Hydrol. Earth Syst. Sci., 17, 4124432 2013 Hyd rology and
www.hydrol-earth-syst-sci.net/17/4121/2013/ g
doi:10.5194/hess-17-4121-2013 Earth System »
© Author(s) 2013. CC Attribution 3.0 License. Sciences 2

Statistical analysis and modelling of surface runoff from arable
fields in central Europe

P. Fienert, K. Auerswald?, F. Winter3, and M. Dissé

Lnstitut fur Geographie, Universitat Augsburg, 86135 Augsburg, Germany

2Lehrstuhl fur Griinlandlehre, Technische Universitat Miinchen, Alte Akademie 12,

85350 Freising-Weihenstephan, Germany

3Dorsch International Consultants, Hansastr. 20, 80686 Munich, Germany

4Lehrstuhl fiir Hydrologie und Flussgebietsmanagement, Technische Universitat Miinchen,
Arcisstralie 21, 80333 Munich, Germany

Correspondence tK. Auerswald (auerswald@wzw.tum.de)

Received: 25 February 2013 — Published in Hydrol. Earth Syst. Sci. Discuss.: 19 March 2013
Revised: 29 August 2013 — Accepted: 5 September 2013 — Published: 23 October 2013

Abstract. Surface runoff generation on arable fields is an im- elling of event-specific hydrographs without an a priori as-
portant driver of flooding, on-site and off-site damages by sumption of the underlying process. The statistical model de-
erosion, and of nutrient and agrochemical transport. In genscribed the measured data well and performed equally well
eral, three different processes generate surface runoff (Horduring validation. In both cases, the model explained 71 and
tonian runoff, saturation excess runoff, and return of subsurb8 % of variability in accumulated runoff volume and in-
face flow). Despite the developments in our understanding oktantaneous runoff rate (RSME: 5.2 mm and 0.23 mntin
these processes it remains difficult to predict which processesespectively), while RMSE of runoff volume predicted by
govern runoff generation during the course of an event orthe curve number model was 50 % higher (7.7 mm). Stone
throughout the year, when soil and vegetation on arable landover, if it exceeded 10 %, was most important for the ini-
are passing many states. We analysed the results from 31ffal abstraction, while time since tillage was most impor-
rainfall simulations on 209 soils from different landscapestant for the hydrograph. Time since tillage is not taken into
with a resolution of 14286 runoff measurements to deter-account either in typical lumped hydrological models (e.g.
mine temporal and spatial differences in variables governingSCS curve number approach) or in more mechanistic mod-
surface runoff, and to derive and test a statistical model ofels using Horton, Green and Ampt, or Philip type approaches
surface runoff generation independent from an a priori seto address infiltration although tillage affects many physical
lection of modelled process types. Measured runoff was reand biological soil properties that subsequently and gradu-
lated to 20 time-invariant soil properties, three variable soilally change again. This finding should foster a discussion re-
properties, four rain properties, three land use properties andarding our ability to predict surface runoff from arable land,
many derived variables describing interactions and curvi-which seemed to be dominated by agricultural operations that
linear behaviour. In an iterative multiple regression proce-introduce man-made seasonality in soil hydraulic properties.
dure, six of these properties/variables best described initial
abstraction and the hydrograph. To estimate initial abstrac-

tion, the percentages of stone cover above 10 % and of sand

content in the bulk soil were needed, while the hydrographl Introduction

could be predicted best from rain depth exceeding initial ab-

straction, rainfall intensity, soil organic carbon content, andConsideration of surface runoff generation processes on
time since last tillage. Combining the multiple regressions toarable fields is essential for any sustainable water manage-

estimate initial abstraction and surface runoff allowed mod-ment due to the large area occupied by arable land in many
regions of the world (e.g. 24 % of area in Europe of EU-27;
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EUROSTAT, 2012). Runoff generation is the driver of on-site tural landscapes (Fiener et al., 2011a; Green et al., 2003),
and off-site damages by erosion processes and of nutrient anghich may affect infiltration. This challenge results from the
agrochemical transport (e.g. Haygarth et al., 2006) into operinteraction with agronomic decisions dominating the soil-
water bodies especially during local floods (e.g. Evrard etvegetation system by influencing (i) the seasonal variabil-
al., 2008). Thus, surface runoff generation on arable land isty of soil properties and surface roughness depending on
important for hydrological modelling, especially when water tillage operations and (ii) the associated seasonality of plant
quality is considered. growth. The first relates to the mostly texture-based, static
In general, it is acknowledged that three mechanisms genestimates of important soil variables, e.g. porosity, used in
erate surface runoff (Li et al., 2012): (i) unsaturated surfacemany modelling approaches. The second is associated with
runoff (Hortonian-type runoff), (ii) saturation-excess surface the seasonality of plant and residue cover potentially protect-
runoff, and (iii) return of subsurface storm flow, where the ing the soils from crusting (for a review see Fiener et al.,
last is detectable in some cases already on the plot scal2011a). Despite the developments in our understanding of
but becomes increasingly important when moving from theindividual processes in specific cases, it remains difficult to
plot to the catchment scale and from the event to longempredict which processes govern runoff generation while soil
time scales. Not all excess water generated by these mecland vegetation are passing many states during a crop rotation.
anisms contributes to surface runoff because some is stored The major objectives of this study were (i) to statistically
on the surface as depression storage (infiltrating after rairanalyse 317 hydrographs from rainfall simulations carried
events) and detention storage (partly running off after eventsput on different arable soils covering many landscapes with
(Mohamoud et al., 1990). On the catchment scale, surfacelifferent crops to determine temporal and spatial differences
runoff partly re-infiltrates along its pathway to the stream in variables governing surface runoff during rainfall events
network (runon infiltration; e.g. Nahar et al., 2008). Many and (ii) to derive and test a statistical model of surface runoff
models are available to address one or more of these mechgeneration independent from an a priori selection of mod-
nisms. These include relatively simple approaches that lumglled processes. This model should operate on the plot scale
all processes operating along the flow path (e.g. the SC$1-10 nf) for the event scale with a resolution of minutes to
curve number; Mockus, 1972) on a daily time scale or moreobtain hydrographs, but it should take into account the varia-
mechanistic approaches on much shorter time scales (mirtion of driving variables that happens on the scale of crop ro-
utes) addressing a specific process that creates excess watitions and the catchment scale. To become operational, e.g.
like models of the Green and Ampt (1911), Philip (1969) while implementing the plot approach into a distributed event
or Horton (1940) type. The mechanistic models may thenmodel, it has to rely on variables that usually are available or
be applied in a spatially distributed context including fur- can be made available on these temporal and spatial scales.
ther processes occurring during runoff accumulation (for anThis also requires choosing a statistical model and not a pro-
extensive model overview see, e.g., Borah and Bera (2003)cess model, because it would be impossible on these scales
Migliaccio and Srivastava (2007); or the various results fromto identify the underlying processes. For instance, a return
the “distributed model inter-comparison project” (Smith et flow had been identified on some plots by the use of trac-
al., 2004)). Small-watershed-scale models dealing with surers despite a plot length of only 4.5 m (Haider, 1994), while
face runoff and soil erosion from arable land often stick to this information was missing for most other plots because no
Hortonian-type surface runoff generation approaches (Astracers had been analysed and it would also be missing in the
souline and Mualem, 2006; Fiener et al., 2008), assumingapplication case.
that surface sealing during heavy rainfall events dominates
runoff generation on partly bare soils. Larger-scale models
typically use Green and Ampt or Philip approaches assuming Material & methods
that infiltration is governed by a propagating wetting front
depending on soil properties within the soil column (e.g.2.1 Rainfall simulations and range of examined
Kale and Sahoo, 2011; Klar et al., 2008). However, as pro- conditions
cesses dominating infiltration and surface runoff generation
may vary inter- and intra-annually (Li et al., 2012; Vivoni et We used rainfall simulations carried out on 209 plots lo-
al., 2007) and even within an event (e.g. Silburn and Con-cated in central Europe. These plots covered a broad vari-
nolly, 1995), it is important to address potential switches be-ety of locations, soils (developed from loess, sand dunes,
tween runoff generation mechanisms in advanced modellingnoraines, Tertiary and Mesozoic sediments and basement
approaches (Li et al., 2012; Tian et al., 2012). rocks) and soil properties (Table 1) as well as a broad variety
Despite the improvements of modelling approaches to adef crops (long-term bare fallow, different small-grain crops,
dress different mechanisms of surface runoff generation simaize and sugar beet) in different development stages (Ta-
multaneously (e.g. the THREW model; Li et al., 2012), it ble 1). Slope, plot length and plot width varied from 1.6 %
remains challenging to account for the specific temporal ando 23.6 %, from 4 to 22 m, and from 1 to 2m, respectively.
spatial variability of soil and crop characteristics in agricul- Fiener et al. (2011b) have shown that this data set covers
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Table 1.List of rain, plot, soil and land use variables used to explain runoff hydrographs; all soil properties were determined for the plough

4123

horizon (approximate depth 0.3 m), if not otherwise indicated. The availability of each variable relative to the total numbero£r8hg)(
in percent (% available) is also given.

Variable

(Abbreviation)  Description Unit Range % available
p Rain intensity mmh? 31t0 99 100
Prot Total rainfall applied during simulation mm 31t0 99 100
ep Specific kinetic energy Jntmm—1 12to0 20 100
length Length of the simulation plot m 410 22 100
width Width of the simulation plot m 1to2 100
slope Slope of the simulation plot % 1.6t0 23.6 100
Cql tot Total clay content€ 2 um) in B<SA (w/w) % 4t061 100
Csi tot Total silt content (2 to 63 um) in BS (w/ \ﬁW % 6 to 86 100
CSa__tot Total sand content (63 to 2000 um) in BS (w/w) % 2to 87 100
Csoc Soil organic carbon content in FE¥ % 0.5t03.5 100

pH pH - 45t07.5 80
skeleton Stone (2 to 200 mm) content in BS (w/w) % 0to 63 100
BD Air-dry bulk density kg3 1070to 1750 42

dg Geometric mean particle diaméf@of BS pm 1to 737 100
VISi Very fine silt (2 to 6.3 um) in BS (w/w) % Oto21 100
fSi Fine silt (6.3 to 20 pm) in BS (w/w) % 1t0 33 100
mSi Medium silt (20 to 36 um) in BS (w/w) % 1to31 100
cSi Coarse silt (36 to 63 um) in BS (w/w) % 1to 35 100
viSa Very fine sand (63 to 100 um) in BS (w/w) % Oto 19 100
fSa Fine sand (100 to 200 um) in BS (w/w) % 0to49 100
mSa Medium sand (200 to 630 um) in BS (w/w) % 0.4t0 61 100
cSa Coarse sand (630 to 2000 um) in BS (w/w) % 0to 35 100
viSt Very fine stones (2 to 6.3mm) in BS (w/w) % Oto 31 100
fSt Fine stones (6.3 to 20mm) in BS (w/w) % Oto 16 100
mSt Medium stones (20 to 63 mm) in BS (w/w) % Oto 16 100
cSt Coarse stones (63 to 200 mm) in BS (w/w) % - 100
Fstone Fraction of stone cover % 0to 35 88
Osurf Volumetric antecedent soil moisture at the surface (0 to 3 cm depth) % 2t026 30
plough Volumetric antecedent soil moisture in the plough layer (0 to 30 cm depth) % 81040 20
Crop Dummy variable of crop type - 0,1 100
Fiot Fraction of total surface cover (either by stones, plants or residues) % 0to 93 100
Fyeg Fraction of vegetation cover % 0to 90 88
Fres Fraction of residue cover % 0to 12 88
tsT Time since tillage d 0.04 to 227 100

@ Bulk soil; ) w/w indicates that the soil fractions are calculated relative to the total mass of the soif(kg kg fine earth fraction{®) according to Sinowski et al. (1995).

most independent variables sufficiently to represent arableunoff with calibrated buckets at the lower end of the plots
landscapes in humid, temperate climate. This is especiallyequipped with flow collection gutters (Fiener et al., 2011b).
true for rain properties, for soil properties and for the distri- The data of the different research groups carrying out the
bution over seasons. However, the variation in plot dimen-simulations had been intensively quality-checked and ho-
sions is rather limited with a strong collinearity between mogenised into one consistent data set that is freely available
width and length of the plots, with both restrictions being (Seibert et al., 2011). Details on the locations, the types of
typical for rainfall simulation experiments. rainfall simulators, plot treatments (e.qg. fixed plots vs. mov-
The simulations were performed through five different re- ing plots), and measurement conditions used by the different
search groups using different types and set-ups of Veejet nozgroups are given by Fiener et al. (2011b).
zle rainfall simulators. Rainfall intensities varied between 31  From the overall data set (Seibert et al., 2011) we chose the
and 99 mm h!, while specific kinetic energy varied from 12 317 simulations where no artificial pre-wetting of the soils
to 20 Jnm2mm~* and total rainfall duration varied between had been applied through preceding simulations (dry runs).
590 and 6180s. Time to runoff was recorded and plot dis-Excluding runoff measurements during afterflow (runoff af-
charge was measured (approx. every minute) by collectinger end of simulated rainfall), this resulted in 14286 runoff
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measurements (on average 47 measurements per simulatioalples correlate (e.g. texture classes but also variables that

used for further analysis. were obtained by data transformation) and thus also corre-
late similarly to the support points, we chose those variables
2.2 Statistical analysis and model development out of similarly efficient variables that were widely available

(e.g. avoiding unusual texture classes), that were meaningful

The selection of any infiltration model makes a fundamen-and consistent with current knowledge (e.g. avoiding very
tal assumption on the underlying runoff generation processesarrow texture classes), and that did not produce an unre-
(e.g. crusting vs. infiltration front propagation vs. domi- alistic behaviour when extended beyond the range covered
nance of preferential flow). Following two different and by measurements (e.g. avoiding transformations that became
widely used approaches, we fitted Horton-type equationsrery steep beyond the measured range). Further, we avoided
and Green—-Ampt-type equations to the hydrographs. Botlover-parameterisation by calculating the Bayesian informa-
infiltration equations were flexible enough to be meaning-tion criterion (BIC; Kuha, 2004).
fully fitted to our data despite their contrasting mechanis- Given that some variables were not available for the entire
tic justification. Preliminary results showed that both ap- data set (Table 1), such a variable could not be included in
proaches resulted in nearly identical shapes of the hydrothe equation developed during one of the successive steps as
graph and similar efficienciesk€ was usually above 0.95) neither deletion nor imputation of the missing data seemed
and the root mean squared error (RMSE), which was beappropriate. To examine whether such a variable would have
low 0.1 mmmin?! for both types of equation, was equal to had explanatory power, we calculated the residuals between
the unexplained variance in a geostatistical analysis (Fienethe prediction developed from the entire data set and the mea-
at al., 2011b) that does not force any theoretical equatiorsured runoff of the respective subset of data (Framstad et al.,
through the data and thus yields the best possible fit. It isS1985). These residuals were then correlated to the omitted
important to note that this apparently small error only quan-variable to examine whether the omitted variable could im-
tifies the random error of multiple runoff rate measurementsprove the prediction. For example, soil moisture at the very
within an event. Many errors of the infiltration rate apply to surface or in the plough horizon may likely affect initial ab-
all measurements within an event (e.g. errors in plot size oistraction, but these variables were not available for all hydro-
rain intensity; for more details see Fiener et al., 2011b) andgraphs; hence, we developed a prediction equation for initial
potentially cause large errors in the parameters of the infil-abstraction without considering soil moisture; then, we cal-
tration equations despite a close fit. In consequence, we wereulated the residuals of this equation for those hydrographs
not able to decide which process governed runoff generationwhere the soil moisture was available; these residuals were

Furthermore, we encountered the problem of equifinalitythen correlated with the soil moistures to examine whether
(Beven and Binley, 1992); that is, many parameter combinasoil moisture could explain some of the unexplained varia-
tions gave statistically similar good results for the same hy-tion. None of the other (incomplete) variables had explana-
drograph and the same infiltration equation (e.g. the RMSBory power and hence it did not become necessary to consider
may only change between 0.032 and 0.035 mnTthforthe  them in estimating surface runoff.
same hydrograph, while the initial infiltration rate of the Hor-  The selected support points could be predicted using the
ton model changed by a factor of three and the decay constarsame soil properties (indicating that dominant influences did
changed by a factor of ten). not change during the different rainfall events), while only

Since both approaches yielded identical results and we didhe calibration parameters changed depending on rain depth.
not want to decide a priori on a specific modelling philoso- Hence, the equations of the selected support points were
phy, we followed a different, purely statistical approach to combined in the next step into one equation, in which the
estimate surface runoff generation from rainfall plots. We parameterisation depended on rain depth. This equation was
focused on and analysed four support points of the hydrothen finally fitted to all 14 286 runoff measurements of the
graphs. These were initial abstraction, defined as rain deptB817 hydrographs (approximately 1 min time steps).
till runoff, and total runoff after 20, 30 and 40 mm of raiRy(
0 p20, Op30, Qpao, respectively; Table 2). Support points 2.3 Model and validation
for lower or higher rain depths narrowed the data set and
left only subsets which had very early runoff or where high To examine whether the final equation to predict runoff gen-
rain depths were applied. Support points for lower or highereration would be transferable to other areas, we used a ten-
rain, hence, were not used at this stage because this reducéald stratified cross validation, which is regarded best for
the available range of soils, rains and land uses. For thenodel selection (Kohavi, 1995). Therefore, we randomly
selected four support points, multiple regressions utilisingchose 90 % of the 317 hydrographs, which sufficiently strat-
soil, rain and land use variables (Table 1) were developedfied the data so that they contained about the same pro-
independently following an iterative approach (e.g. Craw-portion of labels as the original data set. For this subset of
ley, 2009) taking likely interactions between variables andhydrographs we determined the equation parameters, while
curvilinear behaviour into account. Given that many vari- the remaining 10% of hydrographs were used for model
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Table 2. Runoff variables from the 317 rainfall simulations used for statistical analysis and model development; the number of available data
n varies according to the availability of the dependent variable.

Variable

(Abbreviation)  Description Unit Mean Range n

tp Time to ponding S 218 29to 779 317
R Time to runoff s 639 63t03119 317
Py Initial abstraction, defined as rain depth till runoff mm 10 0.7t0 62 317
0p20 Runoff during 20 mm rainfall mm 4.1 0to 16.5 317
0pr30 Runoff during 30 mm rainfall mm 9.3 0to 26.7 317
Opao Runoff during 40 mm rainfall mm 134 0to0 30.8 176
Otot Runoff after total rainfall of an experiment mm 21.3 0.1t058.8 317
q Instantaneous runoff rate mm nmrh 0.4 Otol.2 14286

validation. This procedure was repeated ten times assuringquation (1) explained 53 % of the variation (RMSE 6 mm)
that every hydrograph was used once for validation. The terof P, while Fstone-109% andCsa_totexplained 37 and 10 mm
folds yielded a family of similar equations for all subsets that of the variation, respectively. The RMSE was rather large
satisfactorily predicted the validation data (see Results).  (andR? low), indicating that initial abstraction was strongly

Finally, we compared the quality of our predictions with influenced by factors that could not be captured by the avail-
predictions derived following the classical curve number able variables. Remarkably, rain intensity, which spanned
(CN) approach (Mockus, 1972), which is the most prominentfrom 29 to 99 mm h, had no influence on initial abstraction
statistical approach to estimate surface runoff. The hydrolog{R? = 0.0002), while it dominated the time to runoff because
ical soil groups of the CN approach were assigned based oimitial abstraction was reached earlier with increasing rain in-
the soil descriptions (not based entirely on topsoil propertiegensity. Also, soil moisture in the surface soil (0.03 m; range:
as recorded in the database). For fallow, row crop and smalP to 26 w/w-%) or in the plough layer (range: 8 to 40 w/w-
grain a low runoff disposition was always assumed. Fur-%), which both may especially influence early runoff, did not
thermore, CNs were estimated with an alternative approaclimprove the prediction oPs.
following Auerswald and Haider (1996) using soil cover of O p2o, O p30 andQ paowere all explained best by the same
row crops and small grains, respectively. The second CN apvariables, namely rain intensity, time since tillage and or-
proach was developed using a subset of the data set used ganic carbon content. This lead to equations of the following
this study (Auerswald and Haider, 1996). type:

All statistical analyses were carried out using the GNU
R version 2.14.0 (R Development Core Team, 2011). Be-2r =/ +gx (p) —hxIn(tsn) +k x In(tsn* +1 x In(Csod).  (2)
sidesR? and RMSE we also used the Nash—Sutcliffe effi-
ciency (NSE; Nash and Sutcliffe, 1970) as a goodness o
fit parameter.

here Qp is the accumulated runoff volume (mm) since
he start of rain to rain dept® (mm); p is rain intensity
(mmh1); 157 is time since tillaged); Csoc is soil carbon
content (%); andf, g, k, k andl are empirical parameters

3 Results that vary with rain depttP.
In general, the highep was, the more runoff was observed
3.1 Support points after a given rain depth because the time available for infil-

tration decreased. The strongest influence, however, was ex-
The initial abstractionP, ranged from 0.7 to 62 mm for the  hibited byzst, which usually is not regarded in hydrological
317 hydrographs, but only two of the variables contributedmodelling. With increasingst runoff decreased. For exam-
to the explanation of this variation. These were total stoneple, runoff after 30 mm of rain was on average 20 mm if the
cover exceeding 10 %istone-10% (range 0 to 25%), which  rainfall occurred within less than an hour after tillage, while
was calculated aBsione-10%=Max (0; Fsione-10), and sand it was less than 5 mm if the rainfall occurred more than 100
content (0.063 to 2mm) of the bulk sdilsa_tot(range 2 to  days after tillage. This effect was particularly pronounced for
87 %). With increasing stone cover, time to runoff (and henceshortzst (in the range of few hours to single days) although
initial abstraction) increased, while increasing sand contenit |asted even for more than 200 days. This strongly decreas-
promoted earlier runoff (Eqg. 1): ing effect made it necessary to use the logarithm and to use a
second term (Ingr)*) in Eq. (2), which compensates some of
the term (Infs7)) at hightst. IncreasingCspc also decreased
runoff and again this effect was sub-proportional. Despite the

Pa = 162+ 1.37 x Fston&lo%— 2.52x |n(CSa_t09. (1)
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0.6, g=43x 103hmm, h=76x102 In(d)_l, k= 0 10 20 30 40 O 10 20 30 40
5.0 x 1078 In(d)~4, and! = 0.19 In(%) ! for the final equa- Cumulative rain depth P [mm]
tion: Fig. 2. Examples of instantaneous runoff rates during six events in
Op =d—exIN(P)+ P; x [f +gxp—h Qiﬁerent mor_1ths e_md years on one plot _kept under sgeo_lb_ed condi-
4 tions. Note: time since tillage is 0.04 day in panel F, while iti8-5
x In(tst) +kx In(tsm)” =1 days in all other cases.

x In (Csoc)] ®3)

for Pr>e/[f+gxp—h . o .
for inconsistencies among research groups that contributed

x I (ts7) +k x In(ts7)* — 1 x |n(Csoc)] to the combined data set. The measured instantaneous runoff
rates per minute are subject to random errors that level out
when rates over a longer period of time are combined in the
whereQ p, is runoff volume (mm) at rain depth; (mm) ex-  calculation of the accumulated runoff volume, while system-
ceeding initial abstraction given b = P — Pa. atic errors (bias) of the rate measurements also affect runoff
The combining of Egs. (1) and (3) allowed the computa- volume. The difference in performance of rates and volume
tion of hydrographs for all 317 events. The calculated hy-thus was due to the influence of random error. The random
drographs explained 72 % of the variability of the measurederror in measured runoff rates along a single hydrograph
accumulated runoff volumes (RMSE 5.2 mm; NSE 0.71), astypically was+0.1 mmmnt? (Fig. 2) or half of the over-
compared to 58 % of the variation in instantaneous runoffall RMSE. No model can capture such random errors and
rates (RMSE 0.23 mmmnt; NSE 0.56). The error distri- also the biases, which are even more difficult to identify (e.g.
butions (Fig. 1) showed a pronounced excess kurtosis, inerrors in plot size determination). It is hence unlikely that
dicating that the errors were usually less than half as indi-another equation could explain the hydrographs better.
cated by the RMSEs with the exception of some hydrographs Examples of measured and predicted hydrographs selected
that were poorly predictable. We checked these hydrographt be close to the mean RMSE are given in Fig. 2. They
and the corresponding experimental descriptions but founghow rainfall simulations on a long-term bare fallow soil in
no anomalies that could explain the behaviour of these hyseedbed conditions that was rained on six times during three
drographs. It is important to note that RMSEs also accountyears. Among the six hydrographs, Fig. 2f exhibits much
for sampling errors associated with field measurements andligher final runoff rates. This illustrates the large influence

and Qp >0 elseQp, =0,
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were kept constant at their mean value (for values see Fig. 4). .

50 L L L

p [mm h?]

of tst as this hydrograph was obtained only one hour af- “7
ter tillage, while the other hydrographs were obtained 3 to 30+ 99
5 days after tillage. Despite near-constant soil, plot and rair ] <
properties for some of the other hydrographs (e.g. D and E 20 5
except for the fact that more rain was applied in the case 10+
of E), there were differences for which no explanation ex- !
. . 0 T T T T T T 0.0
ists and which hence can also not be captured by the mode 0 20 40 60 0 20 40 60
Despite this, the model with only five variables explained Cumulative rainfall P [mm]

all hydrographs reasonably well even though three variables _
(Fstone-10% Csa toi andCsoc) were held constant because Fig. 4. Modelled accumulated runoff volume (left column) and in-
they were determined only once on this plot stantaneous runoff rate (right column) for mean (bold line), min-

. - L imum (dotted line), and maximum (thin line) values of total sand
The sensitivities of the variables within the complete . : . :
.contentCsy_tof Stone covelFsione time since tillagest, soil or-

model .W(.-:'I‘(-T.‘ analysed by changing the valu.es OT each varl§;|anic carbon conterfspc, and rainfall intensityp. Numbers de-
able within its measured range (Table 1), while rainfall depthgte the minimum, mean and maximum of each variable. All vari-
increased from 0 to 60 mm and the other variables were hel@ples were kept constant at their mean value except the one varied.
constant at their mean values (Figs. 3 and 4). With increasfor Fsionethe minimum and the mean result in the same hydrograph
ing sand content, runoff started earlier (Fig. 4), but the ef-as stone cover becomes active only fafone. 10%

fect was small and most prominent for small sand contents

(approximately 0 to 10 %; Fig. 3). Stone cover had a much
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Table 3. Calibration and validation results of accumulated runoff O 10 20 30 40 50 600 10 20 30 40 50 60

volumes ) and instantaneous runoff rateg) for all 317 hydro- 00 P S Qoo e ®0
. . . . P.

graphs used in a ten-fold cross validation; Goodness-of-fit param- 504  ° 3 e 7 F50

eters were calculated based on the full model/data resolution of ;| 5 AN |40
1 min; NSE is Nash—Sutcliffe efficiency (Nash and Sutcliffe, 1970), °

R? is the coefficient of determination, and RMSE is the root mean
square errory indicates the number of single measurements used

for calibration and validation.

30

20

10

0

Q [mm] g [mm mn1] 60

7/
Calibration  Validation Calibration Validation Qeao " Lso

40

Modelled Py, Qpyo, Qpzos Qpag [MM]
Modelled P, Qpag, Qpso: Qpao [MM]

n 128574 14286 128574 14286
R? 0.72 0.72 0.58 0.58 30
RMSE 5.19 521 0.23 0.23 oo
NSE 0.71 0.71 0.56 0.55

10

T 0

0 TO 2b Sb 4‘0 50 606 lb Zb Bb 4‘0 5‘0 60
Measured P, Qpyg, Qpzor Qpag [MM]

larger effect on runoff initiation and hence on runoff depths

(Figs. 3 and 4). Increasing stone cover increasingly retardedig. 5. Modelled vs. measured initial abstracti@g, and accumu-

runoff, but this became effective only above a threshold oflated runoff after 20, 30 and 40 mm of rainfatd 20, Q p30 and

10 % stones (Fig. 3). Consequently, stone cover can be ne@ p4o, respectively); data shown combine all validation results of

glected for many soils because the average stone cover ithe ten-fold cross validation; root mean square errors are 7.0, 3.5,

our data set was 6.6 %. Importantly, sand content and stong-3: @nd 6.9 forPa, Q p20, Q P30, andQ p4o, respectively.

cover influenced the whole hydrograph (Fig. 4) beyond the

start of runoff due to the fact that Eq. (1) was needed to

calculate Eq. (3).

With increasing rainfall intensity, instantaneous runoff tpe regtricted data sets of the folds created during cross val-
rates and accumulated volumes increased as predicted Qyaiion jed to models similar to those using the full data set.
Eqg. (3). This also influenced the start of runoff. Runoff ¢ nredgiction quality did not differ between the calibration
started slightly later with decreasing rain intensity (Fig. 4) 5 the validation data sets for both runoff volume and rate
even though intensity was not part of Eq. (1). This is becausqape 3), indicating that all models were equally suitable for
the influence of intensity on initial abstraction was ratherpredictions. The models explained the validation data with a
v_veak wr_]en compared to the random scattgr of initial gbstraCNSE between 0.55 and 0.71 (Table 3, Fig. 5). Runoff volume
tion. Using all runoff measurements, as in Eq. (3), instéady i was modelled more accurately than runoff rate. Runoff
of using only one data point (initial abstraction) reduced thevaried between 0 and 59mm and could be predicted with
random scatter, and thus this influence became visible in thgy\1sE— 5.2 mm. However, the models performed somewhat
final Eq. (3). Thus, Eq. (1) was not suf_f|C|ent to_calculate_ the eaker for initial abstraction, as mentioned earlier, since
start of runoff and so was used as an mte_rmedlate step in th(;)a is strongly influenced by factors that could not be cap-
development of Eq. (3). The same behaviour was true for all, eq with the available variables. In general, prediction qual-
other variables that additionally entered Eq. (3). _ ity increased with rainfall volume and hence surface runoff

The influence ofCspoc was of similar strength as rainfall volume (Fig. 5).
intensity. Instantaneous runoff rates and accumulated vol- Using the CN approach according to Mockus (1972)
umes decreased with increasifgoc (Fig. 3) and caused  j,creagsed the RMSE of runoff volume by about 50%
the runoff to start later (Fig. 4). The time since tillage (RMSE=7.7mm). The same was true when using
effect was about 30 % stronger th@goc and rainfall inten- the CN approach by Auerswald and Haider (1996)
sity (compare final ranges of runoff volume and rate), but this(RMSE: 7.9mm).
was an effect of the very shagr (minimum: 1 h) that were
possible with small plots and artificial rainfall but which will
unlikely occur on larger fields that need considerably longer
than 1 h for tillage. Considering the range of time relevant for
whole fields, the influence aft was similar in strength to
the other influences. The change during the first 12 days af-
ter tillage was about the same as the change occurring during
the following 215 days (Fig. 4).

3.3 Model validation
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4 Discussion sen and Lavee, 1994) and cause the low erosion rates there
(Cerdan et al., 2011).
4.1 Initial abstraction The influence of sand content was opposite to what might

be expected (e.g. from the influence of texture in the SCS CN
In general, initial abstraction showed substantially more ran-model) although our model is still in general agreement with
dom (unexplained) variability than subsequent runoff ratesthe assessment of coarse-textured soils by the CN model due
indicating that these measurements are more prone to urte the fact that stones had a much larger influence than sand
certainty. The high variability of initial abstraction under and because the CN model does not explicitly distinguish be-
more or less identical plot conditions could have resultedtween the effects of stones and sand. There is little systematic
from small random differences; e.g. compaction at the down+esearch on the effect of sand on runoff, which impedes the
slope end of the plot will encourage early runoff or small interpretation of this result. It is remarkable, however, that
depressions at the outlet will increase detention storage anthe influence of sand only promoted early runoff but not later
hence delay first runoff. Such random differences are likelyrunoff (Figs. 3, 4). Likely, the increasing sand content de-
to occur given that most of the plots were situated in ordi- creased aggregate stability (Boix-Fayos et al., 2001) and in-
nary farmed fields. Also subjective decisions by the technicalcreased slaking forces (Auerswald, 1995) due to the usually
staff carrying out the rainfall simulations are necessary wherdry soil surface of sandy soils. Both promote the breakdown
recording the first runoff (whether it starts with the first sin- of aggregates and thus accelerate sealing and decrease de-
gle drop or the first continuous flow). These decisions will pression storage on the soil surface (Mohamoud et al., 1990).
differ among research groups contributing the data, persons
within a group and even for the same person during differ-4.2 Hydrograph shape
ent measuring campaigns. Hence, when initial abstraction
was analysed without consideration of the following runoff The hydrographs could be predicted surprisingly well with an
measurements, it was best explained by the combination ointeraction of simple rain, soil and land-use variables despite
only two soil properties, namel¥sione-10% and sand con- the large variation in the data set. These were rain depth ex-
tent (Eq. 1), despite its large variability (Table 2). However, ceeding initial abstraction, rain intensity, soil organic carbon
all other variables which influenced the hydrograph also af-content and time since tillage. The importance of rain depth
fected initial abstraction (Fig. 4) because (at the plot scaleexceeding initial abstraction and rain intensity is obvious and
abstraction must become larger the slower the hydrograplis also important in many other surface runoff estimates (e.g.
rises. The effect oFsione.109% Most probably resulted from  Appels et al., 2011).
the macropore space under stones created during tillage that The influence oiCsoc on hydraulic parameters (e.g. Ra-
can store runoff. The threshold indicated that small stongkai et al., 2004; Scheinost et al., 1997) and erosion (Guerra,
contents, which usually also are associated with small and994) has been shown in several studies. Its influence on the
rounded stones, did not exhibit this effect. In this case it carhydrograph likely results from (i) a larger aggregate stabil-
be expected that the small stones are embedded within thigy (Auerswald, 1995; Tisdall and Oades, 1982), (ii) larger
soil matrix and may even decrease infiltration rates (Wilcoxunsaturated hydraulic conductivity, and (iii) higher biologi-
etal., 1988). This threshold agrees with the calculation of soilcal activity (e.g. Anderson and Domsch, 1989; Weigand et
erodibility in the revised universal soil loss equation, which al., 1995) especially by earthworms creating more voids for
also uses a threshold of 10 % for the consideration of stonesunoff intake (Auerswald et al., 1996). It is important to note
(Roemkens et al., 1997). Also Poesen et al. (1994) suggestdtiat the soils for which these relationships have been specif-
this threshold. In general, the importance of the variableically quantified by Weigand et al. (1995) and Auerswald et
Fstone-10% i in line with findings of Poesen et al. (1990), al. (1995, 1996) comprise a large portion of the present data
indicating that stones not fully embedded in the surface soilset. It is thus likely that biological activity, earthworm abun-
layer typically lead to preferential infiltration of runoff under dance and cross-sectional area of biopores, which were avail-
these stones, and with Tromble (1976), who found a positiveable for these soils, would have been good predictors for the
relation between infiltration and stone cover after ploughingentire data set if they had been available for all runs. How-
rangeland. Even though the influence of stones on initial ab-ever, given that these variables are usually not available for
straction was large, this applied only for a small number of prediction,Csocis preferable even though it may only influ-
soils. Only 36 % of our soils had a stone cover just aboveence infiltration indirectly via aggregate stability and biopore
the threshold and only 16 % were above a stone cover otross-sectional area.
> 15%. For the USA it was estimated that stones need to More difficult to interpret is the importance afr, because
be considered in the calculation of soil erodibility on 16 % this variable is rarely analysed in relation to runoff genera-
of the land area (Roemkens et al., 1997). Similar percenttion (and is included neither in the lumped CN model nor in
ages may hence be found in many temperate areas of thany of the mechanistic models to predict runoff generation)
world, while in other areas like the Mediterranean stony soilsdespite the fact that many publications compare the differ-
may even occupy much larger areas (60 % according to Poeent tillage treatments (e.g. Auerswald et al., 1994; Silburn
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and Connolly, 1995; Choudhary et al., 1995) and thus ac-cover mainly changed due to early plant growth and hence it
knowledge the prominent impact of tillage on runoff. How- had statistically a similar power tgr. For the entire data set,
ever, these comparisons are usually done between treatmentsy was superior to soil cover because it also described the
while the changes over time are hardly considered althouglthanges immediately after tillage before the onset of plant
tillage impacts many physical and biological soil properties, growth. Additionally,zst can also serve as an indicator for
which then gradually change until the next tillage (Caron long-term changes, while soil cover approaches its final value
et al., 1992; Dexter et al., 1998; Franzluebbers et al., 1995usually two months after seeding.
Zobeck and Onstad 1987). Surface runoff decreased with in- It is debatable whether any empirical or mechanistic ap-
creasingst, while the opposite might be expected from the proach to model surface runoff generation can be reliably
typically observed decrease in porosity following a numbertransferred to other sites given the multitude of conceivable
of drying—wetting cycles after tillage (Ahuja et al., 2006; influences. As our data set covers a large range of rainfall,
Franzluebbers et al., 1995; Onstad, 1984) and the decreasepography, soil and land-use properties (Table 1) the re-
in detention and depression storage due to a decrease in rasdlts from the validation are encouraging for our statistical
dom roughness with consecutive rainfalls (Zobeck and On-approach. The overall RMSE of accumulated runoff volume
stad, 1987). Several processes likely contribute at differenand instantaneous runoff rate of 5.2 mm and 0.23 mnThm
time scales agst covered nearly four magnitudes (1 h to respectively, probably cannot be lowered markedly by an-
227 days; Table 1). (i) In the short term (several hours af-other model predicting rain excess and runoff generation be-
ter tillage) the fast drying of freshly tilled soil can increase cause such differences already existed in the data measured
infiltration capacity and stabilise aggregates during dryingin replicated plots (Fig. 2). The differences must be caused
(Crouch and Novruzi, 1989; Gollany et al., 1991). The lat- either by systematic measuring errors like a wrong rain inten-
ter reduces soil crusting potential and promotes infiltration.sity or by properties that were not measured, and thus would
(ii) Within several days following tillage, age hardening of not be available for other types of models (e.g. antecedent
the aggregates will take place due to drying (cycles) andsealing, biopore density, biopore connectivity etc.).
due to biological activity. Biological activity produces bind-
ing substances, including hyphae that form more and closer
bonds between soil particles, causing cementing substance&s Conclusions
to precipitate at newly formed particle contacts (Dexter et al.,
1988; Kemper and Rosenau, 1984; Schweikle et al., 1974)The large data set of 317 rainfall simulations (14 286 runoff
All of these mid-term processes of soil structure stabilisa-measurements) represented a wide range of arable soils
tion potentially prevent soil crusting, which is most important and crops. Runoff measurements were related to 20 time-
shortly after tillage since soils are not fully covered by grow- invariant soil properties, three variable soil properties, four
ing crops. (iii) In the long run (weeks to monthsy; is prob-  rain properties, three land use properties and derived vari-
ably also a proxy for the development of plant cover, includ- ables. In an iterative multiple regression procedure six of
ing changes in tilth underneath a cover and the developmerthese properties/variables best described initial abstraction
of connected biopores reaching the soil surface, even thoughnd the hydrograph. The fraction of stone cover above 10 %
none of the four cover variables (Table 1) entered any equaFsione-10% and the content of total sand in the fine earth frac-
tion. These interpretations have to remain speculative giveriion Cs,_totwere needed to estimate initial abstraction, while
the little attentiorvst has previously attained in runoff stud- the hydrograph could be predicted from rain depth exceeding
ies. To our knowledge, this parameter has only be analysedthitial abstractionp;, rainfall intensityp, soil organic matter
in respect to aggregate stability and soil erosion, where it cartontentCsoc, and time since last tillager. The resulting
exhibit a large effect (e.g. Auerswald, 1993; Auerswald et al.,model predicted event hydrographs without a priori assump-
1994; Caron et al., 1992; Shainberg et al., 1996), but not fottions of the underlying process (e.g. Hortonian vs. satura-
runoff generation. Typically this information is not reported tion runoff generation). Validating this approach by creating
in publications, which may explain the often large difference a family of models by ten-fold cross validation indicated that
in runoff between different studies as well as some of thethese models explained 72 % of variability in runoff volume
unexplained scatter within individual studies given the largeand 58 % of runoff rate (RSME: 5.2 mm and 0.23 mm i
changes that can happen at shgft More attention should respectively) of the training data and also of the validation
be paid to variables related to tillage practices given the factata. It outperformed the CN approach, and thus implementa-
that seedbed conditions, which fall into this range, are oftention in spatially distributed and temporally continuous mod-
analysed. els that capture agricultural management seems promising.
It is remarkable that the CN approach by Auerswald and Stone cover was most important for the initial abstrac-
Haider (1996) did not perform better than the original versiontion, whilezst was most important for the hydrograph. These
by Mockus (1972) although Auerswald and Haider (1996) variables are not taken into account either in typical lumped
had used a subset of our data to develop their equation, whichydrological models (e.g. CN approach) or in more mecha-
predicts CN from soil cover. Within their subset of data, soil nistic models using Horton, Green and Ampt, or Philip type
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