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Abstract. Often a single hydrological model cannot capture
the details of a complex rainfall–runoff relationship, and a
possibility here is building specialized models to be respon-
sible for a particular aspect of this relationship and combin-
ing them to form a committee model. This study extends ear-
lier work of using fuzzy committees to combine hydrologi-
cal models calibrated for different hydrological regimes – by
considering the suitability of the different weighting func-
tion for objective functions and different class of member-
ship functions used to combine the specialized models and
compare them with the single optimal models.

1 Introduction

Conceptual rainfall-runoff models are based on fluxes and
storages representing relevant hydrological processes, and
one of the challenges is to identify a set of parameters char-
acterizing the behaviour of time-varying streamflows in a
catchment. In lumped models the parameters cannot be mea-
sured directly due to the dimensional and scaling problems
(Beven, 2000). These are calibrated based on the measure-
ment of meteorological forcing data to produce model pre-
dictions that are as close as possible to the observed dis-
charge data using some degree of expertise and experience.
Typically this approach focuses on a single model using the
best single set of parameters. However the model produced
by one best set of parameters might not equally well describe
the characteristic of the hydrological processes for all ranges
of flow, and multiple models can be built from different

components of flow hydrograph that correspond to different
flow regimes. These models can be then combined providing
a more comprehensive and accurate representation of catch-
ment processes. Such models are referred to as multi-models,
or committee models.

Multi-model approaches are not new in hydrological mod-
elling – examples are the early works of Keefer and Mc-
Quivey (1974), Todini and Wallis (1977), Bruen (1985)
and Becker and Kundzewicz (1987), who built piece-wise
linear models instead of the overall linear hydrological
model. Cavadias and Morin (1986) aggregated several wa-
tershed models which were considered by WMO (1986)
for intercomparison of their model performances. Juemoe
et al. (1987) combined a conceptual model and a statisti-
cal model, which is known as synthesized constrained linear
systems model. This model was developed by a combination
of the Xinanjiang model (Zhao, 1977) and the constrained
linear system model (Todini and Wallis, 1977). McLeod et
al. (1987) combined three models, namely, transfer function
noise model, periodic autoregressive model and conceptual
model for flow forecast. Since then various authors have been
exploring various approaches to identification of different
hydrological regimes and the ways of combining specialized
models, both process-based and data driven (e.g. Shamseldin
et al., 1997; Abrahart and See, 2002; Solomatine and Xue,
2004; Anctil and Tape, 2004; Solomatine, 2006; Oudin et
al., 2006; Ajami et al., 2006; Fenicia et al., 2007; Nasr and
Bruen, 2008; Cullmann et al., 2008; Toth, 2009).
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This paper continues to explore and improve the dy-
namic combination “fuzzy committee” method outlined in
Solomatine (2006) and further developed and tested in Feni-
cia et al. (2007). Weights assigned to each specialized
model’s output are based on optimally designed fuzzy mem-
bership functions, and they may be different at every time
step depending on the current value of flow. In the present
paper we test the performance of committee models that use
several weighting schemes in objective functions for cali-
bration of specialized models, as well as different member-
ship functions to combine models. We also test their per-
formance on test data sets. The method is tested on three
catchments, and two approaches of optimization are used:
(i) multi-objective optimization non-dominated sorted ge-
netic algorithms (NSGA II) by Deb et al. (2002) to find
Pareto-optimal solutions of specialized models and (ii) a sin-
gle objective optimization – genetic algorithm (GA) (e.g.
see Goldberg, 1989) and adaptive cluster covering algorithm
(ACCO) by Solomatine (1999) are used to calibrate the sin-
gle specialized models and single optimal models.

2 Methodology

2.1 Lumped conceptual modelling

A simplified version of HBV model (Lindström et al., 1997;
Fenicia et al., 2007) is used for this study. This is a lumped
conceptual hydrological model which describes hydrological
processes at catchment scale. The model comprises subrou-
tines for snow accumulation and melt, soil moisture account-
ing procedure, routines for runoff generation, and a simple
routing procedure. The model has 13 parameters; however,
only 9 parameters are effectively used when there is no snow-
fall.

2.2 Building specialized models

We can build several sub-models instead of using only one
single model to characterize better the various regimes which
represent the catchment hydrological behaviour. The sub-
models are also called “specialized models”. One of the ap-
proaches of multi-modelling has been implemented in this
study. The details of such an approach, previously adopted
by Fenicia et al. (2007), are briefly outlined below and com-
plemented by the possibilities of its further improvement. We
considered high flows and low flows as distinctive regimes,
or states of the system behaviour. Our aim was to reproduce
the system response during both regimes accurately. In order
to evaluate the performance of the single hydrological model
in both conditions, the two weighted objective functions are
used, where one is stressing the model error with respect to
low-flow simulation, and the other stressing the model error
with respect to high flows.

The two objective functions are defined as follows:

RMSELF =

√√√√1

n

(
n∑

i=1

(Qs,i − Qo,i)2 · WLF,i

)
, (1)

RMSEHF =

√√√√1

n

(
n∑

i=1

(Qs,i − Qo,i)2 · WHF,i

)
, (2)

wheren is total number of time steps,Qs,i is simulated flow
for the time stepi, andQo,i is observed flow for the time
step i. The two weighting functionsWLF and WHF allow
for placing the stronger weight on the low or on the high
portions of the hydrograph. As a result, RMSELF places
stronger weight on low-flow errors and weaker weight on
high-flow errors than RMSEHF. (Please note that values
RMSELF and RMSEHF cannot be compared to each other
and to the values of RMSE because of difference in weight-
ing; this is important when viewing the resulting plots.)
The types of the weighting functions (schemes) together
with their parameters will be referred to further as WStype,
and corresponding equations and figures are given below.

WStype WLF,i WHF,i Eq. Figures

I = (l)N = (h)N (3) Fig. 1a

II =

{
0, if l > α

(1− l ∗ (1/2− α)N , if l ≤ α
=

{
1, if h > α

(h/α)N , if h ≤ α
(4) Fig. 1b

III =

{
0, if l > α

(1− l ∗ (1/2− α)N , if l ≤ α
=

{
1, if h > α

0, if h ≤ α
(5) Fig. 1c

IV =

{
0, if l > α

(1− l ∗ (1/2− α), if l ≤ α
=

{
1, if h > α

0, if h ≤ α
(6) Fig. 1d

In above equations the variablesl andh are calculated as

l =
Qo,max− Qo,i

Qo,max
h =

Qo,i

Qo,max
, (7)

whereQo,max is maximum observed flow,N is power value
(for the experiment in this study we considered only 1, 2 or
3), andα is the threshold for selecting weights of flows (it
was chosen to be 0.75). Note that bothN andα can be also
subjected to optimization, but in this study it was not done.
By computing both objective functions over the whole range
of discharges, both functions constrain the model to fit the en-
tire hydrograph for WStype I whereα parameter is not used.
However for WStype withα parameter,WLF excludes high
flows from computation of objective function if the condition
is l > α. In the same way,WHF excludes low flows ifh ≤ α

for WStype III and IV.
One potential issue related to the scaling formulas (Eq. 7)

is worth mentioning:Qo,max is the maximum for calibration
data, but this of course does not guarantee that it will not
be superseded in the future when model is in operation (or
when simulating operation by using verification data). The
quadratic function will still handle values above 1, but if the
calibration maximum is exceeded considerably, then the high
flow will be given disproportionally high weights, and low
flows disproportionally low ones. A solution could be in us-
ing a bit wider range for scaling.
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Fig. 1. (a)WStype I, weighting scheme for objective functions stud-
ied in Fenicia et al. (2007).(b) WStype II,(c) WStype III, and(d)
WStype IV; additionally, these three weighting schemes were at-
tempted in the latest experiments.

2.3 Combining specialized models

The specialized models are built under the conditions of dif-
ferent regimes of catchment hydrological responses and are
combined using the appropriate combining scheme. However
the issue is how to handle the compatibility at the boundaries
between the two different specialized models. One of the
possible ways is to use a soft weighting scheme that switches
smooth transition between boundaries. The contribution of
each specialized model is based on using a fuzzy member-
ship function – the so-called “fuzzy committee” described
by Solomatine (2006). In this weighting scheme we initially
used trapezoidal functions parameterized by the two transi-
tional parameters [γ,δ] (see Fig. 2a): the membership func-
tion (weight) of low-flow model is assigned 1 when the rela-
tive flow is below the parameterγ , then starts to decrease in
the proximity of the region boundary when the relative flow
is betweenγ andδ; it decreases to zero beyond the boundary
when the relative flow is aboveδ. Similarly, the membership
function of the high-flow model follows the opposite logic.
These membership functions for the two specialized models
are described by Eqs. (9) and (10). The outputs of models are
multiplied by the weights that depend on the value of flow
and then normalized (Eq. 8). So the overall committee model
is defined as follows:

Qc,i = (mLF · QLF,i + mHF · QHF,i)/(mLF + mHF) (8)

Fig. 2. (a) A typical fuzzy membership function used to combine
the single specialized models (MFtype A),(b) a class of member-
ship functions for high and low-flow models tested in the new ex-
periments (MFtype B).

mLF =


1, if h < γ

1− (h − γ )/(δ − γ )N , if
0, if h ≥ δ

γ ≤ h < δ (9)

mHF =


0, if h < γ

(h − γ )/(δ − γ )1/N , if
1, if h ≥ δ

γ ≤ h < δ, (10)

wheremLF andmHF are membership functions (denoted also
as MFtype) for the two specialized models,QLF,i andQHF,i

are simulated high and low flows for the time stepi; γ and
δ are threshold for high and for low flows respectively,N is
power value which was used to smooth between the models
(if N = 1, MFtype is referred to as Type A (see Fig. 2a), and
for N = 2 or more – as Type B (see Fig. 2b)).

Building committee models consists of the following
steps. First the two optimal specialized models – model 1
for low flow (QLF,i) and model 2 for high flow (QHF,i)

– are sought using optimization (minimizing RMSELF for
model 1 and RMSEHF for model 2); this can be done by
solving a single-objective optimization problem separately
for these two models, or by multi-objective optimization for
two objective functions RMSELF and RMSEHF. After that
model 1 and model 2 are combined using the two member-
ship functionsmLF andmHF whose two parametersδ andγ

are found by optimization to ensure the lowest classical root
mean squared error (RMSE) of the committee model (Fig. 2).
The resulting model is subsequently verified (tested) on the
verification (test) data set, and compared to the single hydro-
logical model (which is optimized by a single-objective op-
timization algorithm) based on RMSE as an objective func-
tion and in addition evaluated using Kling–Gupta efficiency
index (KGE) proposed by Gupta et al. (2009). They discuss
limitations of using a single criterion like Nash–Sutcliffe ef-
ficiency (NSE) (or closely related mean squared error, MSE)
and show that it can be decomposed into the three compo-
nents – representing correlation, variability, and bias. These
authors also suggest aggregating this information into one
formula (representing distance in the space of the three men-
tioned criteria to the ideal point, which is zero). They state
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Table 1.The summary of the runoff data for Alzette catchment in Luxembourg, Leaf catchment in USA, and Bagmati catchment in Nepal.

Statistical properties Complete data Calibration data Verification data

Alzette (area= 288 km2)

Period (day/month/year hour) 7/29/2000, 12:00–8/6/2002, 07:00 7/29/2000, 12:00–8/6/2001, 07:00 8/6/2001, 08:00–8/6/2002, 07:00
Number of data points 17 720 8960 8760
Average (m3 s−1) 4.64 5.55 3.70
Minimum (m3 s−1) 0.45 0.59 0.45
Maximum (m3 s−1) 51.41 51.41 31.15
Standard deviation (m3 s−1) 5.35 5.52 5.00

Leaf (area= 1924 km2)

Period (day/month/year) 28/07/1951–21/09/1961 28/07/1951–25/07/1957 26/07/1957–21/09/1967
Number of data points 3717 2190 1527
Average (m3 s−1) 28.28 23.02 35.81
Minimum (m3 s−1) 1.56 1.56 2.92
Maximum (m3 s−1) 2.38 549.35 1313.91
Standard deviation (m3 s−1) 64.48 47.37 82.51

Bagmati (area= 3500 km2)

Period (day/month/year) 01/01/1988–31/12/1995 01/01/1991–30/06/1995 01/01/1988–28/02/1991
Number of data points 2922 1767 1155
Average (m3 s−1) 150.0 150.8 148.6
Minimum (m3 s−1) 5.1 5.1 7.7
Maximum (m3 s−1) 5030.0 5030 3040
Standard deviation (m3 s−1) 271.2 280.5 256.40

however that “the primary purpose of this study was not to
design an improved measure of model performance, but to
show clearly that there are systematic problems inherent with
any optimization that is based on mean squared errors (such
as NSE). The alternative criterion KGE was simply used for
illustration purposes.” We decided that this statement is too
modest and followed the other authors (e.g. Pechlivanidis et
al., 2011; Coron et al., 2013) that explicitly use KGE as one
of the model performance measures. An additional advantage
of using KGE is that it is a relative measure permitting inter-
catchment comparison. Using RMSE along with KGE, we
run the risk of having an overlap (since KGE is in fact con-
structed of components of NSE and hence RMSE), but still
consider this to be useful to do to follow an adopted hydro-
logical practice, and to allow for having a better judgement
about various facets of model performance including an ex-
plicit absolute measure of model error.

The equations of RMSE and KGE are given below.

RMSE=

√√√√1

n

(
n∑

i=1

(
Qs,i − Qo,i

)2)
, (11)

whereQo,i is the observed discharges for the time stepi,
Qs,i is the simulated discharges (single optimal or committee
models) for the time stepI , andn is the number of observa-
tions.

KGE = 1−

√
(c − 1)2 + (α − 1)2 + (β − 1)2, (12)

wherec is the linear cross-correlation coefficient between
Qo andQs, α is a measure of variability in the data values
(equal to the standard deviation ofQs, over the standard de-
viation of Qo) , andβ is equal to the mean ofQc, over the
mean ofQo. KGE is subject to maximization with an ideal
value at unity.

3 Results and discussion

Three catchments, namely, Alzette catchment in Luxem-
bourg, Leaf River catchment in USA and Bagmati catchment
in Nepal, are selected for case study. The summary statistics
and records of data for calibration and verification of catch-
ments are presented in Table 1. These data cover multiple-
year periods (except Alzette), all seasons and multiple peak
flows. Ideally, we have to try to split data into statistically
similar sets (coverage of seasons, number and size of peaks,
variance, mean, etc.). Of course in this type of splits of hy-
drological data, one is constrained by the wish to keep data
in contiguous blocks (to be able to plot the time-series data
such as hydrographs), so the calibration and verification data
sets almost always have statistical differences.

The experiment follows the one used in an earlier study
(Fenicia et al., 2007) where the Alzette catchment was con-
sidered, and only calibration data were considered for build-
ing the models without further validation. We present here
two additional catchments (Leaf and Bagmati) with both cal-
ibration and verification periods, and compare the overall
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Table 2.The ranges of model parameters.

Parameters Units Descriptions
Ranges used in calibration (optimization)

Alzette Leaf Bagmati

FC (mm) Maximum soil moisture content 100–450 100–400 50–500
LP (–) Limit for potential evapotranspiration 0.3–1 0.1–1 0.3–1
ALFA (–) Response box parameter 0.1–1 0–2 0–4
BETA (–) Exponential parameter in soil routine 0.1–2 1.0–4 1.0–6
K (mm h−1) Recession coefficient for upper tank 0.005–0.5 0.05–0.5 0.05–0.5
K4 (mm h−1) Recession coefficient for lower tank 0.001–0.1 0.01–0.3 0.01–0.3
PERC (mm h−1) Percolation from upper to lower response box 0.01–1 0–5 0–8
CFLUX (mm h−1) Maximum value of capillary flow 0–0.05 0–1 0–1
MAXBAS (h) Transfer function parameter 8–15 2–6 1–3

Note: The unit d (day) is used for Leaf and Bagmati catchments instead of h (hour).

model performance when using different weighing schemes
for objective functions (Fig. 1) and different membership
functions (Fig. 2). First two months of calibration data are
considered as the warming-up in Leaf and Bagmati catch-
ment. However for Alzette catchment we used the hourly
data set of only one year for the calibration period and one
year for verification. To somehow compensate for the lack of
data in calibration, we allocated 168 h of data for the warm-
up period.

The ranges of HBV model parameters for optimization are
given in Table 2. We produced the specialized models (the
best single model specialized on high flows and low flows)
which are optimized by multi- and single-objective optimiza-
tion algorithms. The identified best sets of parameters for dif-
ferent models are given in Table 3. It is worth mentioning that
in this paper we use only one model structure (HBV), but the
use of several calibration methods and several error functions
results in several model parameterizations, or instantiations.
For simplicity we will be speaking of several models, mean-
ing actually the same model structure but its several parame-
terizations.

We present results of calibration using several optimiza-
tion algorithms: NSGA-II, GA and ACCO. The reasons for
using different optimization algorithms for calibration are as
follows: (1) the initially used GA appeared to be quite slow
(in terms of the required model runs), so we decided to test
the use of faster algorithms as well; (2) to cross-check one
by another since they both use randomization of initial popu-
lation and this affects results. We have also tried the use of a
stepwise line search (SLS) algorithm (Kuzmin et al., 2008),
which showed its effectiveness and efficiency, and its work-
ing depends less on the randomized generation of the initial
population but uses rather some a priori estimates; these tests
however were not finalized, so we decided not to present the
intermediate results in this comparison.

In each experiment a committee model is compared with
the single optimal model which is calibrated by two different
single-objective optimization algorithms (GA and ACCO).

The best single models specialized for low and high flows
respectively (found by NSGA-II, GA and ACCO) are used
in the committee model. The points denoted “committee
models” correspond to the model parameterizations gen-
erated during the exhaustive search for the bestγ and δ

ensuring the lowest RMSE. We also tested a committee
model which is built by combining the specialized mod-
els, and compared against the single optimal model for all
catchments. In Tables 4 and 5 these models are denoted
as Qc(ACCO), Qc(GA) and Qc(NSGA-II). Interestingly,
the committee model is better on both objective functions
(RMSE and KGE) than the single optimal models for all case
studies.

The graphs of Pareto-optimal of single specialized models
(calibrated by NSGA-II), committee models and single op-
timal models (calibrated by ACCO and GA) for Leaf catch-
ment are shown in Fig. 3 (Kayastha and Solomatine, 2013).
In this plot one may see the 20205 single specialized models
presented as they were generated during multi-objective opti-
mization process by using WStype I weighting scheme. The
70 model parameterizations identified as the best (Pareto-
optimal) are presented as well (by the darker points). The
Pareto-optimal models in calibration are not necessarily the
best in verification – this is of course no surprise; what
is however important is to stress that their performance is
not too much lower than that of calibration data. Among
the Pareto-optimal models, the best single model specialized
on low flows obtained 11.01 in RMSELF (all errors are in
m3 s−1), and it can be seen from Figure 3b that this model
is also very close to be the best in verification with RMSELF
being 18.33. However, the best single model specialized on
high flows (RMSEHF is 6.08) is not too bad, but not the best
in verification (its RMSEHF is 8.42 and in Fig. 3b it is easy
to see that there are many models with lower RMSEHF).

The committee model resulted in the classical RMSE of
15.63 in calibration and 25.23 in verification. To represent
this model in Fig. 3 (solid square), we had to calculate for
it the corresponding RMSELF and RMSEHF, and we did it
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4446 N. Kayastha et al.: Fuzzy committees of specialized rainfall-runoff models

Table 3.Sets of parameters identified by different optimization algorithms.

Catchments Models FC LP ALFA BETA K K4 PERC CFLUX MAXBAS

Alzette ACCO SO 284.83 0.26 0.06 0.65 0.02 0.01 0.16 0.04 10.96
LF 356.34 0.46 0.10 0.42 0.02 0.00 0.14 0.10 13.48
HF 414.48 0.19 0.30 0.49 0.00 0.03 0.97 0.01 8.51

GA SM 309.97 0.35 0.03 0.72 0.03 0.01 0.27 0.01 11.45
LF 255.11 0.46 0.07 0.98 0.03 0.01 0.23 0.05 12.62
HF 338.84 0.56 0.06 0.95 0.01 0.02 0.89 0.00 8.37

NSGA-II LF 253.24 0.16 0.07 0.54 0.02 0.00 0.13 0.00 9.49
HF 253.25 0.34 0.07 0.52 0.02 0.01 0.14 0.00 9.54

Leaf ACCO SM 272.11 0.29 0.30 1.57 0.27 0.26 2.27 0.62 6.04
LF 303.49 0.14 0.42 1.14 0.08 0.04 0.47 0.91 4.94
HF 230.27 0.16 0.62 1.08 0.08 0.28 0.00 0.96 5.99

GA SM 349.80 0.64 0.65 2.29 0.07 0.14 0.65 0.97 5.99
LF 313.84 0.22 0.26 1.24 0.14 0.05 0.66 1.00 5.06
HF 285.21 1.00 0.72 1.91 0.05 0.26 1.83 0.99 6.00

NSGA-II LF 301.88 0.36 0.37 1.95 0.14 0.24 1.07 0.89 5.57
HF 274.26 0.90 0.45 2.27 0.15 0.26 1.24 0.85 5.86

Bagmati ACCO SM 371.88 0.67 0.07 1.01 0.49 0.14 7.78 0.20 2.57
LF 448.05 0.79 0.13 1.04 0.37 0.06 7.88 0.29 2.53
HF 445.04 0.65 0.08 1.05 0.46 0.23 7.79 0.67 2.94

GA SM 430.26 0.59 3.85 1.04 0.50 0.08 8.00 0.01 2.99
LF 301.36 0.83 0.22 1.05 0.22 0.06 7.99 0.10 2.39
HF 453.50 0.58 0.07 1.23 0.49 0.03 0.05 0.00 2.91

NSGA-II LF 364.46 0.75 0.16 1.05 0.33 0.07 7.94 0.11 2.48
HF 370.66 0.66 0.10 1.06 0.37 0.10 7.17 0.17 2.74

SM: single hydrological model (single optimal model-optimized by a single-objective optimization algorithm based on the classical RMSE); LF and HF:
low-flow model and high-flow model (optimized by a single-objective optimization algorithms and multi-objective optimization based on the RMSELF and
RMSEHF).

Table 4. The performances of single optimal models (optimized based on classical RMSE) and committee models of various catchments.
Committee models are assembled by combination of the weighting scheme WStype I and membership function MFtype A.

Catchments Models
Membership function RMSEHF RMSELF RMSE KGE

δ γ Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver.

Alzette Qs (ACCO) n.a. n.a. 0.97 1.23 2.11 1.71 2.37 2.39 0.88 0.86
Qs (GA) n.a. n.a. 0.99 1.2 2.03 2.01 2.31 2.42 0.89 0.88
Qc (ACCO) 0.50 0.25 0.53 0.81 1.65 1.48 2.10 2.06 0.91 0.89
Qc (GA) 0.60 0.40 0.56 0.78 1.71 1.35 2.19 2.15 0.90 0.90
Qc (NSGA-II)∗ 0.50 0.30 0.50 0.86 1.48 1.48 1.99 2.07 0.93 0.89

Leaf Qs (ACCO) n a n a 8.97 14.31 11.84 18.81 17.56 26.76 0.87 0.83
Qs (GA) n.a. n.a. 7.96 11.70 11.71 19.64 17.36 26.58 0.88 0.84
Qc (ACCO)∗ 0.39 0.37 5.88 9.00 10.55 18.74 15.63 25.23 0.91 0.85
Qc (GA) 0.51 0.50 5.82 8.91 10.86 19.38 15.76 24.88 0.90 0.85
Qc (NSGA-II) 0.50 0.49 5.61 9.05 10.85 18.59 16.05 23.86 0.900.88

Bagmati Qs (ACCO) n.a. n.a. 29.55 85.33 38.84 87.54101.01 112.42 0.87 0.90
Qs (GA) n.a. n.a. 32.42 86.18 34.16 92.38 101.69 116.72 0.86 0.88
Qc (ACCO) 0.61 0.49 40.09 69.31 72.69 65.09 95.96109.38 0.87 0.90
Qc (GA) 0.57 0.47 18.93 39.75 77.29 74.55 94.39 110.290.89 0.91
Qc (NSGA-II)∗ 0.50 0.47 26.94 48.34 82.42 81.67 94.16 109.72 0.87 0.91

Qs (ACCO) andQs (GA): single hydrological models (SMs);Qc (ACCO),Qc (GA),andQc (NSGA-II): committee models (CMs) (bold: best CMs, italics: best SMs and
∗: best model for a catchment, n.a.: not available).
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Table 5. Performance of committee models for the Leaf catchment, with possible combinations of the various weighting schemes and
membership functions.

Models
Weighted function Membership function RMSEHF RMSELF RMSE KGE
WStype N MFtype δ γ Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver.

Qs (ACCO) n.a. n.a. n.a. n.a. 8.97 14.31 11.84 18.81 n.a. 17.56 26.76 0.87 0.83

Qs (GA) n.a. n.a. n.a. n.a. 7.96 11.70 11.71 19.64 n.a.17.36 26.58 0.88 0.84

Qc (ACCO) I 2 A 0.39 0.37 5.88 9.00 10.55 18.74 15.63 25.23 0.91 0.85
II 2 A 0.45 0.44 7.27 10.47 9.71 17.86 16.01 24.38 0.89 0.85
III 2 A 0.65 0.14 1.02 3.23 9.56 17.26 15.60 24.52 0.92 0.88
IV 2 A 0.56 0.55 1.13 3.00 11.47 19.64 16.20 25.68 0.87 0.86
I 2 B 0.39 0.38 5.88 9.00 10.55 18.74 15.63 25.26 0.90 0.85
II 2 B 0.45 0.44 7.27 10.47 9.71 17.86 16.03 24.38 0.89 0.85
III 2 B 0.94 0.15 1.02 3.23 9.56 17.26 15.67 24.72 0.92 0.88
IV 2 B 0.56 0.55 1.13 3.00 11.47 19.64 16.20 25.68 0.87 0.85

Qc (GA) I 2 A 0.51 0.50 5.82 8.91 10.86 19.38 15.76 24.88 0.90 0.85
II 2 A 0.66 0.14 7.36 9.84 9.81 18.93 16.13 25.81 0.92 0.86
III 2 A 0.99 0.16 0.99 2.77 9.67 18.36 16.53 24.67 0.92 0.87
IV 2 A 0.99 0.30 1.01 2.85 11.50 19.84 16.60 23.96 0.92 0.87
I 2 B 0.99 0.15 5.82 8.91 10.86 19.38 16.30 25.560.93 0.86
II 2 B 0.87 0.16 7.36 9.84 9.81 18.93 16.22 25.58 0.93 0.87
III 2 B 0.99 0.31 0.99 2.77 9.67 18.36 16.47 24.34 0.92 0.87
IV 2 B 0.99 0.42 1.01 2.85 11.50 19.84 16.55 24.06 0.92 0.87
I 1 B 0.42 0.41 9.43 13.06 12.44 20.56 15.96 24.04 0.91 0.89
I 3 B 0.99 0.23 3.64 6.95 9.30 17.08 16.50 25.53 0.91 0.86

Qc (NSGA-II) I 2 A 0.50 0.49 5.61 9.05 10.85 18.59 16.05 23.86 0.90 0.88
II 2 A 0.50 0.49 7.31 9.98 9.70 17.45 15.71 23.85 0.91 0.88
III 2 A 0.86 0.47 1.08 2.86 10.13 17.76 17.3623.41 0.91 0.90
IV 2 A 0.86 0.45 1.08 3.10 11.62 20.01 16.76 23.97 0.90 0.87
I 2 B 0.50 0.29 5.61 9.05 10.85 18.59 16.45 23.96 0.90 0.88
II 2 B 0.50 0.15 7.31 9.98 9.70 17.45 16.71 23.95 0.91 0.88
III 2 B 0.99 0.49 1.08 2.86 10.13 17.76 17.29 23.46 0.91 0.91
IV 2 B 0.99 0.46 1.08 3.10 11.62 20.01 16.71 23.97 0.91 0.88
I 1 A 0.38 0.36 9.59 12.76 12.91 20.46 16.58 23.86 0.910.91
I 3 A 0.50 0.49 4.19 7.88 9.60 17.07 15.96 23.79 0.90 0.88

The value ofα = 0.75 used in WStype II, III and IV (bold: best CMs, italics: best SMs).

using the same type of weighing scheme (WStype I) which
was used in calibration of specialized models. In the same
way we presented the single optimal models identified us-
ing the two single objective optimization methods (ACCO
and GA represented by a circle and a star respectively). It
can be seen that the committee models are closer to the ideal
point than the other single optimal models, and this means
that the committee model’s performance is the highest of any
of the single models. Plots for Bagmati and Alzette are not
presented here due to space limitations.

The performances of the best single models specialized
on high and low flows (RMSEHF and RMSEHF) on vari-
ous catchments are presented in Table 4. However, again, it
should be noted that RMSELF, and RMSEHF cannot be com-
pared since they use different formulas. RMSELF values are
even higher than those of RMSEHF – the reason is that the

number of low flows is much higher than of high flows, and
the denominator (total number of observations) in both for-
mulas is the same.

In Leaf catchment we tested all possible combinations
of different weighting schemes types and classes of mem-
bership functions, the results of which are presented in Ta-
ble 5. Noticeably, all committee models improved their per-
formances in verification in comparison to the single hydro-
logical models which were optimized by single objective op-
timization. However, in the other two catchments Alzette and
Bagmati, the number of experiments was smaller, but in all
of them the committee models demonstrated the higher per-
formance in both calibration and test data sets.

Table 4 reports the performance of committee mod-
els and single-optimal models calibrated by ACCO and
GA for each catchment. For the Bagmati catchment, the
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Fig. 3. The identified sets of Pareto-optimal parameterizations of single specialized models (optimized by NSGA-II), committee models
and single optimal models, calibrated by ACCO and GA in Leaf catchment:(a) calibration data set and(b) verification data set (model
parameterizations from(a) are used).

RMSE calculated by single optimal model in calibration is
101.01 m3 s−1, and verification is 112.42 m3 s−1. However, it
can be noticeably improved by the committee models and ob-
tained around 94.16–95.96 m3 s−1 in calibration and 109.38–
110.29 m3 s−1 in verification. The RMSE of single model
produced 26.76 m3 s−1 in verification period for Leaf catch-
ment. However, when new types of weighting and member-
ship functions were used, RMSE dropped to 23.41 m3 s−1

(see Table 5).
The visual plots of the committee models which are built

from the combination of the two specialized models for high
and low flows with respect to the hydrograph simulations are
represented in Fig. 4. It can be observed that the committee
model combines the best features of the specialized models.

Our experiments have led to one important observation
related to using the weighting function for objective func-
tions (Fig. 1 and Eqs. 3–7) in calibration of specialized mod-
els quadratic function we used earlier (Fenicia et al., 2007)
was in fact the first guess that it will allow for distinguish-
ing the low and high flows. In our latest experiments it ap-
peared, quite expectedly, that other function (for example,
cubic) may work better in calibration period.

It is useful to mention an issue of overfitting that was
raised by one of the reviewers and reiterated by the editor.
This problem (typically addressed in data-driven modelling)
may lead to a decrease of accuracy in operation (which can
be detected during validation), and there are several ways of
dealing with it, for example trying to limit the complexity of
a model, and/or using cross-validation data set to control the
calibration process. The committee model includes a number
of parameters that increase accuracy of the overall model.
However, this contributes to increasing the complexity of the

model and may lead to overfitting. However the number of
parameters added is very small (only two –δ andγ in the
membership function), so an increase in complexity is also
small, and so we see no need in using regularization. Early-
stopping strategy cannot be used since process of training
is pure exhaustive search, and not iterative, so it cannot be
stopped prematurely. Alternatively, a cross-validation set can
be used; however, it would require effort in finding the op-
timal splitting of the data set into three rather than two sets,
with the smaller subsets for each purpose, and subsequent
analysis of the impact of having smaller sets for calibra-
tion and testing. So in this paper we have not used cross-
validation but can recommend doing so in future research if
the size of data would allow for this.

4 Conclusions and direction for further work

In this study we presented further improvements to a fuzzy
committee approach – one possible way to improve the
hydrological model prediction involving a combination of
model outputs obtained by differently parameterized models
with the same model structure. The two best single models
specialized in low flows and high flows, which were found
by optimization based on two objective functions RMSELF
and RMSEHF respectively, are combined using membership
function to form the committee model and this model com-
pared to the single hydrological model based on RMSE as an
objective function.

The major findings of this study are as follows:

– By conducting a number of experiments, we can con-
firm the initial results reported earlier in Fenicia et
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Fig. 4. A fragment of a hydrograph generated from various models:Qo – observed discharge,Qs – model identified by single-objective
optimization (ACCO and GA),Qc – committee model (ACCO, GA and NSGA-II),(a) Alzette (31/01/2002 08:00:00–18/03/2002 03:00:00),
(b) Bagmati (20/5/1990–28/5/1990), and(c) Leaf (13/02/1960–08/03/1960).

al. (2007) that the combination of two specialized
models indeed provides a method leading to a higher
model of the resulting model. In three case studies we
could reproduce the situation shown in Fig. 3 when
the fuzzy committee model is better on both objec-
tive functions than the single model(s). In calibra-
tion a committee model is always better than the sin-
gle model, independent of the values of parameters
MFtype and WStype (however we have to optimizeδ

andγ ).

– We found that the best committee model identified by
calibration, when tested on verification data, outper-
forms the best single model (identified by calibration)
in all case studies (Table 4). We see this as the most
important conclusion from this study.

– We conducted a thorough investigation of the impact
of MFtype and WStype on model performance using
the Leaf catchment data (Table 5). We cannot sug-
gest the “universal” best set of parameters MFtype and
WStype applicable for any case study: in calibration
all of them led to models better than the single one,
but in verification performance of models using differ-
ent MFtype and WStype slightly differs for different
cases (however it is still higher than that of the single
model).

– There is an interesting effect concerning direct op-
timization of parametersγ and δ. It appeared that
in most experiments after optimization these param-
eters obtained very close values, which means that
there is a very narrow region where specialized models
“work together”. Potentially this may lead to situations
when a minor change in average flows will force the
committee model to produce relatively large changes
in outputs.

– Results for the Alzette case study should be considered
with care since the data set was limited (one year for
calibration and one year for verification).

Further development and application of the presented ap-
proach is seen in the following.

– It would be useful to explore possible interactions be-
tween the parameters of the weighting functions and
the shapes and parameters of the membership func-
tions.

– The committee model may be sensitive to the choice of
these parameters determining the shapes of the weight-
ing and membership functions, and indeed explor-
ing the use of more robust optimization methods for
their identification may ensure higher robustness of the
committee model.

– More accurate comparison between performances of
various models can be made if the problem of over-
fitting is addressed (for example by cross-validation
during model calibration and stopping the optimiza-
tion process earlier to ensure minimum error on cross-
validation) instead of the “deep” optimization of the
model on calibration set and using the single valida-
tion set.

An aspect related to the model performance metrics which
needs attention as well is worth mentioning. We used the
same objective functions for different magnitude of flows
which originate from statistical theory. However the nature
of this metric (e.g. RMSE) is basically oriented towards high
flows and may not be suited for low flows. Therefore the per-
formance measure can be in the form of transformed metric
(e.g. transformed RMSE) to calibrate a low-flow model (e.g.
van Werkhoven et al., 2009; Willems, 2009; Kollat et al.,
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2012), or being a multi-scale objective function taking into
account errors at various timescales (Kuzmin et al., 2008).

Further developments are foreseen in improving the
weighting schemes involving hydrological states and vari-
ous combinations of variables influencing the streamflow (for
example those presented by Oudin et al., 2006; Kim et al.,
2006; Corzo and Solomatine, 2007a, b; Marshall et al., 2007;
Jeong and Kim, 2009; Fernando et al., 2012). Combining
these approaches will hopefully lead to the techniques for
discovering various regimes in the time series representing
the modelled system – and this would allow for optimal com-
bination of domain (hydrologic) knowledge incorporated in
models with automatic machine learning or time-series anal-
ysis routines.
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