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Abstract. Monitoring of flows in sewer systems is increas-
ingly applied to calibrate urban drainage models used for
long-term simulation. However, most often models are cal-
ibrated without considering the uncertainties. The general-
ized likelihood uncertainty estimation (GLUE) methodology
is here applied to assess parameter and flow simulation un-
certainty using a simplified lumped sewer model that ac-
counts for three separate flow contributions: wastewater, fast
runoff from paved areas, and slow infiltrating water from per-
meable areas. Recently GLUE methodology has been criti-
sised for generating prediction limits without statistical co-
herence and consistency and for the subjectivity in the choice
of a threshold value to distinguish “behavioural” from “non-
behavioural” parameter sets. In this paper we examine how
well the GLUE methodology performs when the behavioural
parameter sets deduced from a calibration period are applied
to generate prediction bounds in validation periods. By re-
taining an increasing number of parameter sets we aim at
obtaining consistency between the GLUE generated 90 %
prediction limits and the actual containment ratio (CR) in
calibration. Due to the large uncertainties related to spatio-
temporal rain variability during heavy convective rain events,
flow measurement errors, possible model deficiencies as well
as epistemic uncertainties, it was not possible to obtain an
overall CR of more than 80 %. However, the GLUE gener-
ated prediction limits still proved rather consistent, since the
overall CRs obtained in calibration corresponded well with

the overall CRs obtained in validation periods for all propor-
tions of retained parameter sets evaluated. When focusing on
wet and dry weather periods separately, some inconsistencies
were however found between calibration and validation and
we address here some of the reasons why we should not ex-
pect the coverage of the prediction limits to be identical in
calibration and validation periods in real-world applications.
The large uncertainties result in wide posterior parameter
limits, that cannot be used for interpretation of, for example,
the relative size of paved area vs. the size of infiltrating area.
We should therefore try to learn from the significant discrep-
ancies between model and observations from this study, pos-
sibly by using some form of non-stationary error correction
procedure, but it seems crucial to obtain more representative
rain inputs and more accurate flow observations to reduce
parameter and model simulation uncertainty.

1 Introduction

Simulation with deterministic urban drainage models is com-
monly used to assess the performance of sewer systems and
to assess the efficacy of new upgrading or redesign proposals.
Rarely are uncertainties addressed in these investigations,
and decisions with large economic consequences are usually
taken on a purely deterministic basis, as if model simulations
were in full conformity with reality. Sometimes models are
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calibrated to level or flow data from a few places in a sewer
system during some months. However, you need not to have
much experience with calibration of urban drainage models
before you arrive at the conclusion that different parameter
sets are optimal for different rain events, even when apply-
ing state-of-the-art, physically distributed models in combi-
nation with high-resolution rain gauges located close to the
catchment in question.

Different parameter sets, sometimes referred to as differ-
ent models, will obviously have different consequences when
applied in a long-term simulation setting typically used as a
basis for evaluating upgrade proposals, a fact that is how-
ever mostly ignored in practice. There is thus an urgent need
for uncertainty assessment tools that can be used when eval-
uating upgrade proposals as well as for associated needs
such as flow meter checking and evaluating the magnitude
of the unintended infiltration contribution to the sewer flow,
which constitutes a major problem in many flat coastal urban
catchment areas.

The generalized likelihood uncertainty estimation (GLUE)
methodology (Beven and Binley, 1992; Beven and Freer,
2001) acknowledges that multiple parameter sets (models)
may provide acceptable simulations of the response of the
system of interest (Beven, 2006). GLUE has become an in-
creasingly popular tool for model evaluation and uncertainty
estimation of environmental models (Mitchell et al., 2009;
Piñol et al., 2009; Juston et al., 2010; Staudt et al., 2010)
and particularly within hydrological modelling from where
the methodology originated (see e.g.Choi and Beven, 2007;
Xiong and O’Connor, 2008; Blazkova and Beven, 2009a, b;
Jin et al., 2010). Several GLUE applications have also been
seen within urban drainage water quantity and quality mod-
elling, (Aronica et al., 2005; Lindblom et al., 2007; Freni
et al., 2008, 2009b, a; Mannina and Viviani, 2010; Lindblom
et al., 2011), but GLUE, as well as Bayesian inverse methods
(e.g.Dotto et al., 2009; Kleidorfer et al., 2009; Dotto et al.,
2010; Freni and Mannina, 2010; Dotto et al., 2012), have so
far mostly been applied to tailor-made models for relatively
simple, well-defined urban drainage systems or in combina-
tion with high-quality data generated in research projects.
Within flow modelling uncertainty is introduced from un-
reliable/inaccurate level or flow meters (Bertrand-Krajewski
et al., 2003), inadequate rain gauge coverage (Willems, 2001;
Vaes et al., 2005; Pedersen et al., 2010), and/or unreli-
able/inaccurate rain gauge measurements (input errors) (Bar-
bera et al., 2002; Molini and Barbera, 2005; Shedekar et al.,
2009).

In this paper we present an application of GLUE to a hy-
brid urban drainage system revealing the full complexity of
reality in terms of flow variations (diurnal wastewater varia-
tions, fast rainfall runoff from paved areas and slow infiltra-
tion inflow from unknown sources), using flow data recorded
by the responsible utility over three consecutive years. A
state-of-the-art physically distributed model fed with com-
prehensive information about the system attributes is cur-

rently used by the local utility to interpret the measurements.
We use a lumped, conceptual model to reduce the computa-
tional burden, but this model however represents the complex
flow contributions mentioned above in a similar manner to
the physically distributed model used in practice.

Recently the GLUE methodology was criticized for be-
ing statistically incorrect and for generating prediction limits
without statistical coherence (Mantovan and Todini, 2006;
Mantovan et al., 2007; Stedinger et al., 2008). This is due
to the subjectivity in adopting a likelihood measure and in
the choice of a threshold value to distinguish “behavioural”
from “non-behavioural” parameter sets. In GLUE, modelling
errors associated with each acceptable model are usually
treated under the assumption that error series associated with
a particular parameter set (such as over- or under-prediction
of flow peaks) will be similar in prediction to those found in
evaluation (Blazkova and Beven, 2009b) and hence GLUE is
in many cases a welcomed alternative to traditional statistical
inference that requires the error series to conform to a statis-
tical known distribution often difficult to justify in real hy-
drological applications (Beven et al., 2008). It is in this con-
text worth noting that the aforementioned papers that have
criticised the GLUE approach all have used synthetic data
to illustrate and consolidate their critique, and hence there
seems to be a lack of research papers that clearly demonstrate
that the statistical error assumptions conform to the specified
likelihood function in real-world hydrological applications.
In the synthetic case the benefits of classical statistical in-
ference are evident: trust in the model is build in the model
construction phase and confidence bounds can be generated
and used for prediction. InBeven and Freer(2001); Beven
et al. (2011) it is claimed that any effects of model nonlin-
earity, covariation of parameter values and errors in model
structure, input data or observed variables, with which the
simulations are compared, are handled implicitly within the
GLUE procedure.

The scope of this paper is to examine the GLUE assump-
tion that the error series associated with a particular param-
eter set will be similar in prediction to those found in evalu-
ation. If true, we would expect that the performance of the
GLUE derived uncertainty limits obtained in a calibration
period should be similar in a validation period. Aiming at
an overall coverage of 90 % of the observations, we inves-
tigate how well the GLUE generated 90 % prediction limits
cover the observations in both dry and wet weather periods
as the number of behavioural parameter sets increases, and
we moreover check the coverage for different flow magni-
tudes using half a year for calibration. Validation periods are
included to test the consistency of the generated prediction
limits, that is, we test if the coverage obtained in validation
periods corresponds to the coverage obtained in the calibra-
tion period. We also show how the limits of the posterior pa-
rameter space increases as more parameter sets are retained
and use this information to draw conclusions on the physi-
cal interpretation of important model parameters, such as the
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Fig. 1. The Ballerup catchment area.

Fig. 2. The Conceptual model.

*

*
*

*

*

** **

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*
*

**

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*
*
*

*

*

***

*

*

*

*

*
*
*

*

*

*

**

*

*

*

*

*

**

**

*

**

*
*

* **

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

**

*

*

*

*
** **

*

*

*

*

*
*
*

*

*

*

*
**

*

*

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*

***

*

***

*

*

**

*

*

*

*
*

*

*
*
*
*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

**
*

*

*

*

*

*

**

*

*

*

*

*

*

**

*

*

*

*

**

*

**

*

*

***

*

*
*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

**

*

*

***

*

*
**

*
*

*

*

*

*

*

*

*

*

*

*

*

**
*

***

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

* * ** ** *
0 1 2 3

0
1

2
3

log(P316+1)

lo
g(

P
32

1+
1)

2007

*

*

**
*

**

*

*

*

*

*

*

*

**

*

*

*

*

*
*

***

*

*

* *

*

*

*

*

*
*

*
*

*

*

*

*

*

*

* *

*

*

** *

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*
*

*

*

*

* *

**** * ** ** **** ** *** ** *** ***
0 1 2 3

0
1

2
3

log(P316+1)

lo
g(

P
32

1+
1)

2008

*

**
*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

***
*

*

*

*

*

*

* *

*

*
*

*
*

*

*

0 1 2 3

0
1

2
3

log(P316+1)

lo
g(

P
32

1+
1)

2009

Fig. 3. Rain events measured at each rain gauge on a shifted log
scale (1+acc.mm), April-October, 2007-2009.
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Fig. 4. Likelihood vs. number of retained parameter sets. Shown
for overall likelihood (L), dry weather likelihood (Ldw) and wet
weather likelihood (Lww).
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Fig. 6. CR (upper panels) and ARIL (lower panels) vs. the number
of retained parameter sets in the calibration year (2007) and the
two validation years (2008 and 2009) for the total 6 months period
(left panels), the dry weather periods (middle panels) and the wet
weather periods (right panels).

Fig. 1.The Ballerup catchment area.

Table 1.Catchment details.

Ballerup
Total area Imp.area
[ha] [%] [ha] [%]

Combined 92 7 33 77
Separated 1227 93 10 23

Total 1320 100 43 100

size of contributing paved area versus the size of the area con-
tributing with slow infiltration inflow. After this brief intro-
duction, we first present the case study area, the calibration
and validation data, and the model in Sect.2.

This is followed by an elaboration of the applied un-
certainty analysis methodology in Sect.3 in which the
GLUE steps are outlined, the used combined likelihood mea-
sure is defined, and some performance indicators are pre-
sented. Finally, the results are presented and discussed in
Sect.4 and conclusions are drawn in Sect.5, both with re-
spect to the urban drainage engineering relevance and the
method applicability.

2 Case study and model

2.1 Catchment and drainage system

The case study catchment with a total area of 1320 ha is
situated in the western part of greater Copenhagen in the
Ballerup Municipality, as shown in Fig.1. Most of the
area (93 %) is equipped with a separated sewer system,
that is, a system with two parallel pipes for wastewater
and stormwater, whereas only 7 % is equipped with a com-
bined system where wastewater and stormwater flows into
the same pipe (see Table1). Such hybrid systems are quite
common due to transition of the prevailing technological
regime in urban drainage since the 1950s, from combined
to separated systems.

In a recent calibration of a distributed hydrodynamic
model with a rainfall dependent infiltration-inflow module
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Fig. 1. The Ballerup catchment area.

Fig. 2. The Conceptual model.
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Fig. 3. Rain events measured at each rain gauge on a shifted log
scale (1+acc.mm), April-October, 2007-2009.
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Fig. 6. CR (upper panels) and ARIL (lower panels) vs. the number
of retained parameter sets in the calibration year (2007) and the
two validation years (2008 and 2009) for the total 6 months period
(left panels), the dry weather periods (middle panels) and the wet
weather periods (right panels).

Fig. 2.The conceptual model.

(DHI, 2009) the effectively contributing impermeable area
of the combined sewer system was however found to be
larger than that of the separated area (see Table1), prob-
ably because of infiltration inflow or unintended connec-
tions of drainage water to the wastewater system. A flow
meter has been installed downstream from the catchment
(Fig. 1) with the aim of detecting these contributions. The
flow meter is a semi-mobile ultrasonic Doppler type and is
placed in an intercepting concrete pipe (d = 1.4 m and slope
1.1 ‰ i.e. a potential gravity driven flow capacity of ap-
prox 2000 L s−1), and logs every 5 min. There are roughly
50 000 inhabitants within the catchment area, which is one
of several sub-catchments that divert water to the second
largest wastewater treatment plant (WWTP) in Denmark,
called Avedøre WWTP. There are a couple of small pump-
ing stations and one larger storage basin within the catch-
ment of approx 4000 m3. The two closest rain gauges from
the national Danish tipping bucket network (0.2 mm resolu-
tion; Jørgensen et al., 1998), P316 and P321 indicated on
Fig. 1, are located outside the studied catchment area some
12 km apart.

2.2 Hydrological model

The primary scope with the paper is to test the usability of
the GLUE methodology as a tool for uncertainty analysis and
estimation in complex urban drainage modelling, that is, by
evaluating how well the GLUE methodology performs when
the behavioural parameter sets deduced from a calibration
period are applied to generate prediction bounds in a val-
idation period. For this test we decided to keep the model
simple and compare observed and modeled flow at just one
place downstream from the considered catchment. Hence we
inferred that a state-of-the-art physically distributed model
that calculates flow and levels in every pipe of the sewer

www.hydrol-earth-syst-sci.net/17/4159/2013/ Hydrol. Earth Syst. Sci., 17, 4159–4176, 2013
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Table 2.Model equations.

Fast runoff:

Sf 1,k+1 =

(
αAfP316,k + (1− α)AfP321,k −

2
Kf

Sf 1,k

)
1t + Sf 1,k

Sf 2,k+1 =

(
2
Kf

Sf 1,k −
2
Kf

Sf 2,k

)
1t + Sf 2,k

Slow runoff:

Ss1,k+1 =

(
αAsP321,k + (1− α)AsP316,k −

3
Ks

Ss1,k
)
1t + Ss1,k

Ss2,k+1 =

(
3
Ks

Ss1,k −
3
Ks

Ss2,k

)
1t + Ss2,k

Ss3,k+1 =

(
3
Ks

Ss2,k −
3
Ks

Ss3,k

)
1t + Ss3,k

Wastewater:

Dk = a0 +
∑2

i=1

(
si sin i2πk

L
+ ci cosi2πk

L

)
Observation equation:
yk =

2
Kf

Sf 2,k +
3
Ks

Ss3,k + Dk

system would be overly complex for the purpose considering
both the computational requirements and the risk of over-
parameterization. Instead a simple modeling approach was
chosen yet complex enough to describe the major flow com-
ponents (diurnal wastewater variations, fast rainfall runoff
from paved areas and slow infiltration inflow from unknown
sources). The limitation of using such a simplistic modelling
approach is that the model may be too simplistic, for ex-
ample, in cases when system components, such as weirs,
gates, pumping stations and storage tanks, play a signifi-
cant impact on the observed flow or in cases with heavy
backwater effects.

In a GLUE study of an urban drainage systemThorndahl
et al. (2008) however applied a distributed hydrodynamic
model and showed that the hydraulic parameters (Manning
number and minor losses) played an insensitive role when
extracting the behavioural parameters of the model, while the
surface runoff part of the model (particularly the hydrologi-
cal reduction factor and time of concentration) were very sen-
sitive. Replacing a full hydrodynamic model normally used
in practice with a lumped, conceptual hydrological model as
depicted in Fig.2 therefore seems adequate.

The model consists of two linear reservoirs for modelling
the fast rainfall runoff relationship (representing the paved
area of the system), and three linear reservoirs for modelling
of the slow infiltration inflow to the sewer system. A dou-
ble sinusoidal black box model was used for modelling the
diurnal wastewater flow. Model equations are displayed in
Table2 while a nomenclature is provided in Table3.

A time step of 15 min was used during both calibration
and simulation, which is sufficient for a catchment this size
where the concentration time is at least a few hours. The in-
puts to the model are measured precipitation from the two
rain gauges,P316 andP321, andα is a weighting factor gov-
erning the percentage of the total area that each rain gauge
represent.

Table 3.Nomenclature.

Symbol Description Unit

Inputs:
P316 Rain gauge input m h−1

P321 Rain gauge input m h−1

Rainfall-runoff parameters:
Af Impermeable fast runoff area ha
Kf Retention time, fast runoff h
α Rain gauge weighting coefficient –
As Impermeable slow-runoff area ha
Ks Retention time, infiltration runoff h

Wastewater flow parameters:
a0 Average wastewater flow m3 h−1

s1,s2 Sine constants –
c1,c2 Cosine constants –

Model states:
Sf1, Sf2: Model states, fast runoff m3

Ss1, Ss2: Model states, infiltration runoff m3

Outputs:
yk Observed flow at time stepk m3 h−1

Time:
k Time step counter –
1t Time step 0.25 h

Other:
N Number of observations –
K Number of retained parameter sets –

2.3 Calibration and validation data

Data from half a year (April–October, 2007) was used for
calibration. This period was selected because summer nor-
mally carries the heaviest rains. The length of the calibra-
tion period was chosen by considering a typical length of
measuring campaigns used for calibration of urban drainage
models; these campaigns usually last only 3–4 months. Two
subsequent years (2008 and 2009) of the same season (April–
October) were included for validation. There have been no
significant changes of the sewer system since 2007, and a
good basis for validating the GLUE generated prediction lim-
its thus exists. Some flow data from the calibration period
(10 %) and validation periods (1 % and 1.5 %) had to be dis-
carded from the analysis as they were obviously erroneous;
the rain data had already been subject to standardised quality
control as described byJørgensen et al.(1998).

The measured precipitation in the studied period was quite
different from one year to the other and large spatial vari-
ation was observed. Figure3 shows the accumulated pre-
cipitation measured by each rain gauge plotted against each
other on a shifted log scale, for each of the years considered.
Events plotted forP321 = 0 have only been recorded atP316,
whereas events plotted forP316 = 0 have only been recorded
atP321, that is, these are probably convective events with lim-
ited spatial extent. The rest are events that have been recorded
at both gauges with less than 1 h time difference. In 2007, the
total precipitation registered at the two rain gauges amounted
to 574 mm (P316) and 562 mm (P321). The calibration period
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Fig. 1. The Ballerup catchment area.

Fig. 2. The Conceptual model.
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Fig. 3. Rain events measured at each rain gauge on a shifted log
scale (1+acc.mm), April-October, 2007-2009.
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Fig. 6. CR (upper panels) and ARIL (lower panels) vs. the number
of retained parameter sets in the calibration year (2007) and the
two validation years (2008 and 2009) for the total 6 months period
(left panels), the dry weather periods (middle panels) and the wet
weather periods (right panels).

Fig. 3. Rain events measured at each rain gauge on a shifted log
scale (1+acc.mm), April–October, 2007–2009.

was characterized by many heavy rain storms (4 events con-
taining 35 mm or more). In the validation year 2008 the rain
gaugeP316 was clearly malfunctioning, recording consis-
tently less precipitation thanP321 and other rain gauges in
the area. The total precipitation for the period amounted to
143 mm atP316 compared with 341 mm atP321. The record-
ings from rain gaugeP316 in August 2008 were classified
with the term “suspicious values” byDMI (2009) but were
nevertheless included in the study. The validation year 2008
thus serves as an example of how input errors propagate to
model output and affect the model performance. The sec-
ond validation year, 2009, offered one extreme rain event
(> 100 mm recorded atP316; > 70 mm recorded atP321),
and a few medium events (see Fig.3). The total precipita-
tion amounted to 322 mm (P316) and 302 mm (P321), which
again was much less precipitation than during the calibration
period in 2007.

3 Uncertainty assessment methodology

3.1 Implementation of GLUE

Prediction limits, or quantiles derived with the GLUE
methodology are conditional on the choice of limits of ac-
ceptability, the choice of weighting function, the range of
models (parameter sets) considered, the exploration of the
model space (number of Monte Carlo runs and the method
used for sampling the parameter space), the treatment of in-
put and observation errors, and the assumption that the con-
sidered system remains unchanged within the validation pe-
riod. The GLUE steps implemented in this investigation are
detailed below.

1. Once a suitable model,M, and relevant input and ob-
servations has been selected for the purpose (Sects. 2.1
and 2.2) determine a reasonably broad prior do-
main for each model parameterθi based on the

available background knowledge (for details see
Sect. 3.2 below).

2. Select an estimation period,N . We used half a year of
measurements, April–October, 2007. Carefully check
and leave out faulty input data and observations from
the estimation (Sect. 2.3). We omitted raw data which
were obviously faulty, that is, when the measured ve-
locity or level was zero. This happens occasionally
when objects such as toilet paper, etc., clogs/attaches
to the flow meter. Of course there might be cases when
the gauge is only semi-clogged and hence unreliable
measurements are sampled and included for the anal-
ysis but such data can be very hard to separate from
good data.

3. Chose a likelihood measureL[M (2|u,y)] to dis-
tinguish the behavioural parameter sets2B from
all the parameter sets tried2, conditioned on in-
put datau = (u1..,uk,uk+1, ..,uN ) and observations
y = (y1..,yk,yk+1, ..,yN ). We used two different like-
lihood measures. The Nash–Sutcliffe model efficiency
coefficient was applied to dry weather periods,Ldw,
and an exponential likelihood measure,Lww, was ap-
plied to wet weather periods, see Eq. (1). The Nash–
Sutcliffe likelihood was chosen for the dry weather
case because of the desire to fit the dry weather diurnal
flow pattern well, whereas an exponential likelihood
was chosen to fit the peaks of the hydrographs better
(Freer et al., 1996; Beven and Freer, 2001; Thorndahl
et al., 2008). The exponential likelihood accentuates
the peaks, and weights them higher compared to lo-
cal minima. The flow peaks are normally an important
output in sewer flow modeling to assess surcharge and
flooding.

A flow threshold of 0.15 m3 s−1 distinguishing dry and
wet weather periods was determined from inspection
of the flow observations. The likelihood measures are
defined as

Ldw ∝ −
σ2

ε

σ2
o
, σ 2

o > σ 2
ε & yk < 0.15

Lww ∝ e
−H

(
σ2
ε

σ2
o

)
, yk > 0.15,

(1)

whereσ 2
ε is the residual error variance assuming a zero

mean bias,σ 2
o is the observation variance andk is the

time index.H is a shaping factor that in this appli-
cation is fixed to 1. A combined likelihood measure
inspired byChoi and Beven(2007) was calculated by
multiplication of the dry and wet weather likelihoods:

L[M (2i |u,y)]∝

$1Ldw[M (2i |u,y1)]$2Lww[M (2i |u,y2)],
(2)

wherey1 denotes the dry weather observations,y2 de-
notes the wet weather observations,$1 and $2 are
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weighting coefficients both set to 1, and2i refers to
each parameter set from the prior parameter domain.
Equation (2) is effectively a Bayesian updating of like-
lihoods. The multiplicative form of the overall like-
lihood was chosen because we wanted to give equal
weight to performance in dry and wet weather peri-
ods. If we had used one single performance measure
for the whole calibration period we would have fa-
vored dry weather performance because dry weather
periods constitute the majority of the considered cali-
bration period. The more positive the likelihood values
the better. Negative likelihood values are not consid-
ered because the observed mean in that case would be
a better predictor than the model.

4. Select a method and a distribution to draw random pa-
rameter sets2i from. We consistently used uniform
(non-informative) prior distributions and Latin Hyper-
cube Monte Carlo sampling (LHS). The disadvantage
with LHS is often argued to be the computational bur-
den compared with a Markov chain Monte Carlo ap-
proach. A distributed hydrodynamic model would re-
quire extensive computational effort, but the lumped
conceptual model presented here contains only 10 pa-
rameters, and thus the computational burden was not a
challenge.

5. Dotty plots as described inBeven(2008) are used to
(1) check where in the parameter space the higher
likelihoods are located, to (2) check that prior param-
eter ranges have been chosen adequately broad, and
to (3) evaluate parameter correlation. Sometimes it is
necessary to adjust the prior domain and restart the
Monte Carlo runs a couple of times. This could be nec-
essary if the dotty plots show high likelihood values at
the lower or upper end of any of the prior parameter
ranges. However parameter ranges might also be con-
strained by physical considerations.

6. Decide how to extract the behavioural parameters,2B .
The procedure to derive the behavioural parameter
sets has been either of four: (1) pre-define a likeli-
hood threshold, (2) retain a pre-defined number of be-
havioural parameter sets, (3) retain a sufficient number
of parameter sets to bracket a desired proportion of ob-
servations, or (4) use a limit of acceptability approach.
In our case we chose the third procedure aiming at a
coverage of 90 % of the observations with the 90 %
prediction interval generated from a sufficient number
of retained parameter sets. In our search for a sufficient
number of parameter sets, we calculated prediction in-
tervals for a gradually increasing number of retained
parameter setsK based onL, that is

K = dim{2B} =

{100;500;1,000;3,000;6,000;10000}.
(3)

Ideally, we are satisfied if 90 % of the observations fall
inside the generated 90 % prediction interval.

7. The following steps are used to determine the predic-
tion intervals, see alsoBeven and Freer(2001):

a. At each time stepk rank the ith simulated
flow yk

sim,i produced by the retained param-
eter set 2B,i and its associated likelihood
L[M

(
2B,i |u,ysim,i

)
] value in descending order

with respect to flow magnitude.

b. Rescale the likelihoods to sum to unity∑K
i=1L[M

(
2B,i

)
] = 1 where M

(
2B,i

)
denotes theith behavioural Monte Carlo sample
so that at any time stepk, prediction quantiles
can be formed using

P
(
yk

sim,i < ymax

)
=∑K

i=1L

[
M
(
2B,i |y

k
sim,i < ymax

)] (4)

whereymax is some threshold flow.

c. For the given certainty levelβ find two quantiles
corresponding to(1−β)

2 ·100% and(1+β)
2 ·100%.

These two quantiles are called the lower,yl , and
upper,yu, prediction limits. In this study we cal-
culate prediction quantiles forβ = 0.90.

3.2 Choice of prior parameter ranges

The fast runoff from the paved area is defined by the parame-
tersAf , Kf andα. The choice of a reasonable prior range for
Af was inspired by the calibrated physically distributed hy-
drodynamic model of the catchment.Af represents the imper-
meable runoff area from both combined and separated catch-
ment areas (the latter in case of illicit connections) which was
calibrated to 43 ha (Table1). To be on the safe side the prior
of Af was here allowed to range between 10 and 70 ha. To
find a reasonable prior range for the fast runoff concentra-
tion time Kf of the system the distributed model was again
used. A rain event with a duration of 1 h and with a constant
intensity small enough not to exceed the pipe system’s flow
capacity was imposed on the system at different places in the
catchment area, one place at a time, and the resulting hydro-
graphs inspected. On this basis the prior range ofKf was set
to 1–8 h. We expected rain gaugeP316 to contribute most to
the runoff because it is closer to the paved combined sewer
area thanP321 (see Fig.1) but decided to test this assump-
tion by allowingα to range between zero and one. The slow
runoff contribution (infiltration inflow) is defined by the pa-
rametersAs, Ks andα. By inspection of the observed hydro-
graphs following rain events we decided a range for the slow
runoff concentration timeKs of 8–80 h (0.33–3.33 days), that
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Table 4.Choice of prior parameter ranges.

Para- Af As Kf Ks α a0 s1, s2 c1 c2
meters [ha] [ha] [h] [h] [–] [L s−1] [–] [–] [–]

[10;70] [0;80] [1;8] [8;80] [0;1] [60;90] [−0.05;0.03] [−0.04;0] [−0.02;0.03]

is, Ks was differentiated fromKf . The area effectively con-
tributing to infiltration inflow,As, was allowed to vary be-
tween 0 and 80 ha because a considerable amount of unin-
tended water was believed to infiltrate the system. A lower
limit of zero was chosen to allow for investigation of possi-
ble interactions between the runoff components of the model.
A reasonable estimate of the average dry weather flow,a0,
could be derived by inspection of flow measurements in dry
weather periods (60–90 L s−1). The lack of physical interpre-
tation of the other wastewater parameterss1, s2, c1, c2 made
it difficult to decide prior ranges and therefore a trial and er-
ror approach was conducted before the final ranges displayed
in Table4 were selected.

3.3 Performance measures

Ideally we would like to have narrow prediction limits with
a high bracketing of observations. This indicates good model
performance and provides confidence in the model when also
applied to a validation set. To evaluate this we introduce
some performance measures that have been applied in other
GLUE studies (Jin et al., 2010; Li et al., 2010; Xiong et al.,
2009). The containing ratio (CR) refers to the percentage of
observations that fall inside the prediction limits and the av-
erage band width (ABW) is the average distance between the
lower 5 % and upper 95 % prediction quantile:

ABW =
1

N

N∑
k=1

(
yk

u − yk
l

)
(5)

whereN is the total number of time steps andyk
u and yk

l
are, respectively, upper and lower prediction quantiles at
any given time step,k. Finally the Average Relative Inter-
val Length (ARIL) weights the band width with respect to
the observed flow magnitude:

ARIL =
1

N

N∑
k=1

(
yk

u − yk
l

yk

)
(6)

Note that when we refer to CR in the discussion of results
we mean containment within the 90 % prediction limits and
when referring to ABW and ARIL these are likewise calcu-
lated from 90 % upper and lower prediction limits.
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Fig. 1. The Ballerup catchment area.

Fig. 2. The Conceptual model.
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Fig. 3. Rain events measured at each rain gauge on a shifted log
scale (1+acc.mm), April-October, 2007-2009.
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Fig. 4. Likelihood vs. number of retained parameter sets. Shown
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weather likelihood (Lww).
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Fig. 6. CR (upper panels) and ARIL (lower panels) vs. the number
of retained parameter sets in the calibration year (2007) and the
two validation years (2008 and 2009) for the total 6 months period
(left panels), the dry weather periods (middle panels) and the wet
weather periods (right panels).

Fig. 4. Likelihood vs. number of retained parameter sets. Shown
for overall likelihood (L), dry weather likelihood (Ldw) and wet
weather likelihood (Lww).

4 Results and discussion

4.1 Likelihood measure vs. number of retained
parameter sets

Out of 200 000 sampled parameter sets, 18 720 returned pos-
itive likelihood values (as defined in Eq.2). It is noted that
we decided to limit the number of behavioural parameter sets
to 10 000 although more parameter sets could have been in-
cluded. Overall peak likelihood was found to 0.2644. Fig-
ure 4 shows how the overall likelihood,L, the dry weather
likelihood,Ldw, and the wet weather likelihood,Lww, gener-
ally decreases with increasing number of retained parameter
sets. Note how bothLdw andLww are varying up and down,
in the range of 0.2–0.6 forLdw and 0.1–0.6 forLww, as more
parameter sets are included, and that the decrease in overall
likelihood primarily can be attributed to a decrease inLww.

4.2 Dotty plots, correlation structure and posterior
parameter sets

Figure 5 shows Dotty plots of the wet weather parame-
ters (upper part) and wastewater parameters (lower part),
respectively. Dots are marked according to the number of
parameter sets retained, but for clarity reasons we decided
to limit the classification of the shown dots to dim{2B} =

{500;3000;10000}. Thus, the best 500 parameter sets (with
the 500 highest likelihoods) have been coloured black, the
best 501–3000 parameter sets dark-grey and the best 3001–
10 000 parameter sets are light-grey. White areas reflect the
parameter space where the likelihood measure is below that
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Fig. 5. Dotty plots of wet weather parameters (top) and dry weather parameters (bottom).

Table 4. Choice of prior parameter ranges.

Para- Af As Kf Ks α a0 s1, s2 c1 c2
meters [ha] [ha] [h] [h] [-] [l/s] [-] [-] [-]

[10;70] [0;80] [1;8] [8;80] [0;1] [60;90] [-0.05;0.03] [-0.04;0] [-0.02;0.03]

Fig. 5.Dotty plots of wet weather parameters (top) and dry weather parameters (bottom).

of the best 10 000 parameter sets. Histograms have been gen-
erated for each parameter and marked in accordance with the
number of retained parameter sets.

The histograms for the dry weather model parameters
(Fig. 5, bottom) are all quite peaky, showing well-defined
posterior ranges and no parameter correlation. However, the

histograms for the wet weather parameters (Fig.5, top) are all
more flat and the dotty plots are more scattered, showing less
well-defined posterior ranges indicating these parameters are
either insensitive to model performance or mutually corre-
lated, or that the prior parameter ranges have been chosen too
narrow. The latter is what we observe forKs, where the prior
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Table 5.Minimum and maximum of posterior wet weather parameter ranges for different numbers of retained parameter sets.

Parameter
Af Kf α As Ks

sets retained θ̂min θ̂max θ̂min θ̂max θ̂min θ̂max θ̂min θ̂max θ̂min θ̂max

100 27.4 68.1 2.8 7.6 0.08 0.98 4.1 58.7 18.6 79.4
500 12.0 70.0 1.8 8.0 0.03 1.0 0.8 70.6 8.1 80
1000 12.0 70.0 1.7 8.0 0.00 1.0 0.5 70.6 8.1 80
3000 10.0 70.0 1.1 8.0 0.00 1.0 0.0 75.5 8.0 80
6000 10.0 70.0 1.0 8.0 0.00 1.0 0.0 79.4 8.0 80
10000 10.0 70.0 1.0 8.0 0.00 1.0 0.0 79.4 8.0 80
Prior 10.0 70.0 1.0 8.0 0.00 1.0 0.0 80 8.0 80

Table 6.Minimum and maximum of posterior dry weather parameter ranges for different numbers of retained parameter sets.

Parameter
a0 s1 s2 c1 c2

sets retained θ̂min θ̂max θ̂min θ̂max θ̂min θ̂max θ̂min θ̂max θ̂min θ̂max

100 64.5 86.7 −0.022 −0.002 −0.023 0.000 −0.034 −0.011 −0.007 0.017
500 62.2 89.6 −0.026 0.006 −0.025 0.002 −0.036 −0.006 −0.012 0.020
1000 60.6 89.9 −0.028 0.007 −0.029 0.007 −0.038 −0.004 −0.012 0.023
3000 60.1 90.0 −0.032 0.010 −0.032 0.010 −0.040 0.000 −0.018 0.025
6000 60.1 90.0 −0.034 0.013 −0.037 0.014 −0.040 0.000 −0.020 0.027
10000 60.0 90.0 −0.035 0.014 −0.037 0.014 −0.040 0.000 −0.020 0.029
Prior 60.0 90.0 −0.050 0.030 −0.05 0.030 −0.040 0.000 −0.020 0.030

range perhaps could have been chosen higher. For all the wet
weather parameters good model performance (higher likeli-
hood values) can be obtained over the entire prior parame-
ter range with only 500 retained parameter sets, though pa-
rameters with higher likelihoods are more commonly found
around the peaky areas of the histograms. The wet weather
flow contribution seems to be almost equally well repre-
sented by either of the rain gauges (see histogram forα);
however, the density of darker dots is higher between 0.4 and
1, which means thatP321 unexpectedly explains most of the
runoff despite the location farther away from the paved areas
of the catchment that is served by a combined system.

Tables5 and6 show minimum and maximum of each pos-
terior parameter range for all investigated numbers of re-
tained parameter sets.

As more parameter sets are included, the posterior param-
eter range of each parameter widens, and all posterior limits
are close to the prior limits allready when 500 parameter sets
are retained for the wet weather parameters (see Table5). Ex-
cept fora0, the posterior parameter limits of the wastewater
parameters needs more retained parameter sets to approach
the prior limits and some of the parameters stays below the
prior limits even with 10 000 parameter sets retained. Less
peaked histograms and wide posterior parameter ranges are
a clear sign of equifinality, that is, many parameter sets can
be found that perform almost equally well. Table7 shows
the correlation between the parameters based on the 10 000
best parameters sets. The dry weather parameters are uncor-

related, confirming the pattern observed in Fig.5 (bottom);
however, the largest observed correlation is betweena0 and
As (−0.43), indicating that a large average wastewater flow
compensates for a small slow runoff area and vice versa. The
negative correlation betweenAf and As (−0.15), although
rather small, indicates in the same manner that the fast and
slow wet weather components of the model “compete” in
representing the observed hydrographs, or in other words that
the model/observations not clearly allow us to distinguish the
fast from the slow runoff components.

4.3 Overall model performance in calibration and
validation periods

Figure6 (left) shows that the overall CR and ARIL increase
with the number of retained parameter sets. The overall CR
(Fig. 6, left top) increases from approx 58 % to 80 % going
from 100 to 10 000 included parameter sets, and the curve
flattens out and reaches a steady level below 90 %. It there-
fore seems unlikely that retainment of more parameter sets
would increase the coverage further. Considering the overall
CRs to the different number of retained parameter setsK and
comparing the calibration year with the validation years only
small deviations are observed. This indicates good consis-
tency of the GLUE generated prediction limits between cali-
bration and validation periods. The overall ARIL (Fig.6, left
bottom) increases in the calibration year from 0.38 to around
0.6 whenK increases from 100 to 10 000. In the validation
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Table 7.Correlation between parameters based on 10 000 retained parameter sets.

Af As Kf Ks α a0 s1 s2 c1 c2

Af 1
As −0.15 1
Kf 0.18 −0.09 1
Ks 0.10 0.11 0.09 1
α 0.06 0.10 −0.06 0.01 1
a0 −0.15 −0.43 −0.06 −0.2 −0.03 1
s1 0.00 −0.02 0.01 0.01 0.00 0.00 1
s2 −0.02 −0.04 0.00 −0.01 −0.01 0.01 −0.02 1
c1 −0.02 −0.04 0.00 −0.01 0.01 0.00 −0.01 0.01 1
c2 0.00 0.03 0.00 −0.01 0.00 −0.03 0.00 −0.01 −0.03 1
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Fig. 1. The Ballerup catchment area.

Fig. 2. The Conceptual model.
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Fig. 3. Rain events measured at each rain gauge on a shifted log
scale (1+acc.mm), April-October, 2007-2009.
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Fig. 4. Likelihood vs. number of retained parameter sets. Shown
for overall likelihood (L), dry weather likelihood (Ldw) and wet
weather likelihood (Lww).
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Fig. 6. CR (upper panels) and ARIL (lower panels) vs. the number
of retained parameter sets in the calibration year (2007) and the
two validation years (2008 and 2009) for the total 6 months period
(left panels), the dry weather periods (middle panels) and the wet
weather periods (right panels).

Fig. 6. CR (upper panels) and ARIL (lower panels) vs. the number of retained parameter sets in the calibration year (2007) and the two
validation years (2008 and 2009) for the total 6 months period (left panels), the dry weather periods (middle panels) and the wet weather
periods (right panels).

year, 2008, similar overall ARIL values are obtained while
consistently higher values are found for the validation year
2009 to allK values, indicating that something may have
changed in the system. When considering dry weather peri-
ods only (Fig.6, middle top) it was shown possible to cover
the desired 90 % (91.2 % exactly) of the observations during
the calibration period by retaining 10 000 behavioural param-
eter sets. Note how the difference between the dry weather
CR curves in the validation years decrease as the number of
parameter sets approaches 10 000. However, the dry weather
CRs of the validation years are consistently lower reaching
a maximum of 80 % with 10 000 parameter sets retained.
This inconsistency is unexpected because changes in the dry
weather flow level or flow pattern normally occur due to
changes in population size or in water consumption pattern,
which could not be confirmed for the studied period. Other
explanations could be changes in measurement conditions

like calibration of the flow meter, flow meter placement in the
pipe, or infiltration inflow occurring at a timescale larger than
that can be accounted for with this model. Does the observed
inconsistency suggest an inability of the GLUE methodology
to fully describe the uncertainty of the system? We will take
a closer look into this by considering selected hydrographs
in Sect.4.5 and conclude on this question in Sect.4.8. The
maximum dry weather ARIL (Fig.6, middle bottom) was
found to 0.65 for the calibration year 2007. A similar pat-
tern was found for the validation year 2008 but not for 2009,
which had consistently higher ARIL values and lower cover-
age, similar to what was found for the overall ARIL.

When considering the wet weather periods only, CR is
generally lower than for the dry weather periods and for the
simulated periods as a whole (Fig.6, right top). The CR
curves flatten out already after 1–3000 retained parameter
sets at a level of just above 50 % for the calibration year,
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Fig. 7. CR, ABW and ARIL (calculated from 10 000 retained parameter sets) vs. observed flow magnitude for the calibration year (2007)
and the validation years (2008 and 2009).
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Fig. 8.Variation in band width versus observed flow magnitude. Band width is calculated from 10 000 behavioural parameter sets.

and 55 and 50 % for the validation years. This poor cover-
age may be caused by a misfit between the recorded rain-
fall and the measured runoff for heavy convective rain events
with limited spatial extent, where the two rain gauges do not
well represent the effective rainfall over the catchment due to
their locations several kilometer away. Wider prior parame-
ter ranges could perhaps have increased the coverage. Note
also from this plot how the consistency between calibration
and validation years increase as the number of retained pa-
rameter sets is increased. The ARIL (Fig.6, right bottom)
increases to almost 0.6 with 10 000 retained parameter sets
in both calibration and validation periods, which is close to
the value obtained overall and in dry weather periods alone.
The wet weather ARIL values are quite similar between cal-
ibration and validation periods.

4.4 Dependency of flow magnitude

Figure 7 shows how the performance measures CR, ABW
and ARIL change with the flow magnitude using prediction
limits generated from 10 000 parameter sets. Generally, the
ABW (middle panel) increases proportionally with the flow,
but the ability of the prediction limits to bracket the obser-
vations decreases with the flow magnitude (left panel). In
the calibration year the CR drops from 90 % in dry weather
to just 30 % for flows above 500 L s−1, supporting the sug-
gestion above about the influence of heavy convective rain
events, and although the ABW (middle panel) increases from
approx 50 L s−1 in dry weather to 380 L s−1 for flows higher
than 500 L s−1 this is not enough to encompass the desired
percentage of observations. Again a wider prior parameter
space could probably increase CR but a likelihood measure
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Fig. 9. Rainfall input, flow observations and 90% flow prediction limits generated from 10,000 parameter sets. Whole calibration period
(top) and enlargement for a period with wet weather flow conditions (bottom). Periods without flow observations were discarded from the
analysis.

Table 7. Correlation between parameters based on 10,000 retained parameter sets.

Af As Kf Ks α a0 s1 s2 c1 c2

Af 1
As -0.15 1
Kf 0.18 -0.09 1
Ks 0.10 0.11 0.09 1
α 0.06 0.10 -0.06 0.01 1
a0 -0.15 -0.43 -0.06 -0.2 -0.03 1
s1 0.00 -0.02 0.01 0.01 0.00 0.00 1
s2 -0.02 -0.04 0.00 -0.01 -0.01 0.01 -0.02 1
c1 -0.02 -0.04 0.00 -0.01 0.01 0.00 -0.01 0.01 1
c2 0.00 0.03 0.00 -0.01 0.00 -0.03 0.00 -0.01 -0.03 1

Fig. 9. Rainfall input, flow observations and 90 % flow prediction limits generated from 10 000 parameter sets. Whole calibration period
(top) and enlargement for a period with wet weather flow conditions (bottom). Periods without flow observations were discarded from the
analysis.

that favours enclosure of the largest events would also in-
crease CR at higher flow rates.

Interestingly, the ARIL (right panel) is rather constant in
the calibration year 2007, that is, the uncertainty of flow pre-
dictions with the model used here is almost proportional to
the flow magnitude. The validation years show some devia-
tions from the calibration year, which may be attributed to the
small sample sizes used to compute the performance mea-
sures for especially the larger flow intervals, as well as differ-
ences in precipitation recorded at the two gauges and artifacts
associated with individual rain events.

Whereas Fig.7 (middle) shows the average band width
(ABW) for different flow intervals, calculated as an average
for all rain events in each year, Fig.8 illustrates for each year
how the band width evolves from time step to time step. It
is seen that the average values actually cover up some large
fluctuations in modelled band width. The “traces” of con-
nected data illustrate how the band width evolves during in-
dividual rain events, how the band width generally increases
with flow magnitude (corresponding to what is seen in Fig.7,
middle), and how less precipitation in 2008 and 2009 than in
2007 lead to smaller flows and band widths.
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Fig. 10. Rainfall input, flow observations and 90% flow prediction
limits generated from 10,000 parameter sets for selected periods in
the validation year 2008.
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Fig. 11. Rainfall input, flow observations and 90% flow prediction
limits generated from 10,000 parameter sets for selected periods in
the validation year 2009.

Table 1. Catchment details.

Ballerup
Total area Imp.area

Combined 92 7 33 77
Separated 1227 93 10 23

Total 1320 100 43 100

−50 0 50 100 150 200
0

5

10
x 10

6

µ=10.3

25−50 l/s

−100 −50 0 50 100 150 200
0

5

10

15
x 10

6

µ=6.0

50−75 l/s

−100 0 100 200 300
0

1

2

3
x 10

7

µ=3.6

75−100 l/s

−200 −100 0 100 200 300
0

1

2

3
x 10

7

µ=−9.6

100−125 l/s

−200 0 200 400 600
0

5

10

15
x 10

6

µ=−20.2

125−150 l/s

residuals [l/s]

−200 0 200 400 600 800
0

2

4

6
x 10

6

µ=−28.8

150−175 l/s

−200 0 200 400 600
0

1

2
x 10

6

µ=−37.6

175−200 l/s

−400 −200 0 200 400 600 800
0

1

2

3
x 10

6

µ=−63.5

200−300 l/s

−500 0 500 1000 1500
0

1

2

3
x 10

6

µ=−165.8

300−500 l/s

−1500 −1000 −500 0 500 1000
0

5

10
x 10

5

µ=−331.6

>500 l/s

residuals [l/s]

Fig. 12. Histogram and mean of residuals µ for each window. The
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the residuals calculated for all 10.000 simulations.
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Fig. 10.Rainfall input, flow observations and 90 % flow prediction limits generated from 10 000 parameter sets for selected periods in the
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limits generated from 10,000 parameter sets for selected periods in
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Fig. 11. Rainfall input, flow observations and 90% flow prediction
limits generated from 10,000 parameter sets for selected periods in
the validation year 2009.
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observed runoffs were subdivided into 10 intervals (windows) and
the residuals calculated for all 10.000 simulations.
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Fig. 11.Rainfall input, flow observations and 90 % flow prediction limits generated from 10 000 parameter sets for selected periods in the
validation year 2009.

4.5 Analysis of hydrographs from calibration and
validation periods

Figure 9 shows the rainfall input (accumulated rainfall per
event for each rain gauge), flow observations and generated
90 % prediction limits for the whole calibration period (top
panel) and an enlargement of a period with the largest events
recorded (bottom panel).

The dry weather observations (flows of less than
150 L s−1) are generally well covered by the prediction lim-
its, which was also concluded from the performance mea-
sures (Figs.6 and7), but they seem to be close to the upper
prediction limit in April and to the lower prediction limit in

October, indicating that the mean dry weather flow declines
gradually during the period. Accounting for this trend in the
dry weather model could perhaps have resulted in smaller
ABW and higher CR for dry weather periods.

The wet weather flows (flows higher than 150 L s−1) are
well covered for some events, for example, the events shown
in the first half of the lower panel of Fig.9 where 35–40 mm
rainfall was recorded, but for the remaining events shown the
observed peaks are higher than the upper prediction limit,
the hydrograph tails are longer than the model suggests and
the flow furthermore fluctuates in a way that cannot be de-
scribed with the model used. The fast time constantKf as
well as the impermeable areaAf (or perhaps alsoAs andKs)
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needs to be much larger for the prediction intervals to cover
the last event shown (lower panel). This event as well as
the other events shown explains why neither the Dotty plots
nor the histograms in Fig.5 (top) were able to clearly iden-
tify a higher likelihood area for these parameters. There is
also the possibility of backwater effects in the system which
are not dealt with in the model and this could perhaps ex-
plain the long tail of the last flow hydrograph seen in Fig.9
(lower panel), but it cannot be excluded that the flow mea-
surements are erroneous, or that the measured rainfall is non-
representative (the two gauges measured about 50 and 65 mm
rainfall, i.e. a convective rainfall pattern with large spatial
variation is likely).

Figure10 shows the rainfall input, flow observations and
generated 90 % prediction limits for selected periods in the
validation year 2008, where rain gaugeP316 was malfunc-
tioning for a longer period. The smallest ABW and ARIL
for 2008 (Fig.7, middle and right) occurs for the highest ob-
served flow category (> 500 L s−1), which is due to the high
flow observations on 11th July where only 5 mm rainfall was
recorded at the two gauges (Fig.10, left), which is also visi-
ble as the isolated, flat “trace” on Fig.8 (middle). In this case
a large convective rainfall event with limited spatial extent
may have passed over the catchment without significantly af-
fecting the rain recordings, or the flow observations are erro-
neous. Figure10(right) shows several significant flow events
in August 2008 where gaugeP316 did not record any rain-
fall at all, probably due to technical malfunctioning, and this
causes the flow predictions to be underestimated (the flow
observations are consistently close to, or above the upper pre-
diction limit for all the illustrated rain events).

Figure11 shows the rainfall input, flow observations and
generated 90 % prediction limits in the second validation
year 2009 for a selected period where both the dry and wet
weather flows were well covered by the prediction limits
(left) and for a period where the largest event in 2009 oc-
curred (right). In this latter case the gauges recorded very
different rainfall amounts (50 and 100 mm), and the model
underestimated the peak, the timing and the tailing of the ob-
served hydrograph, which explains the S-shaped “trace” vis-
ible in Fig. 8 (right). Note also from the left figure that the
flow observations in dry weather are very low and close to
the lower bound which is general for 2009. The lower dry
weather flow in 2009 explains the higher ARIL values ob-
tained in dry weather periods of 2009 that were observed
in Fig. 6.

4.6 Interpretation of posterior parameter ranges

In Sect.4.2we saw that posterior ranges approached the pri-
ors for many of the wet weather parameters retaining just
500 parameter sets. With the large uncertainties that originate
from inadequate rain inputs (spatial heterogeneity not rep-
resented by two rain gauges), as well as flow measurement
errors and possible model structure inadequacies discussed

above, it is hardly surprising that posterior parameter ranges
become so wide and dotty plots look so scattered. It is impor-
tant to recognize that each parameter set carries along with it
an implicit (non-stationary) error series and that models (pa-
rameter sets) that underpredict in calibration are expected to
underpredict in similar circumstances in prediction etc. The
uncertainties are not being transferred to the model parame-
ters, but the error series are (implicitly) weighted along with
the simulated outputs from each model. The posterior pa-
rameters lack physical interpretation because of parameter
compensation and thus cannot be used, for example for in-
ference about the relative size of infiltration area versus size
of paved area, which otherwise would be desired knowledge.
Such parameter compensations will be apparent in any cali-
bration exercise unless prior knowledge about what is accept-
able or not acceptable for parameters and their interactions
can be specified.

4.7 Consistency in model-failure?

Due to the rather consistent coverage of the observations be-
tween different periods for different behavioural thresholds it
might be worth investigating if some form of non-stationary
error correction can improve the results. This could be done
for example by applying a transform or bias correction to
the results. One way to check the model for non-stationary
errors is to subdivide the whole range of observed runoff
into an appropriate number of smaller intervals (windows),
for example, 0–50 L s−1, 50–75 L s−1, etc., and then calcu-
late the residuals between simulated and observed runoffs
in each window. Figure12 shows such a residual histogram
with 10 bins. Clearly the residuals are not randomly dis-
tributed around zero for any of the windows. In each window
the need for bias correction is different which is understood
from the appearance of the histograms and the mean of the
residualsµ. A negativeµ means that the model underesti-
mates the flows and vice versa. For dry weather flows, that
is, flows less than 150 L s−1, the model performs reasonably
well, but for larger flows the model tends to underestimate
the runoff. This suggest that some form of non-stationary
error correction might be possible, for example, as outlined
in Xiong and O’Connor(2008). Such a bias correction will
probably improve the calibration results but generally there
are more bins with positive outliers than negative which in-
dicates that a bias correction is not trivial. A bias correction
implementation is however beyond the scope of this paper.

4.8 Epistemic uncertainties

The evidence from the changing nature of the errors in this
study between and within periods (epistemic uncertainties)
suggests that it is very difficult to test GLUEs ability to pro-
vide uncertainty bounds that bracket observations in both cal-
ibration and validation, which would also be the case if a
formal likelihood approach had been applied.
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Fig. 10. Rainfall input, flow observations and 90% flow prediction
limits generated from 10,000 parameter sets for selected periods in
the validation year 2008.
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Fig. 11. Rainfall input, flow observations and 90% flow prediction
limits generated from 10,000 parameter sets for selected periods in
the validation year 2009.
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Fig. 12. Histogram and mean of residuals µ for each window. The
observed runoffs were subdivided into 10 intervals (windows) and
the residuals calculated for all 10.000 simulations.
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Fig. 12. Histogram and mean of residualsµ for each window. The observed runoffs were subdivided into 10 intervals (windows) and the
residuals calculated for all 10 000 simulations.

The experiences from this investigation suggest that cal-
ibration of much more complex models (physically dis-
tributed, hydrodynamic) used in practical urban drainage en-
gineering in catchments with insufficient rain gauge cover-
age to questionable flow measurements from shorter measur-
ing campaigns is problematic not least because a calibrated
model normally implies a reduction in the safety factor used
in modelling of urban drainage systems in Denmark (Hansen
et al., 2005).

5 Conclusions

In this study a simple conceptual hydrological model has
been applied to simulate flow in a sewer system, that re-
ceives water from both combined and separated catchments.
The GLUE methodology was applied to assess the uncer-
tainty on flow simulation and parameter estimation. To be
able to derive the behavioural parameters, a combined like-

lihood measure was formulated. For the dry weather flow
periods the Nash–Sutcliffe model efficiency coefficient was
used, whereas an exponential likelihood measure, that has
the property of fitting the peaks better, was used for the
wet weather periods. Instead of preselecting the number of
behavioural parameter sets, it was decided to retain an in-
creasing proportion of parameter sets (100; 500; 1000; 3000;
6000; 10 000), ideally until the GLUE generated 90 % pre-
diction limits encompassed 90 % of the observations. How-
ever, as the overall CR curve was shown to be flattening
out at 10 000 retained parameter sets, this number was de-
cided a sufficient maximum number to include. The overall
CR increased from approx 58 % to 80 %, as the proportion
of behavioural parameter sets included increased from 100
to 10 000 and hence it was not possible to obtain the de-
sired coverage. Considering dry weather periods separately,
the prediction limits generated from 10,000 parameter sets
enclosed a little more than 90%, while in wet weather peri-
ods on average only around 55 % was enclosed. Furthermore,
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the proportion of observations enclosed decreased with in-
creasing flow magnitude, despite that the prediction limits
expanded proportionally with the flow.

Two subsequent half-year summer periods were included
for validation to check the consistency of the GLUE gen-
erated prediction limits. It was concluded that overall the
obtained CRs in the validation periods were similar to that
obtained in calibration for all the considered retained propor-
tions of parameter sets, and thus good consistency was found.
However, when looking separately at dry weather and wet
weather periods, as well as at different flow levels, several
inconsistencies were observed between calibration and val-
idation periods. These inconsistencies could in dry weather
presumably be attributed to changes in measurement condi-
tions, and in wet weather attributed to inadequate rain input
coverage, unreliable flow meter measurements, and/or model
deficiencies (e.g. backwater effects not accounted for), etc.
Retaining just 500 parameter sets meant that the wet weather
posterior parameter ranges approached those of the priors,
which is a clear sign of equifinality. Hence the obtained pos-
terior parameter ranges cannot be used for interpretation of,
for example, the size of contributing paved area vs. size of
slow infiltration-inflow area. The posterior wastewater pa-
rameter limits were generally more well determined.

The observed inconsistencies between calibration and val-
idation periods indicated by CR and ARIL would most likely
also have been observed in the case a formal approach had
been chosen, simply because events such as a sudden lower
dry weather flow or malfunctioning rain gauges in a vali-
dation period are unexpected events (epistemic events) and
cannot be predicted from a set of calibration data. Hence we
cannot reject the GLUE methodology as a tool for uncer-
tainty analysis on the basis of this study. The evidence from
the changing nature of the errors in this study between and
within periods suggests that it might be very difficult to find a
valid error model for use in a formal likelihood approach, and
that we should therefore try to learn from the significant dis-
crepancies between model and observations. One way to do
so could be to use some non-stationary error correction pro-
cedure to improve the predictive capability. This could even
be applied to areas of wet and dry periods. So if the model
was consistently under predicting for “types” of periods and
events then this could be accounted for and then reasons why
this type of correction improves predictions could be anal-
ysed and discussed. This was however beyond the scope of
this paper.

In practical urban drainage engineering applications, it is
not uncommon that large hydrodynamic models with many
more parameters are calibrated to flow data, collected from
measuring campaigns of shorter duration than used here,
with equally poor rain input representation. Bearing in mind
that these models are indispensable tools in redesign and up-
grade proposals, and sometimes used for flow forecasting, it
seems crucial from this study to (1) obtain more represen-
tative rain inputs (perhaps by radars), (2) use more reliable

flow meters and (3) replace measuring campaigns with on-
line monitoring to secure a higher coherence between model
simulations and observations.
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