily, BCCA, SDBC, and BCSA GCMs for each grid
cell for wet season (June through September), units in mm. ME, RMSE, and R are reported on each map for the bias-corrected predictions.
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Fig. 9. Spatial distribution of the 50th percentile daily precipitation of Gobs, BCSD_daily, BCCA, SDBC, and BCSA GCMs for each grid
cell for wet season (June through September), units in mm. ME, RMSE, andR are reported on each map for the bias-corrected predictions.
Note that the percentile is calculated from all data including “0” precipitation data for each grid. Thus the 50th percentile indicates a low
precipitation (typically < 1 mm) that ranges from 5th to 20th percentile of rainy events over the grids.
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Fig. 10.Comparisons of CDFs for daily precipitation predictions from 4 GCMs downscaled using(a) BCSD_daily,(b) BCCA, (c) SDBC,
and(d) BCSA and observed CDF for an example grid cell located in west central Florida.
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Fig. 11.Comparison of monthly first-order dry to wet (TP_{01}, upper raw) and wet to wet (TP_{11}, bottom row) transition probabilities
for raw GCM data (first column) and bias-corrected GCM results (second column). Averaged transition probabilities for all grids over the
study area (i.e., the state of Florida) were plotted for each GCM. Transition probabilities of the gridded observation were calculated both at
1/8◦ resolution (original resolution of Gobs) and 2◦ (aggregated up to approximate average grid scale of GCMs, see Table 1).

compares dry to wet (TP_{01}) and wet to wet (TP_{11})
transition probabilities of raw GCM data and bias-corrected
GCM results (using Gobs spatially averaged to the GCM
grid scale) to the transition probabilities of gridded ob-
servations over the study area both at the original resolu-

tion (1/8◦) and spatially averaged to the grid resolution i.e.,
≈ 2◦

× 2◦. The results show that all the raw GCM results tend
to overestimate both TP_{11} and TP_{01} for both sea-
sons (TP_{11} > 0.91 and TP_{01} > 0.66 for the dry sea-
son, and TP_{11} > 0.98 and TP_{01} > 0.78 for the wet
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Fig. 12. Comparisons of monthly first-order dry to wet transition probability (TP_{01}) for observations (first row), BCSD_daily results
(second row), BCCA results (third row), SDBC (fourth row), and BCSA results (fifth row) for 4 GCM products over all grids in the study
area. Box plot presents minimum, 10th percentile, median, 90th percentile, and maximum over the grids.

season) and bias-correction significantly improves the skill
in reproducing the observed transition probabilities at the
GCM grid resolution. Note that at the coarse resolution ob-
servations had higher transition probabilities over the annual
cycle compared to fine-scale observations due to the spatial
averaging process. Similarly, for the raw GCMs the prob-
ability of precipitation occurrence over the coarse grid cell
area is larger than the probability of occurrence at any point
or sub-grid within the coarse grid cell. Figures 12 and 13
compare transition probability of downscaled GCMs to grid-
ded observations at 1/8◦ resolution. After downscaling the
BCSD_daily results still overestimated both TP_{11} and
TP_{01} for both seasons compared to observations. The
accuracy of bias-corrected downscaled transition probabili-
ties were worse than the accuracy of bias-corrected GCM-
scale results especially in the wet season likely because of
the interpolation scheme used in BCSD downscaling process
(see Fig. 11). TP_{11} and TP_{01} for the BCCA results
are closer to the observed transition probabilities than the
BCSD_daily results but are not as accurate as the SDBC and

BCSA results. Differences in transition probabilities among
the GCMs were not significant for either the raw or any of
the downscaled results.

The frequency and duration of consecutive wet and dry
days reflect dynamic properties of precipitation that have im-
portant implications for producing extreme hydrologic be-
havior (i.e., flood and drought events). For evaluation pur-
poses the number of consecutive wet and dry events that
persist for more than 5 days was calculated for each down-
scaled GCM. Figures 14 and 15 show the spatial distribution
of the number of events of wet spell length > 5 days in the
wet season and dry spell length > 5 days in the dry season,
respectively. The results show that BCSD_daily and BCCA
produce fewer events of spell length > 5 days compared to
observations and show lower correlations with observations
(i.e., < 0.1 for BCSD_daily and≈ 0.5 for BCCA). This is be-
cause both methods produce too many wet days (> 0.1 mm)
and thus produce longer duration and fewer total number of
events. In contrast, the SDBC and BCSA methods reproduce
the spatial pattern of the observed frequency of wet and dry
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Fig. 13. Comparisons of monthly first-order wet to wet transition probability (TP_{11}) for observations (first row), BCSD_daily results
(second row), BCCA results (third row), SDBC (fourth row), and BCSA results (fifth row) for 4 GCM products over all grids in the study
area. Box plot presents minimum, 10th percentile, median, 90th percentile, and maximum over the grids.

spell lengths much more closely for all GCMs (R: 0.71–0.91
for SDBC and 0.60–0.90 for BCSA). Overall, the differences
in the results obtained by different downscaling techniques
are larger than the differences obtained from different GCMs
using the same downscaling technique. For additional in-
sight, the average number of specific wet and dry spell events
(i.e., > 5 days, > 10 days, and > 5 days) over the study period
and study area for gridded observation and each downscaled
GCM prediction are provided in the Supplement (available
online).

5.2 Evaluation of spatial variability

Figure 16 compares the relationship between the spatial stan-
dard deviation and mean of daily precipitation events for ob-
servations and predictions downscaled using the four meth-
ods. The results indicate that the observed relationship be-
tween spatial variability and event size was reproduced fairly
well by all the methods, but that the BCSA method repro-
duced the relationship more correctly than the other meth-

ods. The spatial variability of daily observations and down-
scaled GCMs were also quantified by calculating the average
Moran’s I and Geary’s C for each month (Fig. 17). In general
the BCSD_daily and SDBC results produced precipitation
fields with overestimated spatial correlation (high Moran’s
I, i.e. ≈ 0.4 and 0.3, respectively, compared to≈ 0.2 for ob-
servations) and underestimated spatial variance (low Geary’s
C, i.e.≈ 0.4–0.5 compared to 0.6–0.8 for observations). The
BCCA results showed better skills than the BCSD_daily and
SDBC results for both the Moran’s I and Geary’s C indices,
but was not as accurate as the BCSA method. In all cases the
spatial variance of precipitation (Geary’s C index) was found
to show strong seasonality, i.e. higher in the wet season and
lower in the dry season. No significant seasonality in spatial
correlation (Moran’s I) was found.

Figure 18 compares wet season and dry season vari-
ograms calculated for each downscaled result to the vari-
ograms of the gridded observations. These figures indicate
that the BCSD method significantly underestimated the ob-
served variogram at all separation distances for both wet
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Fig. 14.Spatial distribution of the frequency of wet spell length (> 5 days) events for the wet season. Units in “number of events/year”. ME,
RMSE, andR calculated for the downscaled predictions are reported on each map.
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Fig. 16. Comparison of the relationship between spatial standard
deviations (stdev.) of daily precipitation and the spatially aver-
aged daily precipitation for observation and statistically downscaled
GCM results. 4 GCMs are not separately represented but are indi-
cated by the same marker for each downscaling method.

(June through September) and dry (October through May)
seasons. The BCCA and SDBC variogram improved over
the BCSD results, but still underestimated the observed var-
iogram. As designed, the BCSA results reproduced the ob-
served variograms correctly for both seasons.

5.3 Discussion

Overall, the existing interpolation-based statistical downscal-
ing methods (i.e., BCSD_daily and SDBC) and the con-
structed analog method (i.e., BCCA) showed limited skills
in reproducing the spatial and temporal variability of daily
precipitation, which is important for determining hydrologic
behavior in low-relief rainfall-dominated watersheds (e.g.,
Hwang and Graham, 2013). The skill of the BCSA method
improved over these methods because BCSA preserves the
spatial correlation structure of the observations while also
taking the advantage of the CDF mapping bias-correction
employed in the other downscaling methods.

We used daily GCM precipitation predictions to develop
and test the BCSA method in this study. Statistical down-
scaling on a daily basis should be adequate for many hydro-
logic modeling applications concerned with predicting spa-
tially distributed streamflow and groundwater levels for wa-
ter supply purposes (e.g., Hwang et al., 2013; Xu et al., 1996;
Middelkoop et al., 2001). However the BCSA method can
be applied to downscale coarse resolution climate data into
any temporal (e.g., hourly, daily, monthly) and spatial scale
(e.g., gridded or irregularly distributed points) needed for a
particular application, as long as observations are available

to estimate the cumulative distribution functions and spatial
correlation structure of precipitation over the required space-
time grid. Furthermore, because it generates an ensemble of
possible local-scale precipitation patterns the uncertainty due
to the downscaling process could be examined using a collec-
tion of equally probably downscaled climate fields. The pro-
cedure can also be applied to temperature and other surface-
weather variables.

One drawback of using the BCSA technique is that spa-
tial disaggregation of coarse scale precipitation predictions
is conducted independently on a daily basis, not taking into
account day-to-day, week-to-week or seasonal temporal re-
lationships at the local scale. Thus the temporal trends and
persistence of downscaled precipitation results depend on the
large scale bias-corrected GCMs’ skill to reproduce the tem-
poral correlation of precipitation patterns. We found that the
observed transition probabilities and the frequency of wet
and dry spells of greater than 5, 10 and 15 days duration
were reasonably reproduced by the BCSA method, with sim-
ilar accuracy to the SDBC method and better accuracy than
the BCSD or BCCA methods. These results indicate that the
bias-corrected GCM outputs have acceptable skill in repre-
senting plausible temporal precipitation patterns from a sta-
tistical point of view (e.g., average frequency) and this skill
is preserved through the BCSA downscaling process.

However bias-corrected GCMs have been previously
shown to produce unrealistically long dry spell lengths (e.g.,
Ines et al., 2011). Similarly, in this study we found that the
maximum dry spell length produced by all of the downscal-
ing methods (> 50 days of dry spell length) overpredicted
the observed maximum dry spell length of approximately
40 days for the study area and period. Thus long tempo-
ral persistence errors are not effectively improved by the
simple bias-correction used here and may reduce the util-
ity of using the climate model results for applications (e.g.,
agricultural crop yield estimation, Ines and Hansen, 2006;
Ines et al., 2011). This limitation may possibly be reduced
by employing alternative bias-correction methods developed
to replicate observed auto-correlation at multiple timescales
(Johnson and Sharma, 2012; Mehrotra and Sharma, 2012)
or stochastically redistributing temporal structure of climate
model output (Ines et al., 2011).

The BCSA method is more computationally expensive
than the BCSD and SDBC methods because it requires that
an ensemble of stochastic spatial precipitation fields be gen-
erated from which to match the bias-corrected daily GCM on
a daily basis. However generation of this ensemble is a rel-
atively minor one-time cost that, for example, took approxi-
mately 3 h on a common personal computer (e.g., 64 bit, In-
tel Core i5 CPU, 3.3 GHz, 3.25 GB of RAM) for the resolu-
tion (12 km) and domain size (state of Florida) demonstrated
here. The BCCA method is also more computationally ex-
pensive than the BCSD and SDBC methods because it may
include processes for searching analogs and requires linear
regression to construct analogs on daily basis. If due to the
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Fig. 17.Comparison of observed and simulated mean daily spatial correlation indices(a) Moran’s I and spatial variance indices(b) Geary’s
C for each month. 4 GCMs are not separately represented but are indicated by the same marker for each downscaling method.
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computational limitations, interpolation-based methods must
be considered for downscaling over regions exhibiting high
spatial variability of precipitation, other advanced statistical
methods for spatial disaggregation (e.g., multivariate geosta-
tistical methods using multiple factors – such as humidity,
cloud, or elevation – relevant to spatial variability of precipi-
tation, Haberlandt, 2007; Goovaerts, 2000) could be consid-
ered instead of simple univariate interpolation methods.

Accurately reproducing the spatial variability of precip-
itation is generally accepted to be an important factor for
predicting hydrologic behavior. Hwang and Graham (2013)
showed that retrospective precipitation fields produced us-
ing BCSA predicted streamflow in the Tampa Bay region
of Florida more accurately than precipitation fields produced
from interpolation-based methods such as BCSD and SDBC
when used to drive a previously calibrated integrated hydro-
logic model. However the significance of errors in represent-
ing spatial structure of precipitation will vary from region
to region, depending on topographic, geologic and climate
characteristics. Therefore hydrologic modeling efforts test-
ing various GCM downscaling techniques are recommended
to quantitatively evaluate the hydrologic implications of al-
ternative downscaling techniques, and to select the most ap-
propriate technique, for particular regions and applications
of interest.

6 Summary and conclusions

This study developed a new technique, the bias-correction
stochastic analog method (BCSA), to downscale daily GCM
precipitation predictions. Four GCM results were used to
compare the skill of BCSA in reproducing observed spa-
tial and temporal statistics of daily precipitation to the
skills of the BCSD_daily, BCCA, and SDBC downscaling
techniques. Downscaled GCM results using BCSD_daily,
SDBC, and BCSA correctly reproduced the observed tem-
poral mean of the daily precipitation as well as the an-
nual cycle of monthly mean precipitation, while the BCCA
results underestimated the mean daily precipitation. The
temporal standard deviation and the magnitude of 90th
percentile daily precipitation were underestimated by the
BCSD_daily method especially for the wet season. Fur-
thermore BCSD_daily overestimated low precipitation fre-
quency, wet to wet transition probabilities, and dry to wet
transition probabilities as well. These inaccuracies of the
BCSD_daily method were improved by the BCCA and
SDBC methods. However the BCCA method underesti-
mated, and the SDBC method overestimated, the temporal
standard deviation of spatially averaged precipitation. The
BCSA reproduced the observed temporal standard deviation,
magnitudes of both high (90th percentile) and low (50th per-
centile) rainfall amounts and wet to wet transition proba-
bilities more accurately than the BCSD_daily or the BCCA
method.

More significantly, the interpolation-based downscaling
methods (both BCSD_daily and SDBC) and the BCCA
method were unable to reproduce the observed spatial corre-
lation structure of daily precipitation, which may have impor-
tant implications for predicting hydrologic behavior in rain-
dominated watersheds. The BCSA technique was designed
to generate daily precipitation fields that reproduce observed
spatial correlation of daily rainfall. Analysis of spatial stan-
dard deviation, Moran’s I, Geary’s C, and variograms showed
quantitatively that BCSA is superior in reproducing the spa-
tial variance and spatial correlation of observed daily precip-
itation compared to the other methods.

Results of this study underscore the need to carefully se-
lect a downscaling method that reproduces all precipitation
characteristics important for the hydrologic system under
consideration if local hydrologic impacts of climate vari-
ability and change are going to be accurately predicted. For
low-relief, rainfall-dominated watersheds, where reproduc-
ing small-scale spatiotemporal precipitation variability is im-
portant, the BCSA method should produce superior results
over the BCSD, BCCA, or SDBC methods. A follow-on
phase of this work quantitatively evaluated the relative abil-
ities of these statistical methods to reproduce historic hy-
drologic behavior using an integrated hydrologic model with
retrospective GCM simulations in the Tampa Bay region of
Florida. This study showed that the BCSA method outper-
formed other downscaling methods (Hwang and Graham,
2013). In future work, the BCSA technique will be used
to downscale future GCM climate projections to assess po-
tential climate change impacts on regional hydrology in the
Tampa Bay region.

Supplementary material related to this article is
available online athttp://www.hydrol-earth-syst-sci.net/
17/4481/2013/hess-17-4481-2013-supplement.pdf.
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