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Abstract. Streamflow droughts, characterized by low runoff
as consequence of a drought event, affect numerous aspects
of life. Economic sectors that are impacted by low stream-
flow are, e.g., power production, agriculture, tourism, water
quality management and shipping. Those sectors could po-
tentially benefit from forecasts of streamflow drought events,
even of short events on the monthly time scales or below. Nu-
merical hydrometeorological models have increasingly been
used to forecast low streamflow and have become the focus
of recent research. Here, we consider daily ensemble runoff
forecasts for the river Thur, which has its source in the Swiss
Alps. We focus on the evaluation of low streamflow and
of the derived indices as duration, severity and magnitude,
characterizing streamflow droughts up to a lead time of one
month.

The ECMWF VarEPS 5-member ensemble reforecast,
which covers 18 yr, is used as forcing for the hydrologi-
cal model PREVAH. A thorough verification reveals that,
compared to probabilistic peak-flow forecasts, which show
skill up to a lead time of two weeks, forecasts of stream-
flow droughts are skilful over the entire forecast range of one
month. For forecasts at the lower end of the runoff regime,
the quality of the initial state seems to be crucial to achieve a
good forecast quality in the longer range. It is shown that the
states used in this study to initialize forecasts satisfy this re-
quirement. The produced forecasts of streamflow drought in-
dices, derived from the ensemble forecasts, could be benefi-
cially included in a decision-making process. This is valid for
probabilistic forecasts of streamflow drought events falling
below a daily varying threshold, based on a quantile derived
from a runoff climatology. Although the forecasts have a ten-
dency to overpredict streamflow droughts, it is shown that the

relative economic value of the ensemble forecasts reaches up
to 60 %, in case a forecast user is able to take preventive ac-
tion based on the forecast.

1 Introduction

Droughts, which can occur on a wide spatial and temporal
range, can be defined in various ways. Typical and possibly
interrelated processes are a temporally and spatially extended
lack of precipitation (meteorological droughts), reduced soil
moisture (agricultural droughts) and low levels of runoff or
groundwater (hydrological droughts) (Heim Jr., 2002). This
variety in the way droughts are defined is a direct conse-
quence of the range of socioeconomic impacts they have on
different interest groups. It is common to study the char-
acteristics of low streamflow-related droughts on seasonal
time scales (e.g., (Vidal et al., 2010)). However, streamflow
droughts also appear on shorter time scales (Tallaksen et al.,
1997). Some of the short, consecutive events might be con-
nected to one prolonged drought; nevertheless they can cause
damage to certain susceptible sectors and are worthwhile to
consider individually. Streamflow drought forecasts on time
scales up to one month are potentially useful for hydro-power
generation, agriculture (irrigation), conventional power pro-
duction (supply of heat exchange water), water quality, nav-
igation (shipping) and tourism (e.g., water supply for snow
cannons), in general, all sectors that can use the information
about upcoming streamflow drought events to take preven-
tive action. For those sectors, skilful forecasts of streamflow
droughts could help to prevent or mitigate the consequences
of a water shortage (Steinemann, 2006).
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Generally, two approaches to predict properties of low
streamflow events in the long range can be discerned. First,
stochastic approaches that relate the current state of a catch-
ment and potential predictors to what has been observed in
the past, to infer the likelihood of low streamflow within the
prediction period. These include regression techniques (Mor-
eira et al., 2008; Cebrían and Abaurrea, 2011; van Ogtrop
et al., 2011), time series models (Lohani and Loganathan,
1997; Chung and Salas, 2000; Mishra and Desai, 2005; Bordi
and Sutera, 2007), and neural network techniques (Kim and
Valdés, 2003; Mishra and Desai, 2006; Morid et al., 2007).
Also procedures identifying correlations of drought events
with teleconnection patterns (Tadesse et al., 2005; Özger
et al., 2012) or certain weather types (Fleig et al., 2011) can
be used to indicate potential drought events.Cancelliere et al.
(2006) andHwang and Carbone(2009) used autoregressive
models not only to predict drought indices but additionally to
quantify the uncertainty of their prediction. Drought indices
inferred from statistically downscaled atmospheric models
(Cacciamani et al., 2007) also have proven predictive quality.

The second, less common approach for the long-range
prediction of droughts involves a coupled atmospheric–
hydrological model.Wood et al. (2002) employ monthly
forecasts from a global atmospheric model to drive a grid-
based hydrological model that produces reasonable predic-
tions of low streamflow up to several months in advance. The
refined systems ofLi et al. (2008) andLuo and Wood(2007)
were able to predict average monthly drought conditions up
to three months ahead.

In this study, we assess the quality of forecasts of hy-
drological droughts, characterized by low streamflow, for a
lead time of up to one month. Streamflow is an appealing
measure for droughts as it combines different catchment as-
pects, ranging from the input of precipitation to storage and
transfer processes. By coupling or forcing hydrological with
meteorological models, useful peak-flow predictions for a
shorter forecast range are possible. As the predictability of
an event mainly depends on its lifetime (Hirschberg et al.,
2011), peak-flow forecasts rarely show skill beyond 10 days.
This, however, depends on the catchment characteristics, as
well as the quality of the models involved and the observa-
tions needed for an appropriate initialization (Webster et al.,
2010; Fundel and Zappa, 2011). Streamflow droughts on the
other hand are generally rather persistent phenomena. This
is why predictions could potentially still be valuable in the
longer range. It might therefore be worthwhile investigating
their properties at lead times long after peak-flow predictions
have lost their value. The value of forecasts can be increased
if additionally the prediction uncertainty is quantified, e.g.,
by using a meteorological ensemble prediction system (EPS)
or a multi-model ensemble (Cloke and Pappenberger, 2009)
or multiple hydrological models maybe applying different
model parameterizations (Rings et al., 2012).

This study introduces several new aspects of forecasting
streamflow droughts such as, compared to existing studies on

streamflow drought, a high temporal resolution and an en-
semble approach to include forecast uncertainty. Daily pre-
dictions of streamflow drought up to a lead time of one
month, employing the VarEPS ensemble reforecast (Vitart
et al., 2008b) from the European Centre for Medium-Range
Weather Forecast (ECMWF) as forcing for the hydrological
model PREVAH (Viviroli et al., 2009), are assessed. Com-
pared to the above-mentioned studies on the prediction of
hydrological droughts, a higher temporal resolution is exam-
ined. The daily mean catchment runoff forecasts of 32-day
lead time were produced in the period from 1991–2008, pro-
viding a large sample size and hence a robust estimation of
forecast value. A further new aspect is the evaluation of fore-
casts regarding the lower end of the flow regime by consid-
ering indices describing low streamflow scenarios, namely
duration, severity and magnitude. Below normal levels of
streamflow can have socioeconomic impacts at all times of
the year, also in seasons that are generally not associated
with water shortages. To address this, a daily varying thresh-
old based on past observations of streamflow is used to in-
dicate streamflow droughts. Compared to monthly average
forecasts of drought indicators, the here considered forecasts
could be potentially useful for a new group of users, espe-
cially forecast users that are affected by short events and
users that can take preventive action having a relatively short
warning lead time. To estimate the value for a variety of
users, the resulting forecasts are evaluated in terms of their
economic value.

2 Data and methodology

2.1 Domain

The domain chosen for this study is the pre-alpine catch-
ment of the Thur River located in the north-eastern part of
Switzerland. The Thur River has a length of 127 km and dis-
charges into the Rhine River. The catchment is 1696 km2 in
area, and its vertical extent is from 356 at the gauging sta-
tion in Andelfingen to 2503 m a.s.l. at the top of the Säntis.
The mean altitude is 769 m a.s.l.; 25 % of the catchment lies
above 1000 m a.s.l and 0.6 % above 2000 m a.s.l. The sub-
montane climate is relatively cool, and the runoff-generating
processes from autumn to spring are affected by snowfall and
melt processes. The annual average precipitation amount is
about 1500 mm and mainly falls during the summer months.
Figure1 shows the monthly catchment average temperature
mean and precipitation sum in the study period 1991–2008.
Due to the vertical extension of the catchment topography,
the values can differ largely within the catchment. Average
values of other meteorological variables and their height dis-
tributions are given inGurtz et al.(1999). Figure 2 (left)
shows some lower quantiles of catchment runoff, measured
at the gauging station in Andelfingen from 1991–2008 us-
ing a gliding window of 31 days centered on the date of
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Fig. 1. Thur catchment average mean monthly temperature (solid
line) and precipitation sum (bars) in the study period 1991–2008.
The dashed lines and vertical bars show one standard deviation.

interest. The maximum of runoff in April can be attributed
to snowmelt. The runoff minima from September to Febru-
ary, depending on the considered quantile, are caused by the
combination of less precipitation and snow accumulation.

This catchment, which is relatively large for Alpine con-
ditions, was chosen as in smaller catchments streamflow
drought rarely occurs over a longer period. In small catch-
ments, low streamflow events are easily interrupted by small-
scale precipitation events, which complicates the evalua-
tion of longer-lasting events. A large catchment is therefore
thought to be more appropriate to demonstrate the forecast
value for longer events happening within the range of one
month. Besides that, the runoff regime is relatively unaf-
fected by human influences; i.e., no reservoirs or weirs are
installed (Gurtz et al., 1999) that could potentially alter the
runoff during periods of low streamflow.

2.2 Meteorological forcing

The unified variable resolution ensemble prediction system
VarEPS (Vitart et al., 2008a,b) operated by the ECMWF pro-
duces each week a global, 51-member forecast with a lead
time of 32 days. Its horizontal resolution is 50 km for the first
10 days and 80 km in the remaining 11–32 days. From day
10 onwards, the atmospheric model is coupled to an oceanic
model. The motivation for varying the resolution is to ben-
efit from the higher resolution in the early forecast range at
longer lead times. At the time of this study, the forecasts were
issued for Thursday at 00:00 UTC and were archived in time-
steps of 6 h.

With each run of the operational VarEPS, an ensemble re-
forecast is started for the same day of the year over the past
18 yr, and also ranges over 32 days. The reforecasts share
the same model version as the forecasts and are meant to
capture the same model errors, e.g., to allow for an efficient
post-processing, a more robust evaluation of forecast skill
and a more target-oriented model development. The VarEPS
reforecast dataset consists of 954 (18 yr× 53 initializations

per year) ensemble forecasts. Unlike the operational forecast,
the reforecasts have 5 ensemble members only, initialized
with states taken from the ECMWF global reanalysis ERA-
Interim or from ERA40. More detailed information about the
history of model developments is available athttp://www.
ecmwf.int/products/data/technical/modelid/index.html.

For this study the VarEPS 5-member reforecast is used to
drive the hydrological model. Fields of wind speed, 2 m tem-
perature, 2 m dew point, sunshine duration, surface albedo
and solar radiation are required as input. To meet the grid
size of the hydrological model of 500 m× 500 m, a down-
scaling was performed, based on a bilinear interpolation
(Gurtz et al., 1999; Viviroli and Gurtz, 2007). Temperature
was adjusted according to elevation, assuming a lapse rate of
0.65◦C/100 m (Jaun and Ahrens, 2009).

2.3 Hydrological model

Runoff predictions were generated using the semi-distributed
hydrological model Precipitation Runoff EVApotranspira-
tion Hydrotope (PREVAH,Viviroli et al., 2009), with
VarEPS as the meteorological forcing. PREVAH consists of
hydrological response units (HRUs) and a runoff generation
module based on the HBV model (Bergstr̈om and Forsman,
1973), taking account of the spatial distribution. Informa-
tion on PREVAH physics and the parameterization is given
in Gurtz et al.(1999) andViviroli and Gurtz (2007). PRE-
VAH’s parameter setting was conditioned by matching the
produced runoff to observed runoff at the gauging station in
Andelfingen for the period from 1995–2000. This optimiza-
tion was performed with a focus on the average flow volume.
PREVAH runs in hourly time steps. For this study, however,
only daily mean runoff is considered. The setup of PREVAH
adopted for the Thur basin is the same as the one used inFun-
del and Zappa(2011) andZappa and Kan(2007). In the latter
publications the calibration and verification of the modeled
runoff against the observed runoff, the water balance compo-
nents, and hydrographs are presented.

Initial conditions for each forecast run were obtained from
a continuous reference simulation forced with meteorologi-
cal surface observations from 12 measurement sites, 6 within
and 6 outside a distance of 100 km to catchment. The ini-
tial states contain information about the water storage in the
different modules of each HRU. To highlight the quality of
the initial conditions, Fig.2 shows a comparison of the ref-
erence simulation and the runoff observed at the gauging
station in Andelfingen for the low runoff regime. The sea-
sonal cycle and the runoff volume concur well. The evalua-
tion of daily mean runoff from the reference simulation dur-
ing the study period 1991–2008 results in a mean error of
−0.003 mm h−1 (−3 %), a Nash–Sutcliffe coefficient (Nash
and Sutcliffe, 1970) of 0.87 respectively 0.88 using logarith-
mized runoff.

When investigating forecasts of observations of hydrolog-
ical droughts, a smoothing or pooling algorithm, spanning
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Fig. 2. Lower runoff quantiles for the Thur catchment from gauge measurements (left) and the hydrological reference run (right). The
quantiles were calculated for daily mean runoff and non-exceedance probabilities of 1 %, 5 %, 15 % (dashed line) and 50 %, utilizing a
window of 31 days around the day of interest.

several days, is often applied to the data in order to avoid
counting several short events that belong to the same larger-
scale drought. Here, however, no further smoothing of the
daily forecasts is applied, mainly in order to evaluate the pre-
dictive capability of the hydrometeorological prediction sys-
tem that has the potential to simulate short-term variability
in runoff but also due to the fact that shorter events of abnor-
mally low streamflow can lead to economic losses as well.

2.4 Characterization of hydrological droughts

Streamflow droughts are generally characterized by the in-
dices duration (time between onset and offset), severity (cu-
mulative water deficit) and magnitude (severity/duration)
(Tallaksen et al., 1997; Hisdal and Tallaksen, 2000; Hisdal
et al., 2001; Smakhtin, 2001; Zaidman et al., 2002; Fleig
et al., 2006; Nalbantis and Tsakiris, 2008; Mishra and Singh,
2010; Yoo et al., 2011). Defining hydrological droughts
solely by considering those indices requires the assignment
of a runoff threshold. Whenever the predicted or observed
runoff falls below that threshold, this counts as an event
of streamflow drought. Figure3 illustrates the streamflow
drought indices drawn from an observed or forecast hydro-
graph, with indices being dependent on the choice of the
threshold. It is, however, not obvious where the threshold
should be set. Some stakeholders sensitive to low streamflow
may be interested in a constant threshold, e.g., a power plant
that requires a certain amount of water for cooling. Others
might be affected by droughts only in certain seasons, e.g.,
tourism. To meet both concerns, a variable, quantile-based
streamflow drought threshold was selected. The threshold
was calculated individually for each day of the year, using
runoff from the 18-yr study period and a gliding 31-day win-
dow around the date of interest. This implicates that events
are classified as streamflow drought in parts of the year as-
sociated with higher runoff, which would not be considered
as streamflow drought events in other, drier parts of the year.
However, in this study streamflow drought is interpreted as
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Fig. 3. Illustration of the streamflow drought indices considered in
this study. The solid line is the observed or forecast runoff, i.e., in
certain periods, above or below the streamflow drought detection
threshold (dashed line). For each forecast member of each 32-day
forecast and the corresponding observation, the longest consecutive
period below the threshold (streamflow drought duration) is eval-
uated. The water deficit during this period (severity, shaded area)
is the cumulative difference between the threshold and runoff. The
quotient of severity and duration, called magnitude, is evaluated as
well. Timing is defined as the moment when half of the event has
happened.

exceptionally low with respect to what is expected in a cer-
tain part of the year. The actual quantile chosen for the vary-
ing threshold is selected later, based on the quality of the
forecasts of derived streamflow drought indices and the ro-
bustness of the results.

In addition, the quantile-based threshold was calculated
separately for observed and forecast runoff, using either an
observation climatology or a climatology assembled of past
forecasts. This is a very simple way to correct for system-
atic additive error (bias) in runoff forecasts. Using the same
threshold for observations and forecasts would possibly re-
sult in a systematic over- or under-forecasting of stream-
flow drought events. By choosing separate thresholds for ob-
served and for forecast runoff based on the same frequency
of occurrence, we can assure this bias will not affect the
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verification results of streamflow drought duration. Possible
nonlinearities in the prediction bias could, however, influ-
ence the verification results of streamflow drought severity
and magnitude. Besides that, the forecast error could vary
with lead time. Therefore, a lead time dependency of the
streamflow drought threshold was implemented by deriving
the threshold from a climatology of forecasts stratified by its
lead time. After all, a bias could be removed by, e.g., statis-
tical post-processing. However, well-calibrated forecasts of
rare events require a large training dataset, which is why this
simple method is preferred.

Within the 32-day forecast range, the events of observed or
forecast runoff falling below the streamflow drought thresh-
old were detected and the streamflow drought indices were
calculated. In addition to that, the timing of each streamflow
drought event was calculated as the center time between on-
set and end of an event. If more than one event was detected
within a forecast interval of 32 days, the longest consecu-
tive period of low streamflow was considered as the fore-
cast/observed event. Forecast and observed events do not
necessarily have to overlap, neither between forecast and ob-
servation nor between the ensemble forecast members. The
forecast system is reduced with the objective to answer the
following questions: what is the longest expected stream-
flow drought event within the next 32 days and was such
an event observed? In the case of probabilistic forecasts, the
question is different: what is the probability of exceeding a
streamflow drought event ofx days duration (y mm severity;
y/x mm day−1 magnitude) within the next 32 days? By do-
ing so, an imprecise timing of the forecast low streamflow
event does result in a less strong degradation of the verifica-
tion score. For events truncated by the limited forecast range
of 32 days, an influence on the verification score caused by
deficiencies in forecast timing cannot be excluded. In the
here used forecast data, 29 % of the events are still prevalent
at the end of the forecast range at day 32.

Duration, severity and magnitude of streamflow droughts
are clearly not independent as they are all calculated from the
same set of events. For example an event of long duration is
likely to be very severe as well. Their forecast performances
are therefore expected to be similar. Still, the different in-
dices should reflect the demands of different interest groups
to a streamflow drought forecast. For hydro-power produc-
tion, for example, the severity might be of paramount in-
terest, whereas for power-plant cooling the duration is more
crucial.

2.5 Verification scores

The focus of the verification of ensemble streamflow drought
index forecasts is set on the value they have for potential
forecast users. A score, designed to give the value of a fore-
cast depending on the vulnerability of a forecast user to a
certain event, is the relative value or value score (Murphy,
1977; Richardson, 2000; Roulin, 2007). The user is supposed

to take preventive action whenever a forecast is issued with a
probability exceeding the user’s personal cost-loss ratio. Loss
is the customers expense when being struck by an event with-
out any preparation. Cost is what the user would spend on
taking preventive action. The value score then gives the rel-
ative economic gain for the user when following the advice
of the forecast, compared to having only the climatological
event frequency as a basis for decision-making. The value
score varies between≤ 0 (no additional forecast value) and
1 (perfect forecast). Note that even if the value score equals
1, the user still has to bear the costs for taking preventive ac-
tion. The value score is calculated for probabilistic forecasts
of exceeding a threshold. It gives a value for each possible
probability the prediction system can issue, depending on the
cost-loss ratio. The upper envelope of all value curves gives
the value of the prediction system.

Another score, designed to give an intuitive measure of the
prediction system performance, is the generalized discrimi-
nation score, or two alternatives forced choice score (2AFC)
(Mason and Weigel, 2009; Weigel and Mason, 2011). The
score is based on pairs of observations and forecasts. It re-
flects the forecast performance in discriminating between
different observations. An appealing property of the score
is its applicability for ensemble, probabilistic, dichotomous,
polychotomous or continuous forecasts and corresponding
observations. Here, as an illustration, we give the formula-
tion for probabilistic forecast; for all other possible combi-
nations of forecast and observation type, referred toMason
and Weigel(2009) andWeigel and Mason(2011). Let n1 be
the number of observed eventsi, n0 the number of nonevents
j . With p1,j respectivelyp0,i as forecast probabilities for
events that respectively did not occur, the 2AFC score is cal-
culated as

2AFC=
1

n0n1

n0∑
i=1

n1∑
j=1

I
(
p0,i,p1,j

)
(1)

applying the rule

I
(
p0,i,p1,j

)
=

0.0 if p1,j < p0,i

0.5 if p1,j = p0,i

1.0 if p1,j > p0,i .

(2)

A 2AFC score above 50 % is reached if the forecast is better
than a guess based on climatology, hence skilful, assuming
that the forecast/observation sample is representative for the
climatological regime. A perfect forecast scores 100 %. The
2AFC score gives an intuitive measure of the frequency of
correct forecasts. Here, the 2AFC score is used to evaluate
ensemble predictions against observed runoff, or probabilis-
tic predictions (probabilities to exceed a threshold) against
dichotomous (i.e.,∈ {0,1}) observed outcomes, depending
on the context.
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Fig. 4.2AFC and maximum relative value scores for the Thur VarEPS/PREVAH daily mean runoff forecasts up to a lead time of 32 days. In
the study period 1991–2008, probabilities of the ensemble forecasts to exceed different, quantile-based, varying thresholds are verified.

3 Results

In this section, the forecast quality for different flow regimes
is evaluated on a daily basis as well as for scenarios described
by the streamflow drought indices. This comprises the choice
of a daily varying streamflow drought detection threshold
and the assessment of the quality and impact of the initial
conditions. The economic value of streamflow drought index
forecasts is given for different interest groups.

3.1 Extended lead-time forecast quality

One basic hypothesis of this study is the better predictability
of low streamflow events than peak-flow events. As a conse-
quence, longer range forecasts of streamflow droughts should
prove useful for end users. To back up this hypothesis, it is
tested how well the forecast system can predict the proba-
bility to exceed different thresholds, from very low to very
high runoff, depending on the forecast lead time. A number
of ascending quantiles from the complete gauged Thur runoff
time series available are used as thresholds. The thresholds
are, as described in Sect.2.4, calculated on a daily basis.
Some of the lower quantiles can be seen in Fig.2. Figure4a
shows the 2AFC score for forecast probabilities to exceed
these thresholds for lead times from 1 to 32 days. The results
support the hypothesis. Peak flow forecasts, i.e., exceedance
probabilities for the 80th quantile and above, show very lit-
tle to no skill past about day 15. In contrast, probabilistic
low streamflow forecasts, e.g., for the 20th quantile, are skil-
ful up to the end of the forecast range. At low thresholds,
the forecast quality decreases less rapidly with growing lead
time. A very similar picture is obtained when using the rela-
tive value score. Figure4b shows the maximum of this score
for any cost/loss ratio. Peak-flow forecasts show no relative
value past a lead time of 15 days, whereas probabilistic fore-
casts of low streamflow are valuable over the entire forecast
range. Relative values greater than 0.6 are possible up to a
lead time of 15 days and more than 0.1 at 32 days. For both

plots in Fig.4, not significantly skilful score values are col-
ored white. This was tested by resampling the underlying
verification data 1000 times with replacement and applying
a t-test with a confidence level of 0.95 to see whether the
score mean was significantly larger than the smallest value
considered as skilful.

The long-term predictability of streamflow drought events
might be attributed to the persistence of the initial state of
the model. Conceptually, the recession rate of streamflow
is a function of the streamflow itself (e.g.,Kirchner, 2009).
The lower the streamflow, the slower any further reduc-
tion occurs. Consequently, a good initialization of the pre-
diction model is especially crucial for forecasts of stream-
flow drought events. If the initialization leads to a surplus of
runoff, for example, the streamflow drought threshold might
not be crossed within the forecast range or, at least, the fore-
cast timing would be poor.

The dependence of forecast quality (in terms of the 2AFC)
on the quality of the initial state for high and low runoff
regimes is shown for lead times from 1–32 days in Fig.5. The
plot shows the 90 % confidence limits (from 5 % to 95 %)
found by random resampling of the dataset 1000 times with
replacements. As no observations for the initial state vari-
ables are available, the separation between good and poor
initial states is based on runoff. It is assumed that a good ini-
tial state, provided by the reference run, results in a predicted
runoff close to the observed runoff. Hence, the difference in
runoff between both is taken as a measure for the quality of
the initial state. In order to get a clear signal, we consider
an initial state as good if the predicted runoff at initializa-
tion deviates less than 25 % from the observed runoff, and
as poor if it deviates more than 75 %. For both groups low-
and high-flow regimes are considered separately by verify-
ing the probability of daily runoff to exceed the 85th and the
15th quantile. In the low runoff regime, a good initial state
can contribute to forecast skill over the complete forecast
range of one month. The effect of a good initialization on the
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olds and different initial states qualities. The polygons show the
90 % confidence interval, found by resampling 1000 times.

forecast of higher runoff is lost after about one week. This
illustrates the importance of a good initialization, especially
in the context of forecasting streamflow drought events.

3.2 Choice of the streamflow drought detection
threshold

To proceed from forecasts of daily runoff to forecasts of
streamflow drought indices, a threshold needs to be selected.
Therefore, the performance of low streamflow index ensem-
ble predictions, according to the choice of thresholds used
to define a streamflow drought event, is evaluated next. The
result of this analysis should give an indication about which
threshold would be most appropriate for the subsequent ver-
ification of the streamflow drought index forecasts. Figure6
shows the verification results of ensemble duration, sever-
ity and magnitude forecasts for streamflow drought detec-
tion thresholds from the varying 5th to 50th quantile of Thur
runoff. The boxes indicate the range and inter-quartile range
found by 1000 times random resampling of the dataset. For
all indices, the overall forecast performance appears to be
better if a lower threshold is chosen. Duration forecasts de-
grade most strongly with higher thresholds, but stay skilful
with a 2AFC score of 67 % when using the 50th quantile.
Severity forecasts reach a 2AFC score of about 70 % for the
50th quantile, and the magnitude forecast skill stays constant
at about 72 % within the uncertainty bounds when varying
the threshold. The decrease in forecast skill with increas-
ing threshold can be attributed to the enlarged uncertainty
in the forecast itself. The higher uncertainty about the score
at lower thresholds is a result of the lower number of events.
For the subsequent evaluation of streamflow drought index

forecasts, a threshold based on the varying 15th quantile is
applied, resulting in 529 events detected for 954 ensemble
forecasts (Fig.6). The choice of the 15th quantile is a com-
promise between the number of streamflow drought events
and the significance of the findings regarding low stream-
flow. The runoff associated with the 15th quantile, i.e., the
streamflow drought detection threshold used for our research
catchment, can be deduced from Fig.2. A distinct seasonal
runoff maximum occurs in April due to the contribution of
snowmelt. The yearly minimum is reached in October or
November, when snow accumulation starts.

3.3 Streamflow drought indices prediction/observation

As already shown, the quality of a streamflow drought fore-
cast relies greatly on the quality of the representation of the
catchment initial state in the hydrological model. This initial
state is taken from a reference run, forced with meteorolog-
ical surface observation. Usually, without having measure-
ments of the state variables of hydrological models avail-
able, one way to infer the quality of the initial state is to
look at a good reproduction of runoff by the reference run.
Figure7 shows the occurrence (therefore indirectly the du-
ration), severity and magnitude of streamflow drought events
at the runoff gauge in Andelfingen during the study period
1991 to 2009, as observed or predicted by the reference run.
As a streamflow drought detection threshold of varying quan-
tiles is used, the events are distributed evenly over the year.
The most severe events and the events of greater magnitude
however mostly occur in late spring/early summer, when the
runoff reaches the yearly maximum due to the contribution of
melting snow. The high quality of the reference run already
mentioned is also reflected in its representation of the stream-
flow drought indices. A high degree of agreement between
observation and reference can be seen in the occurrence and
timing of the events. High severities and magnitudes in the
observations are also strong events in the reference run, al-
though the absolute number can vary. Altogether, the initial
states seem to provide a reasonable basis for the initialization
of forecasts.

Ensemble forecasts of streamflow drought duration, sever-
ity and magnitude, utilizing a threshold based on the varying
15th quantile of runoff, are shown in Fig.8 together with the
corresponding observations. The plot shows the range of the
weekly started forecast streamflow drought indices, valid for
the next month. To enhance readability the observed indices
and the forecast ranges are concatenated. Duration and sever-
ity of the observed streamflow drought are contained well
within the range of the ensemble, although it appears that the
forecasts have a tendency to overpredict the events. The char-
acteristics of duration, severity and magnitude forecasts are
very similar to each other as they are derived from the same
streamflow drought events. Note that, due to the weekly start
of the forecast, each day is covered by three forecasts. A very
long event is therefore captured by several forecast. For some
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forecasts such an event can exceed the forecast range, or a
forecast might start during an event. As in observation and
reference run, the occurrence of streamflow drought events is
distributed equally over the year in the forecasts, which was
expected as the detection threshold varies with season. One
noticeable feature that can be seen in the ensemble forecasts
and the observations is the distinct signal left by the 2003
drought caused by a heat wave that affected large parts of
Europe (Beniston, 2004; Scḧar et al., 2004; Zappa and Kan,
2007).

The first impression of over-forecasting is confirmed by
the rank histograms (Talagrand et al., 1997) in Fig. 9. A dis-
proportionately large part of observations fall in the lower
bins spanned by the ensemble members. This lack of relia-
bility is most distinct for magnitude forecasts, and less for
forecasts of duration and severity. However, the discrepancy
between the forecast probability and the observed frequency
is a type of error that could possibly be corrected for with
a statistical post-processing. Such a model bias was partly
corrected for by using separate detection thresholds for ob-
servations and for forecasts.

3.4 Relative economic value

The economic value of probabilistic forecasts of stream-
flow droughts, exceeding different levels of duration, severity
and magnitude was calculated for forecast probabilities us-
ing the 15th quantile streamflow drought detection threshold
(Fig.10). Value scores> 0 are shown for a variety of forecast

users, characterized by their individual cost-loss ratio. It ap-
pears that, for all thresholds and indices, valuable forecasts
for certain user groups can be produced. Especially risk-
averse forecast users with low cost-loss ratios would ben-
efit from ensemble forecasts for events of long duration or
high magnitude and severity. In contrast, forecasts of longer,
more severe events have no additional value for users with
higher cost-loss ratios. These users would benefit from prob-
abilistic forecasts of less intense events. For all users with
cost/loss ratios< 0.6, i.e., especially the risk-averse users,
value scores> 50 % are possible. The same evaluation was
performed for streamflow drought index forecasts using a
higher or lower streamflow drought detection threshold (not
shown). In accordance with Fig.6, higher value scores are
possible with the 5th quantile, and lower scores with the 50th
quantile as detection threshold. The highest value score for
each threshold is reached where the cost-loss ratio concurs
with the climatological frequency of the event. This prop-
erty of the value score is the reason for the shift to the left
with increasing thresholds. The maximum of the value score,
however, is not strongly dependent on the duration, severity
or magnitude of the event and is here reaching values of 0.4–
0.6.

A direct comparison of the forecast quality of streamflow
drought indices with the quality of probabilistic daily predic-
tions as shown in Fig.4 is not possible, as streamflow drought
events typically cover several days and no longer contain in-
formation about the lead time. The loss of predictive skill
of daily probabilistic forecasts with growing lead time has
already been addressed (Fig.4). In comparison, the maxi-
mum value score of probabilistic streamflow drought index
forecasts is not strongly dependent on the duration, severity
or magnitude of the event . As the timing of the streamflow
drought events is not exactly specified, but is somewhere be-
tween day 1 and day 32, the value score for the events ranges
around the lead time averaged value score of the probabilistic
daily forecasts as shown in Fig.4b.

3.5 Timing

One drawback when forecasting streamflow drought indices
instead of the full hydrograph is the lack of information ob-
tained about the timing of the event. An approach to evaluate
this forecast characteristic is to consider timing as the center
time between event onset and end of the event or forecast, as
described in Sect. 2.3 or Fig.3. The median of the ensemble
of forecast timings is evaluated against the observed timing.
Due to the forecast range, the timing is restricted to 32 days,
whereas this limit can only by reached by events starting on
the last day of the forecast. A concentration of events will
have a timing around 16 days, because the longer the event,
the closer the timing has to be to the center of the forecast
range.

The performance of the forecast system in predicting the
timing of events is assessed by having a closer look at the
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cases when a forecast streamflow drought event was ob-
served. Of all forecast events, 46 % had a counterpart in the
observations (hit rate), and 32 % were missed or false alarms.
Figure11shows how the timing of the observed event relates
to the ensemble median of the predicted timing for the 42 %
of hits. The data exhibit a lot of scatter, but, as underlined
by the 2-d density map, the forecast timing can explain 22 %
of the variance in the observed timing. In order to attribute a
forecast event to an observed event, the events should at least
for one day overlap. This is the case for 49 % of all hits.

4 Discussion and conclusions

Eighteen years of weekly initialized, hydrological ensem-
ble forecasts of daily mean runoff for the Thur catchment
in Switzerland, with a lead time of 32 days, were evaluated.
The focus was on their potential to provide skilful, and thus
valuable, information about the characteristics of streamflow
droughts. The basic assumption of a higher predictability of
low flow than peak flow was confirmed by the verification
results. This was attributed to the fact that long-lived pro-
cesses dominate the recession behavior of the runoff. For
higher flow, in contrast, the quality of the runoff forecasts is
strongly dependent on the correct timing and the amount of

precipitation given by the meteorological forcing model, lim-
iting predictability. The positive effect of good initial states
on the forecast quality is quickly lost in those cases. This was
also confirmed for catchments prone to flash floods, where
the influence of initial conditions was found to be already
lost after just a few hours (Zappa et al., 2011).

It was further found that, for the predictability of stream-
flow droughts, a good representation of the hydrological
model states at forecast initialization is essential. In a low
runoff regime, a good initialization can be beneficial for the
forecast for a much longer range. A possible explanation
would be that the initial state variables contribute on different
time scales to the produced runoff. They therefore determine
the recession behavior, which is crucial for the forecast of
streamflow drought events. Consequently, good initial states
can contribute to forecast quality in a low runoff regime over
a longer range.Shukla and Lettenmaier(2011) as well as
Singla et al.(2012) similarly stress the importance of the ini-
tial conditions for lead times of up to one month, depending
on the climatic conditions. In this study, a comparison of the
observed runoff with the runoff from a reference run indi-
cated the good quality of the used initial states, legitimating
the launch of a subsequent forecast.
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Fig. 11. Observed vs. forecast lead times (median) of streamflow
drought events. The center between the onset and offset of an event
was chosen as the lead time. The background field is the estimated
2-d density (dimensionless). The black dots mark the events that
overlap by at least 1 day with the observed event.

Having ensemble forecasts of the streamflow drought in-
dices duration, severity and magnitude at hand was shown
to provide additional value to end users. Using those fore-
casts results in an economic advantage, mostly independent
of the duration, severity or magnitude of the event. Compared
to daily forecasts, streamflow drought index forecasts are of
reduced complexity, as they no longer contain information
about the timing of the streamflow drought event. Hence, the
forecast system is less penalized when the onset and offset
of streamflow drought events are lagged compared to obser-
vations, which enhances the value of the forecasts. It was
shown that streamflow drought index forecast can reach eco-
nomical values greater 50 % for the more risk-averse users.
A comparison of the forecast timing of drought events with
the observed timing showed that this information gives only a
rough estimate. The forecasts of streamflow drought indices
can provide useful information about the characteristics of an
upcoming event. The timing prediction should, however, be
handled with caution.

The ensemble forecasts evaluated in this study were per-
formed for a relatively large alpine catchment. This was cho-
sen mainly in order to ensure the occurrence of longer peri-
ods of low streamflow, as in larger catchments runoff is not
as strongly affected by small or local precipitation events.
However, we also tested streamflow drought predictions
for smaller alpine catchments. There, only shorter stream-
flow drought events could be evaluated and the value of

these forecasts was found to be lower. Nevertheless, stream-
flow drought index forecasts can still be useful for smaller
catchments.

When analyzing streamflow droughts on time scales of
one month or longer, it is common to apply a smoothing of
the observed or forecast streamflow time series. This should
prevent counting shorter streamflow depletions as individual
drought events, although they belong to the same larger-scale
drought. Such a smoothing is not applied in this study as
also short-term water shortages of one day can have an eco-
nomical impact, independent on whether the single events
are induced by a larger-scale drought event or not. Sectors
prone to short-term streamflow droughts are, e.g., shipping,
hydro-power production or power production in general as
the cooling of many power plants depends on the availability
of river water. Forecast users from those sectors could po-
tentially benefit from forecast of short events, and this study
investigates the potential of a hydrometeorological forecast
system to predict them.

Further refinements could improve the predictability of
streamflow droughts. The parameters of the hydrological
model PREVAH were found by optimizing the predicted
runoff subject to average flow volume. This is certainly not
the best approach for streamflow drought forecasts and might
introduce biases in predictions of the lower flow regime. Our
findings, however, suggest that an operationally used hy-
drological prediction system, which is meant to give warn-
ings primarily of peak flow, can without larger modifications
also be suitable for forecasting streamflow droughts. Biases
due to inadequate model parameterization can be partly ad-
dressed by a simple statistical post-processing, e.g., defin-
ing the streamflow drought threshold for the observed runoff
from an observation climatology and for forecast runoff from
past model predictions. More complex methods could be
considered, but this was beyond the scope of this study.

The downscaling of the meteorological model could be
further improved. In this study, the relatively coarse horizon-
tal grid of the meteorological forcing model was downscaled
to the grid of the hydrological model by a simple bilinear in-
terpolation. A dynamic downscaling involving one or more
nested regional models would be preferable. However, no
such approach was available for the region and the forecast
range of one month considered here.

The operational version of the meteorological forcing
model VarEPS would offer 51 ensemble members compared
to only 5 members from the reforecast. As a low number
of ensemble members introduce low reliability in the fore-
cast (Weigel et al., 2007), the here shown verification scores
reflect the lower limit of what can be achieved with the
full ensemble. Despite the limitations, ensemble forecasts of
streamflow drought indices could provide a valuable basis for
decision-making and be of economic value for forecast users.
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