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Abstract. Surface runoff generation on arable fields is an im-
portant driver of flooding, on-site and off-site damages by
erosion, and of nutrient and agrochemical transport. In gen-
eral, three different processes generate surface runoff (Hor-
tonian runoff, saturation excess runoff, and return of subsur-
face flow). Despite the developments in our understanding of
these processes it remains difficult to predict which processes
govern runoff generation during the course of an event or
throughout the year, when soil and vegetation on arable land
are passing many states. We analysed the results from 317
rainfall simulations on 209 soils from different landscapes
with a resolution of 14 286 runoff measurements to deter-
mine temporal and spatial differences in variables governing
surface runoff, and to derive and test a statistical model of
surface runoff generation independent from an a priori se-
lection of modelled process types. Measured runoff was re-
lated to 20 time-invariant soil properties, three variable soil
properties, four rain properties, three land use properties and
many derived variables describing interactions and curvi-
linear behaviour. In an iterative multiple regression proce-
dure, six of these properties/variables best described initial
abstraction and the hydrograph. To estimate initial abstrac-
tion, the percentages of stone cover above 10 % and of sand
content in the bulk soil were needed, while the hydrograph
could be predicted best from rain depth exceeding initial ab-
straction, rainfall intensity, soil organic carbon content, and
time since last tillage. Combining the multiple regressions to
estimate initial abstraction and surface runoff allowed mod-

elling of event-specific hydrographs without an a priori as-
sumption of the underlying process. The statistical model de-
scribed the measured data well and performed equally well
during validation. In both cases, the model explained 71 and
58 % of variability in accumulated runoff volume and in-
stantaneous runoff rate (RSME: 5.2 mm and 0.23 mm min−1,
respectively), while RMSE of runoff volume predicted by
the curve number model was 50 % higher (7.7 mm). Stone
cover, if it exceeded 10 %, was most important for the ini-
tial abstraction, while time since tillage was most impor-
tant for the hydrograph. Time since tillage is not taken into
account either in typical lumped hydrological models (e.g.
SCS curve number approach) or in more mechanistic mod-
els using Horton, Green and Ampt, or Philip type approaches
to address infiltration although tillage affects many physical
and biological soil properties that subsequently and gradu-
ally change again. This finding should foster a discussion re-
garding our ability to predict surface runoff from arable land,
which seemed to be dominated by agricultural operations that
introduce man-made seasonality in soil hydraulic properties.

1 Introduction

Consideration of surface runoff generation processes on
arable fields is essential for any sustainable water manage-
ment due to the large area occupied by arable land in many
regions of the world (e.g. 24 % of area in Europe of EU-27;
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EUROSTAT, 2012). Runoff generation is the driver of on-site
and off-site damages by erosion processes and of nutrient and
agrochemical transport (e.g. Haygarth et al., 2006) into open
water bodies especially during local floods (e.g. Evrard et
al., 2008). Thus, surface runoff generation on arable land is
important for hydrological modelling, especially when water
quality is considered.

In general, it is acknowledged that three mechanisms gen-
erate surface runoff (Li et al., 2012): (i) unsaturated surface
runoff (Hortonian-type runoff), (ii) saturation-excess surface
runoff, and (iii) return of subsurface storm flow, where the
last is detectable in some cases already on the plot scale
but becomes increasingly important when moving from the
plot to the catchment scale and from the event to longer
time scales. Not all excess water generated by these mech-
anisms contributes to surface runoff because some is stored
on the surface as depression storage (infiltrating after rain
events) and detention storage (partly running off after events)
(Mohamoud et al., 1990). On the catchment scale, surface
runoff partly re-infiltrates along its pathway to the stream
network (runon infiltration; e.g. Nahar et al., 2008). Many
models are available to address one or more of these mecha-
nisms. These include relatively simple approaches that lump
all processes operating along the flow path (e.g. the SCS
curve number; Mockus, 1972) on a daily time scale or more
mechanistic approaches on much shorter time scales (min-
utes) addressing a specific process that creates excess water,
like models of the Green and Ampt (1911), Philip (1969)
or Horton (1940) type. The mechanistic models may then
be applied in a spatially distributed context including fur-
ther processes occurring during runoff accumulation (for an
extensive model overview see, e.g., Borah and Bera (2003);
Migliaccio and Srivastava (2007); or the various results from
the “distributed model inter-comparison project” (Smith et
al., 2004)). Small-watershed-scale models dealing with sur-
face runoff and soil erosion from arable land often stick to
Hortonian-type surface runoff generation approaches (As-
souline and Mualem, 2006; Fiener et al., 2008), assuming
that surface sealing during heavy rainfall events dominates
runoff generation on partly bare soils. Larger-scale models
typically use Green and Ampt or Philip approaches assuming
that infiltration is governed by a propagating wetting front
depending on soil properties within the soil column (e.g.
Kale and Sahoo, 2011; Klar et al., 2008). However, as pro-
cesses dominating infiltration and surface runoff generation
may vary inter- and intra-annually (Li et al., 2012; Vivoni et
al., 2007) and even within an event (e.g. Silburn and Con-
nolly, 1995), it is important to address potential switches be-
tween runoff generation mechanisms in advanced modelling
approaches (Li et al., 2012; Tian et al., 2012).

Despite the improvements of modelling approaches to ad-
dress different mechanisms of surface runoff generation si-
multaneously (e.g. the THREW model; Li et al., 2012), it
remains challenging to account for the specific temporal and
spatial variability of soil and crop characteristics in agricul-

tural landscapes (Fiener et al., 2011a; Green et al., 2003),
which may affect infiltration. This challenge results from the
interaction with agronomic decisions dominating the soil–
vegetation system by influencing (i) the seasonal variabil-
ity of soil properties and surface roughness depending on
tillage operations and (ii) the associated seasonality of plant
growth. The first relates to the mostly texture-based, static
estimates of important soil variables, e.g. porosity, used in
many modelling approaches. The second is associated with
the seasonality of plant and residue cover potentially protect-
ing the soils from crusting (for a review see Fiener et al.,
2011a). Despite the developments in our understanding of
individual processes in specific cases, it remains difficult to
predict which processes govern runoff generation while soil
and vegetation are passing many states during a crop rotation.

The major objectives of this study were (i) to statistically
analyse 317 hydrographs from rainfall simulations carried
out on different arable soils covering many landscapes with
different crops to determine temporal and spatial differences
in variables governing surface runoff during rainfall events
and (ii) to derive and test a statistical model of surface runoff
generation independent from an a priori selection of mod-
elled processes. This model should operate on the plot scale
(1–10 m2) for the event scale with a resolution of minutes to
obtain hydrographs, but it should take into account the varia-
tion of driving variables that happens on the scale of crop ro-
tations and the catchment scale. To become operational, e.g.
while implementing the plot approach into a distributed event
model, it has to rely on variables that usually are available or
can be made available on these temporal and spatial scales.
This also requires choosing a statistical model and not a pro-
cess model, because it would be impossible on these scales
to identify the underlying processes. For instance, a return
flow had been identified on some plots by the use of trac-
ers despite a plot length of only 4.5 m (Haider, 1994), while
this information was missing for most other plots because no
tracers had been analysed and it would also be missing in the
application case.

2 Material & methods

2.1 Rainfall simulations and range of examined
conditions

We used rainfall simulations carried out on 209 plots lo-
cated in central Europe. These plots covered a broad vari-
ety of locations, soils (developed from loess, sand dunes,
moraines, Tertiary and Mesozoic sediments and basement
rocks) and soil properties (Table 1) as well as a broad variety
of crops (long-term bare fallow, different small-grain crops,
maize and sugar beet) in different development stages (Ta-
ble 1). Slope, plot length and plot width varied from 1.6 %
to 23.6 %, from 4 to 22 m, and from 1 to 2 m, respectively.
Fiener et al. (2011b) have shown that this data set covers
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Table 1.List of rain, plot, soil and land use variables used to explain runoff hydrographs; all soil properties were determined for the plough
horizon (approximate depth 0.3 m), if not otherwise indicated. The availability of each variable relative to the total number of runs (n = 317)
in percent (% available) is also given.

Variable
(Abbreviation) Description Unit Range % available

p Rain intensity mm h−1 31 to 99 100
Ptot Total rainfall applied during simulation mm 31 to 99 100
eP Specific kinetic energy J m−2 mm−1 12 to 20 100
length Length of the simulation plot m 4 to 22 100
width Width of the simulation plot m 1 to 2 100
slope Slope of the simulation plot % 1.6 to 23.6 100
CCl_tot Total clay content (< 2 µm) in BS(a) (w / w) % 4 to 61 100
CSi_tot Total silt content (2 to 63 µm) in BS (w / w)(b) % 6 to 86 100
CSa_tot Total sand content (63 to 2000 µm) in BS (w / w) % 2 to 87 100
CSOC Soil organic carbon content in FEF(c) % 0.5 to 3.5 100
pH pH – 4.5 to 7.5 80
skeleton Stone (2 to 200 mm) content in BS (w / w) % 0 to 63 100
BD Air-dry bulk density kg m−3 1070 to 1750 42
dg Geometric mean particle diameter(d) of BS µm 1 to 737 100
vfSi Very fine silt (2 to 6.3 µm) in BS (w / w) % 0 to 21 100
fSi Fine silt (6.3 to 20 µm) in BS (w / w) % 1 to 33 100
mSi Medium silt (20 to 36 µm) in BS (w / w) % 1 to 31 100
cSi Coarse silt (36 to 63 µm) in BS (w / w) % 1 to 35 100
vfSa Very fine sand (63 to 100 µm) in BS (w / w) % 0 to 19 100
fSa Fine sand (100 to 200 µm) in BS (w / w) % 0 to 49 100
mSa Medium sand (200 to 630 µm) in BS (w / w) % 0.4 to 61 100
cSa Coarse sand (630 to 2000 µm) in BS (w / w) % 0 to 35 100
vfSt Very fine stones (2 to 6.3 mm) in BS (w / w) % 0 to 31 100
fSt Fine stones (6.3 to 20 mm) in BS (w / w) % 0 to 16 100
mSt Medium stones (20 to 63 mm) in BS (w / w) % 0 to 16 100
cSt Coarse stones (63 to 200 mm) in BS (w / w) % – 100
Fstone Fraction of stone cover % 0 to 35 88
θsurf Volumetric antecedent soil moisture at the surface (0 to 3 cm depth) % 2 to 26 30
θplough Volumetric antecedent soil moisture in the plough layer (0 to 30 cm depth) % 8 to 40 20
Crop Dummy variable of crop type – 0, 1 100
Ftot Fraction of total surface cover (either by stones, plants or residues) % 0 to 93 100
Fveg Fraction of vegetation cover % 0 to 90 88
Fres Fraction of residue cover % 0 to 12 88
tsT Time since tillage d 0.04 to 227 100

(a) Bulk soil; (b) w / w indicates that the soil fractions are calculated relative to the total mass of the soil (kg kg−1); (c) fine earth fraction;(d) according to Sinowski et al. (1995).

most independent variables sufficiently to represent arable
landscapes in humid, temperate climate. This is especially
true for rain properties, for soil properties and for the distri-
bution over seasons. However, the variation in plot dimen-
sions is rather limited with a strong collinearity between
width and length of the plots, with both restrictions being
typical for rainfall simulation experiments.

The simulations were performed through five different re-
search groups using different types and set-ups of Veejet noz-
zle rainfall simulators. Rainfall intensities varied between 31
and 99 mm h−1, while specific kinetic energy varied from 12
to 20 J m−2 mm−1 and total rainfall duration varied between
590 and 6180 s. Time to runoff was recorded and plot dis-
charge was measured (approx. every minute) by collecting

runoff with calibrated buckets at the lower end of the plots
equipped with flow collection gutters (Fiener et al., 2011b).

The data of the different research groups carrying out the
simulations had been intensively quality-checked and ho-
mogenised into one consistent data set that is freely available
(Seibert et al., 2011). Details on the locations, the types of
rainfall simulators, plot treatments (e.g. fixed plots vs. mov-
ing plots), and measurement conditions used by the different
groups are given by Fiener et al. (2011b).

From the overall data set (Seibert et al., 2011) we chose the
317 simulations where no artificial pre-wetting of the soils
had been applied through preceding simulations (dry runs).
Excluding runoff measurements during afterflow (runoff af-
ter end of simulated rainfall), this resulted in 14286 runoff
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measurements (on average 47 measurements per simulation)
used for further analysis.

2.2 Statistical analysis and model development

The selection of any infiltration model makes a fundamen-
tal assumption on the underlying runoff generation processes
(e.g. crusting vs. infiltration front propagation vs. domi-
nance of preferential flow). Following two different and
widely used approaches, we fitted Horton-type equations
and Green–Ampt-type equations to the hydrographs. Both
infiltration equations were flexible enough to be meaning-
fully fitted to our data despite their contrasting mechanis-
tic justification. Preliminary results showed that both ap-
proaches resulted in nearly identical shapes of the hydro-
graph and similar efficiencies (R2 was usually above 0.95)
and the root mean squared error (RMSE), which was be-
low 0.1 mm min−1 for both types of equation, was equal to
the unexplained variance in a geostatistical analysis (Fiener
at al., 2011b) that does not force any theoretical equation
through the data and thus yields the best possible fit. It is
important to note that this apparently small error only quan-
tifies the random error of multiple runoff rate measurements
within an event. Many errors of the infiltration rate apply to
all measurements within an event (e.g. errors in plot size or
rain intensity; for more details see Fiener et al., 2011b) and
potentially cause large errors in the parameters of the infil-
tration equations despite a close fit. In consequence, we were
not able to decide which process governed runoff generation.

Furthermore, we encountered the problem of equifinality
(Beven and Binley, 1992); that is, many parameter combina-
tions gave statistically similar good results for the same hy-
drograph and the same infiltration equation (e.g. the RMSE
may only change between 0.032 and 0.035 mm min−1 for the
same hydrograph, while the initial infiltration rate of the Hor-
ton model changed by a factor of three and the decay constant
changed by a factor of ten).

Since both approaches yielded identical results and we did
not want to decide a priori on a specific modelling philoso-
phy, we followed a different, purely statistical approach to
estimate surface runoff generation from rainfall plots. We
focused on and analysed four support points of the hydro-
graphs. These were initial abstraction, defined as rain depth
till runoff, and total runoff after 20, 30 and 40 mm of rain (Pa,
QP20, QP30, QP40, respectively; Table 2). Support points
for lower or higher rain depths narrowed the data set and
left only subsets which had very early runoff or where high
rain depths were applied. Support points for lower or higher
rain, hence, were not used at this stage because this reduced
the available range of soils, rains and land uses. For the
selected four support points, multiple regressions utilising
soil, rain and land use variables (Table 1) were developed
independently following an iterative approach (e.g. Craw-
ley, 2009) taking likely interactions between variables and
curvilinear behaviour into account. Given that many vari-

ables correlate (e.g. texture classes but also variables that
were obtained by data transformation) and thus also corre-
late similarly to the support points, we chose those variables
out of similarly efficient variables that were widely available
(e.g. avoiding unusual texture classes), that were meaningful
and consistent with current knowledge (e.g. avoiding very
narrow texture classes), and that did not produce an unre-
alistic behaviour when extended beyond the range covered
by measurements (e.g. avoiding transformations that became
very steep beyond the measured range). Further, we avoided
over-parameterisation by calculating the Bayesian informa-
tion criterion (BIC; Kuha, 2004).

Given that some variables were not available for the entire
data set (Table 1), such a variable could not be included in
the equation developed during one of the successive steps as
neither deletion nor imputation of the missing data seemed
appropriate. To examine whether such a variable would have
had explanatory power, we calculated the residuals between
the prediction developed from the entire data set and the mea-
sured runoff of the respective subset of data (Framstad et al.,
1985). These residuals were then correlated to the omitted
variable to examine whether the omitted variable could im-
prove the prediction. For example, soil moisture at the very
surface or in the plough horizon may likely affect initial ab-
straction, but these variables were not available for all hydro-
graphs; hence, we developed a prediction equation for initial
abstraction without considering soil moisture; then, we cal-
culated the residuals of this equation for those hydrographs
where the soil moisture was available; these residuals were
then correlated with the soil moistures to examine whether
soil moisture could explain some of the unexplained varia-
tion. None of the other (incomplete) variables had explana-
tory power and hence it did not become necessary to consider
them in estimating surface runoff.

The selected support points could be predicted using the
same soil properties (indicating that dominant influences did
not change during the different rainfall events), while only
the calibration parameters changed depending on rain depth.
Hence, the equations of the selected support points were
combined in the next step into one equation, in which the
parameterisation depended on rain depth. This equation was
then finally fitted to all 14 286 runoff measurements of the
317 hydrographs (approximately 1 min time steps).

2.3 Model and validation

To examine whether the final equation to predict runoff gen-
eration would be transferable to other areas, we used a ten-
fold stratified cross validation, which is regarded best for
model selection (Kohavi, 1995). Therefore, we randomly
chose 90 % of the 317 hydrographs, which sufficiently strat-
ified the data so that they contained about the same pro-
portion of labels as the original data set. For this subset of
hydrographs we determined the equation parameters, while
the remaining 10 % of hydrographs were used for model
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Table 2.Runoff variables from the 317 rainfall simulations used for statistical analysis and model development; the number of available data
n varies according to the availability of the dependent variable.

Variable
(Abbreviation) Description Unit Mean Range n

tP Time to ponding s 218 29 to 779 317
tR Time to runoff s 639 63 to 3119 317
Pa Initial abstraction, defined as rain depth till runoff mm 10 0.7 to 62 317
QP20 Runoff during 20 mm rainfall mm 4.1 0 to 16.5 317
QP30 Runoff during 30 mm rainfall mm 9.3 0 to 26.7 317
QP40 Runoff during 40 mm rainfall mm 13.4 0 to 30.8 176
Qtot Runoff after total rainfall of an experiment mm 21.3 0.1 to 58.8 317
q Instantaneous runoff rate mm mm−1 0.4 0 to 1.2 14 286

validation. This procedure was repeated ten times assuring
that every hydrograph was used once for validation. The ten
folds yielded a family of similar equations for all subsets that
satisfactorily predicted the validation data (see Results).

Finally, we compared the quality of our predictions with
predictions derived following the classical curve number
(CN) approach (Mockus, 1972), which is the most prominent
statistical approach to estimate surface runoff. The hydrolog-
ical soil groups of the CN approach were assigned based on
the soil descriptions (not based entirely on topsoil properties
as recorded in the database). For fallow, row crop and small
grain a low runoff disposition was always assumed. Fur-
thermore, CNs were estimated with an alternative approach
following Auerswald and Haider (1996) using soil cover of
row crops and small grains, respectively. The second CN ap-
proach was developed using a subset of the data set used in
this study (Auerswald and Haider, 1996).

All statistical analyses were carried out using the GNU
R version 2.14.0 (R Development Core Team, 2011). Be-
sidesR2 and RMSE we also used the Nash–Sutcliffe effi-
ciency (NSE; Nash and Sutcliffe, 1970) as a goodness of
fit parameter.

3 Results

3.1 Support points

The initial abstractionPa ranged from 0.7 to 62 mm for the
317 hydrographs, but only two of the variables contributed
to the explanation of this variation. These were total stone
cover exceeding 10 %Fstone>10% (range 0 to 25 %), which
was calculated asFstone>10%= max (0;Fstone–10), and sand
content (0.063 to 2 mm) of the bulk soilCSa_tot (range 2 to
87 %). With increasing stone cover, time to runoff (and hence
initial abstraction) increased, while increasing sand content
promoted earlier runoff (Eq. 1):

Pa = 16.2+ 1.37× Fstone>10%− 2.52× ln(CSa_tot). (1)

Equation (1) explained 53 % of the variation (RMSE 6 mm)
of Pa, while Fstone>10% andCSa_totexplained 37 and 10 mm
of the variation, respectively. The RMSE was rather large
(andR2 low), indicating that initial abstraction was strongly
influenced by factors that could not be captured by the avail-
able variables. Remarkably, rain intensity, which spanned
from 29 to 99 mm h−1, had no influence on initial abstraction
(R2

= 0.0002), while it dominated the time to runoff because
initial abstraction was reached earlier with increasing rain in-
tensity. Also, soil moisture in the surface soil (0.03 m; range:
2 to 26 w / w-%) or in the plough layer (range: 8 to 40 w / w-
%), which both may especially influence early runoff, did not
improve the prediction ofPa.

QP20, QP30 andQP40 were all explained best by the same
variables, namely rain intensity, time since tillage and or-
ganic carbon content. This lead to equations of the following
type:

QP = f + g × (p) − h × ln(tsT) + k × ln(tsT)
4
+ l × ln(CSOC), (2)

where QP is the accumulated runoff volume (mm) since
the start of rain to rain depthP (mm); p is rain intensity
(mm h−1); tsT is time since tillage (d); CSOC is soil carbon
content (%); andf , g, h, k and l are empirical parameters
that vary with rain depthP .

In general, the higherp was, the more runoff was observed
after a given rain depth because the time available for infil-
tration decreased. The strongest influence, however, was ex-
hibited bytsT, which usually is not regarded in hydrological
modelling. With increasingtsT runoff decreased. For exam-
ple, runoff after 30 mm of rain was on average 20 mm if the
rainfall occurred within less than an hour after tillage, while
it was less than 5 mm if the rainfall occurred more than 100
days after tillage. This effect was particularly pronounced for
shorttsT (in the range of few hours to single days) although
it lasted even for more than 200 days. This strongly decreas-
ing effect made it necessary to use the logarithm and to use a
second term (ln(tsT)

4) in Eq. (2), which compensates some of
the term (ln(tsT)) at hightsT. IncreasingCSOCalso decreased
runoff and again this effect was sub-proportional. Despite the
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Fig. 1.Error distribution of accumulated runoff depthQ and instan-
taneous runoff rateq for 14 286 runoff measurements during 317
events.

large number of available explanatory variables (Table 1) and
the large number of measurements, no further variable im-
proved the runoff prediction. This was especially true for soil
physical properties that are commonly assumed to influence
runoff (e.g. texture variables, porosity, and moisture).

3.2 Hydrograph prediction

Given the identical behaviour of all support points, the
parameters of Eq. (2) could be optimised for any rain
depth P by using all data. The best combination of
parameters wasd = 2.6 mm, e = 3.3 mm ln(mm)−1, f =

0.6, g = 4.3× 10−3 h mm−1, h = 7.6× 10−2 ln(d)−1, k =

5.0 × 10−6 ln(d)−4, andl = 0.19 ln(%)−1 for the final equa-
tion:

QPr = d − e × ln(Pr) + Pr ×
[
f + g × p − h

× ln (tsT) + k × ln (tsT)
4
− l

× ln (CSOC)] (3)

for Pr > e/
[
f + g × p − h

× ln (tsT) + k × ln(tsT)
4
− l × ln(CSOC)

]
and QPr > 0 else QPr = 0,

whereQPr is runoff volume (mm) at rain depthPr (mm) ex-
ceeding initial abstraction given byPr = P − Pa.

The combining of Eqs. (1) and (3) allowed the computa-
tion of hydrographs for all 317 events. The calculated hy-
drographs explained 72 % of the variability of the measured
accumulated runoff volumes (RMSE 5.2 mm; NSE 0.71), as
compared to 58 % of the variation in instantaneous runoff
rates (RMSE 0.23 mm mm−1; NSE 0.56). The error distri-
butions (Fig. 1) showed a pronounced excess kurtosis, in-
dicating that the errors were usually less than half as indi-
cated by the RMSEs with the exception of some hydrographs
that were poorly predictable. We checked these hydrographs
and the corresponding experimental descriptions but found
no anomalies that could explain the behaviour of these hy-
drographs. It is important to note that RMSEs also account
for sampling errors associated with field measurements and
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Fig. 2. Examples of instantaneous runoff rates during six events in
different months and years on one plot kept under seedbed condi-
tions. Note: time since tillage is 0.04 day in panel F, while it is∼ 3–5
days in all other cases.

for inconsistencies among research groups that contributed
to the combined data set. The measured instantaneous runoff
rates per minute are subject to random errors that level out
when rates over a longer period of time are combined in the
calculation of the accumulated runoff volume, while system-
atic errors (bias) of the rate measurements also affect runoff
volume. The difference in performance of rates and volume
thus was due to the influence of random error. The random
error in measured runoff rates along a single hydrograph
typically was±0.1 mm mm−1 (Fig. 2) or half of the over-
all RMSE. No model can capture such random errors and
also the biases, which are even more difficult to identify (e.g.
errors in plot size determination). It is hence unlikely that
another equation could explain the hydrographs better.

Examples of measured and predicted hydrographs selected
to be close to the mean RMSE are given in Fig. 2. They
show rainfall simulations on a long-term bare fallow soil in
seedbed conditions that was rained on six times during three
years. Among the six hydrographs, Fig. 2f exhibits much
higher final runoff rates. This illustrates the large influence
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Fig. 3. Modelled accumulated runoff volumes (QP20 to 60) for dif-
ferent rainfall depths (20 to 60 mm) and varying total sand content
CSa_tot, stone coverFstone, time since tillagetsT, soil organic car-
bon contentCSOC, and rainfall intensityp as used in Eqs. (1) and
(3); for the modelling approach all variables except the one varied
were kept constant at their mean value (for values see Fig. 4).

of tsT as this hydrograph was obtained only one hour af-
ter tillage, while the other hydrographs were obtained 3 to
5 days after tillage. Despite near-constant soil, plot and rain
properties for some of the other hydrographs (e.g. D and E,
except for the fact that more rain was applied in the case
of E), there were differences for which no explanation ex-
ists and which hence can also not be captured by the model.
Despite this, the model with only five variables explained
all hydrographs reasonably well even though three variables
(Fstone>10%, CSa_tot, andCSOC) were held constant because
they were determined only once on this plot.

The sensitivities of the variables within the complete
model were analysed by changing the values of each vari-
able within its measured range (Table 1), while rainfall depth
increased from 0 to 60 mm and the other variables were held
constant at their mean values (Figs. 3 and 4). With increas-
ing sand content, runoff started earlier (Fig. 4), but the ef-
fect was small and most prominent for small sand contents
(approximately 0 to 10 %; Fig. 3). Stone cover had a much
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Fig. 4. Modelled accumulated runoff volume (left column) and in-
stantaneous runoff rate (right column) for mean (bold line), min-
imum (dotted line), and maximum (thin line) values of total sand
contentCSa_tot, stone coverFstone, time since tillagetsT, soil or-
ganic carbon contentCSOC, and rainfall intensityp. Numbers de-
note the minimum, mean and maximum of each variable. All vari-
ables were kept constant at their mean value except the one varied.
ForFstonethe minimum and the mean result in the same hydrograph
as stone cover becomes active only forFstone>10%.
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Table 3. Calibration and validation results of accumulated runoff
volumes (Q) and instantaneous runoff rates (q) for all 317 hydro-
graphs used in a ten-fold cross validation; Goodness-of-fit param-
eters were calculated based on the full model/data resolution of
1 min; NSE is Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970),
R2 is the coefficient of determination, and RMSE is the root mean
square error;n indicates the number of single measurements used
for calibration and validation.

Q [mm] q [mm mm−1]

Calibration Validation Calibration Validation

n 128 574 14 286 128 574 14 286
R2 0.72 0.72 0.58 0.58
RMSE 5.19 5.21 0.23 0.23
NSE 0.71 0.71 0.56 0.55

larger effect on runoff initiation and hence on runoff depths
(Figs. 3 and 4). Increasing stone cover increasingly retarded
runoff, but this became effective only above a threshold of
10 % stones (Fig. 3). Consequently, stone cover can be ne-
glected for many soils because the average stone cover in
our data set was 6.6 %. Importantly, sand content and stone
cover influenced the whole hydrograph (Fig. 4) beyond the
start of runoff due to the fact that Eq. (1) was needed to
calculate Eq. (3).

With increasing rainfall intensity, instantaneous runoff
rates and accumulated volumes increased as predicted by
Eq. (3). This also influenced the start of runoff. Runoff
started slightly later with decreasing rain intensity (Fig. 4)
even though intensity was not part of Eq. (1). This is because
the influence of intensity on initial abstraction was rather
weak when compared to the random scatter of initial abstrac-
tion. Using all runoff measurements, as in Eq. (3), instead
of using only one data point (initial abstraction) reduced the
random scatter, and thus this influence became visible in the
final Eq. (3). Thus, Eq. (1) was not sufficient to calculate the
start of runoff and so was used as an intermediate step in the
development of Eq. (3). The same behaviour was true for all
other variables that additionally entered Eq. (3).

The influence ofCSOC was of similar strength as rainfall
intensity. Instantaneous runoff rates and accumulated vol-
umes decreased with increasingCSOC (Fig. 3) and caused
the runoff to start later (Fig. 4). The time since tillagetsT
effect was about 30 % stronger thanCSOC and rainfall inten-
sity (compare final ranges of runoff volume and rate), but this
was an effect of the very shorttsT (minimum: 1 h) that were
possible with small plots and artificial rainfall but which will
unlikely occur on larger fields that need considerably longer
than 1 h for tillage. Considering the range of time relevant for
whole fields, the influence oftsT was similar in strength to
the other influences. The change during the first 12 days af-
ter tillage was about the same as the change occurring during
the following 215 days (Fig. 4).
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Fig. 5. Modelled vs. measured initial abstractionPa, and accumu-
lated runoff after 20, 30 and 40 mm of rainfall (QP20, QP30 and
QP40, respectively); data shown combine all validation results of
the ten-fold cross validation; root mean square errors are 7.0, 3.5,
5.3, and 6.9 forPa, QP20, QP30, andQP40, respectively.

3.3 Model validation

The restricted data sets of the folds created during cross val-
idation led to models similar to those using the full data set.
The prediction quality did not differ between the calibration
and the validation data sets for both runoff volume and rate
(Table 3), indicating that all models were equally suitable for
predictions. The models explained the validation data with a
NSE between 0.55 and 0.71 (Table 3, Fig. 5). Runoff volume
again was modelled more accurately than runoff rate. Runoff
varied between 0 and 59 mm and could be predicted with
RMSE= 5.2 mm. However, the models performed somewhat
weaker for initial abstraction, as mentioned earlier, since
Pa is strongly influenced by factors that could not be cap-
tured with the available variables. In general, prediction qual-
ity increased with rainfall volume and hence surface runoff
volume (Fig. 5).

Using the CN approach according to Mockus (1972)
increased the RMSE of runoff volume by about 50 %
(RMSE= 7.7 mm). The same was true when using
the CN approach by Auerswald and Haider (1996)
(RMSE= 7.9 mm).
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4 Discussion

4.1 Initial abstraction

In general, initial abstraction showed substantially more ran-
dom (unexplained) variability than subsequent runoff rates,
indicating that these measurements are more prone to un-
certainty. The high variability of initial abstraction under
more or less identical plot conditions could have resulted
from small random differences; e.g. compaction at the down-
slope end of the plot will encourage early runoff or small
depressions at the outlet will increase detention storage and
hence delay first runoff. Such random differences are likely
to occur given that most of the plots were situated in ordi-
nary farmed fields. Also subjective decisions by the technical
staff carrying out the rainfall simulations are necessary when
recording the first runoff (whether it starts with the first sin-
gle drop or the first continuous flow). These decisions will
differ among research groups contributing the data, persons
within a group and even for the same person during differ-
ent measuring campaigns. Hence, when initial abstraction
was analysed without consideration of the following runoff
measurements, it was best explained by the combination of
only two soil properties, namelyFstone>10% and sand con-
tent (Eq. 1), despite its large variability (Table 2). However,
all other variables which influenced the hydrograph also af-
fected initial abstraction (Fig. 4) because (at the plot scale)
abstraction must become larger the slower the hydrograph
rises. The effect ofFstone>10% most probably resulted from
the macropore space under stones created during tillage that
can store runoff. The threshold indicated that small stone
contents, which usually also are associated with small and
rounded stones, did not exhibit this effect. In this case it can
be expected that the small stones are embedded within the
soil matrix and may even decrease infiltration rates (Wilcox
et al., 1988). This threshold agrees with the calculation of soil
erodibility in the revised universal soil loss equation, which
also uses a threshold of 10 % for the consideration of stones
(Roemkens et al., 1997). Also Poesen et al. (1994) suggested
this threshold. In general, the importance of the variable
Fstone>10% is in line with findings of Poesen et al. (1990),
indicating that stones not fully embedded in the surface soil
layer typically lead to preferential infiltration of runoff under
these stones, and with Tromble (1976), who found a positive
relation between infiltration and stone cover after ploughing
rangeland. Even though the influence of stones on initial ab-
straction was large, this applied only for a small number of
soils. Only 36 % of our soils had a stone cover just above
the threshold and only 16 % were above a stone cover of
> 15 %. For the USA it was estimated that stones need to
be considered in the calculation of soil erodibility on 16 %
of the land area (Roemkens et al., 1997). Similar percent-
ages may hence be found in many temperate areas of the
world, while in other areas like the Mediterranean stony soils
may even occupy much larger areas (60 % according to Poe-

sen and Lavee, 1994) and cause the low erosion rates there
(Cerdan et al., 2011).

The influence of sand content was opposite to what might
be expected (e.g. from the influence of texture in the SCS CN
model) although our model is still in general agreement with
the assessment of coarse-textured soils by the CN model due
to the fact that stones had a much larger influence than sand
and because the CN model does not explicitly distinguish be-
tween the effects of stones and sand. There is little systematic
research on the effect of sand on runoff, which impedes the
interpretation of this result. It is remarkable, however, that
the influence of sand only promoted early runoff but not later
runoff (Figs. 3, 4). Likely, the increasing sand content de-
creased aggregate stability (Boix-Fayos et al., 2001) and in-
creased slaking forces (Auerswald, 1995) due to the usually
dry soil surface of sandy soils. Both promote the breakdown
of aggregates and thus accelerate sealing and decrease de-
pression storage on the soil surface (Mohamoud et al., 1990).

4.2 Hydrograph shape

The hydrographs could be predicted surprisingly well with an
interaction of simple rain, soil and land-use variables despite
the large variation in the data set. These were rain depth ex-
ceeding initial abstraction, rain intensity, soil organic carbon
content and time since tillage. The importance of rain depth
exceeding initial abstraction and rain intensity is obvious and
is also important in many other surface runoff estimates (e.g.
Appels et al., 2011).

The influence ofCSOC on hydraulic parameters (e.g. Ra-
jkai et al., 2004; Scheinost et al., 1997) and erosion (Guerra,
1994) has been shown in several studies. Its influence on the
hydrograph likely results from (i) a larger aggregate stabil-
ity (Auerswald, 1995; Tisdall and Oades, 1982), (ii) larger
unsaturated hydraulic conductivity, and (iii) higher biologi-
cal activity (e.g. Anderson and Domsch, 1989; Weigand et
al., 1995) especially by earthworms creating more voids for
runoff intake (Auerswald et al., 1996). It is important to note
that the soils for which these relationships have been specif-
ically quantified by Weigand et al. (1995) and Auerswald et
al. (1995, 1996) comprise a large portion of the present data
set. It is thus likely that biological activity, earthworm abun-
dance and cross-sectional area of biopores, which were avail-
able for these soils, would have been good predictors for the
entire data set if they had been available for all runs. How-
ever, given that these variables are usually not available for
prediction,CSOC is preferable even though it may only influ-
ence infiltration indirectly via aggregate stability and biopore
cross-sectional area.

More difficult to interpret is the importance oftsT, because
this variable is rarely analysed in relation to runoff genera-
tion (and is included neither in the lumped CN model nor in
any of the mechanistic models to predict runoff generation)
despite the fact that many publications compare the differ-
ent tillage treatments (e.g. Auerswald et al., 1994; Silburn
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and Connolly, 1995; Choudhary et al., 1995) and thus ac-
knowledge the prominent impact of tillage on runoff. How-
ever, these comparisons are usually done between treatments,
while the changes over time are hardly considered although
tillage impacts many physical and biological soil properties,
which then gradually change until the next tillage (Caron
et al., 1992; Dexter et al., 1998; Franzluebbers et al., 1995;
Zobeck and Onstad 1987). Surface runoff decreased with in-
creasingtsT, while the opposite might be expected from the
typically observed decrease in porosity following a number
of drying–wetting cycles after tillage (Ahuja et al., 2006;
Franzluebbers et al., 1995; Onstad, 1984) and the decrease
in detention and depression storage due to a decrease in ran-
dom roughness with consecutive rainfalls (Zobeck and On-
stad, 1987). Several processes likely contribute at different
time scales astsT covered nearly four magnitudes (1 h to
227 days; Table 1). (i) In the short term (several hours af-
ter tillage) the fast drying of freshly tilled soil can increase
infiltration capacity and stabilise aggregates during drying
(Crouch and Novruzi, 1989; Gollany et al., 1991). The lat-
ter reduces soil crusting potential and promotes infiltration.
(ii) Within several days following tillage, age hardening of
the aggregates will take place due to drying (cycles) and
due to biological activity. Biological activity produces bind-
ing substances, including hyphae that form more and closer
bonds between soil particles, causing cementing substances
to precipitate at newly formed particle contacts (Dexter et al.,
1988; Kemper and Rosenau, 1984; Schweikle et al., 1974).
All of these mid-term processes of soil structure stabilisa-
tion potentially prevent soil crusting, which is most important
shortly after tillage since soils are not fully covered by grow-
ing crops. (iii) In the long run (weeks to months),tsT is prob-
ably also a proxy for the development of plant cover, includ-
ing changes in tilth underneath a cover and the development
of connected biopores reaching the soil surface, even though
none of the four cover variables (Table 1) entered any equa-
tion. These interpretations have to remain speculative given
the little attentiontsT has previously attained in runoff stud-
ies. To our knowledge, this parameter has only be analysed
in respect to aggregate stability and soil erosion, where it can
exhibit a large effect (e.g. Auerswald, 1993; Auerswald et al.,
1994; Caron et al., 1992; Shainberg et al., 1996), but not for
runoff generation. Typically this information is not reported
in publications, which may explain the often large difference
in runoff between different studies as well as some of the
unexplained scatter within individual studies given the large
changes that can happen at shorttsT. More attention should
be paid to variables related to tillage practices given the fact
that seedbed conditions, which fall into this range, are often
analysed.

It is remarkable that the CN approach by Auerswald and
Haider (1996) did not perform better than the original version
by Mockus (1972) although Auerswald and Haider (1996)
had used a subset of our data to develop their equation, which
predicts CN from soil cover. Within their subset of data, soil

cover mainly changed due to early plant growth and hence it
had statistically a similar power totsT. For the entire data set,
tsT was superior to soil cover because it also described the
changes immediately after tillage before the onset of plant
growth. Additionally,tsT can also serve as an indicator for
long-term changes, while soil cover approaches its final value
usually two months after seeding.

It is debatable whether any empirical or mechanistic ap-
proach to model surface runoff generation can be reliably
transferred to other sites given the multitude of conceivable
influences. As our data set covers a large range of rainfall,
topography, soil and land-use properties (Table 1) the re-
sults from the validation are encouraging for our statistical
approach. The overall RMSE of accumulated runoff volume
and instantaneous runoff rate of 5.2 mm and 0.23 mm mm−1,
respectively, probably cannot be lowered markedly by an-
other model predicting rain excess and runoff generation be-
cause such differences already existed in the data measured
in replicated plots (Fig. 2). The differences must be caused
either by systematic measuring errors like a wrong rain inten-
sity or by properties that were not measured, and thus would
not be available for other types of models (e.g. antecedent
sealing, biopore density, biopore connectivity etc.).

5 Conclusions

The large data set of 317 rainfall simulations (14 286 runoff
measurements) represented a wide range of arable soils
and crops. Runoff measurements were related to 20 time-
invariant soil properties, three variable soil properties, four
rain properties, three land use properties and derived vari-
ables. In an iterative multiple regression procedure six of
these properties/variables best described initial abstraction
and the hydrograph. The fraction of stone cover above 10 %
Fstone>10% and the content of total sand in the fine earth frac-
tion CSa_totwere needed to estimate initial abstraction, while
the hydrograph could be predicted from rain depth exceeding
initial abstractionPr, rainfall intensityp, soil organic matter
contentCSOC, and time since last tillagetsT. The resulting
model predicted event hydrographs without a priori assump-
tions of the underlying process (e.g. Hortonian vs. satura-
tion runoff generation). Validating this approach by creating
a family of models by ten-fold cross validation indicated that
these models explained 72 % of variability in runoff volume
and 58 % of runoff rate (RSME: 5.2 mm and 0.23 mm mm−1,
respectively) of the training data and also of the validation
data. It outperformed the CN approach, and thus implementa-
tion in spatially distributed and temporally continuous mod-
els that capture agricultural management seems promising.

Stone cover was most important for the initial abstrac-
tion, while tsT was most important for the hydrograph. These
variables are not taken into account either in typical lumped
hydrological models (e.g. CN approach) or in more mecha-
nistic models using Horton, Green and Ampt, or Philip type
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approaches to address infiltration. This finding should foster
a discussion regarding our ability to accurately model sur-
face runoff from arable land, which seemed to be dominated
by agricultural operations introducing a man-made seasonal-
ity to soil hydraulic properties.
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