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Abstract. When inferring models from hydrological data or
calibrating hydrological models, we are interested in the in-
formation content of those data to quantify how much can
potentially be learned from them. In this work we take a per-
spective from (algorithmic) information theory, (A)IT, to dis-
cuss some underlying issues regarding this question. In the
information-theoretical framework, there is a strong link be-
tween information content and data compression. We exploit
this by using data compression performance as a time series
analysis tool and highlight the analogy to information con-
tent, prediction and learning (understanding is compression).
The analysis is performed on time series of a set of catch-
ments.

We discuss both the deeper foundation from algorithmic
information theory, some practical results and the inherent
difficulties in answering the following question: “How much
information is contained in this data set?”.

The conclusion is that the answer to this question can only
be given once the following counter-questions have been an-
swered: (1) information about which unknown quantities?
and (2) what is your current state of knowledge/beliefs about
those quantities?

Quantifying information content of hydrological data is
closely linked to the question of separating aleatoric and
epistemic uncertainty and quantifying maximum possible
model performance, as addressed in the current hydrological
literature. The AIT perspective teaches us that it is impos-
sible to answer this question objectively without specifying
prior beliefs.

1 Introduction

How much information is contained in hydrological time se-
ries? This question is not often explicitly asked, but is ac-
tually underlying many challenges in hydrological model-
ing and monitoring. The information content of hydrological
time series is, for example, relevant for decisions regarding
what to measure and where in order to achieve optimal mon-
itoring network designs (Alfonso et al., 2010a,b; Mishra and
Coulibaly, 2010; Li et al., 2012). Also, in hydrological model
inference and calibration, the above question can be asked in
order to decide how much model complexity is warranted by
the data (Jakeman and Hornberger, 1993; Vrugt et al., 2002;
Schoups et al., 2008; Laio et al., 2010; Beven et al., 2011).

There are, however, some issues in quantifying informa-
tion content of data. Although the question seems straight-
forward, the answer is not. This is partly due to the fact that
the question is not completely specified. The answers found
in data are relative to the question that one asks of the data.
Moreover, the information content of those answers depends
on how much was already known before the answer was re-
ceived. An objective assessment of information content is
therefore only possible when prior knowledge is explicitly
specified.

In this paper, we take a perspective from (algorithmic) in-
formation theory, (A)IT, on quantifying information content
in hydrological data. This puts information content in the
context of data compression. The framework naturally shows
how specification of the question and prior knowledge enter
the problem, and to what degree an objective assessment is
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3172 S. V. Weijs et al.: Data compression to define information content

possible using tools from information theory. The illustrative
link between information content and data compression is
elaborated in practical explorations of compressibility, using
common compression algorithms.

This paper must be seen as a first exploration of the com-
pression framework to define information content in hydro-
logical time series, with the objective of introducing the
analogies and showing how they work in practice. Section2
first gives the detailed background of information theory, al-
gorithmic information theory and the connections between
probability, information and description length. Section3 de-
scribes the compression experiment to determine informa-
tion content of hydrological time series. The results will also
serve as a benchmark in a follow-up study byWeijs et al.
(2013b), where use of a newly developed hydrology-specific
compression algorithm leads to improved compression that is
interpreted as a reduction in information content of data due
to prior knowledge. The inherent subjectivity of information
content is the focus of the discussion in Sect.5. The paper
is concluded by a summary of the findings and an outlook to
future experiments.

2 Information content, patterns and compression
of data

From the framework of information theory (IT), originating
from Shannon(1948), we know that information content of
a message, data point, event or observation can be equated to
surprisal, defined as− logpi , wherepi is the probability as-
signed to eventi before observing it. Subsequently,Shannon
(1948) defined a measure for uncertainty named “entropy”,
which is the expectation of the surprisal of observed out-
comes of a discrete random variableX, with known prob-
ability mass function (PMF)p(X):

H(X) := H (p(X)) :=

n∑
i=1

pi log2
1

pi

, (1)

whereH(X) is the entropy of random variableX, or more
precisely of its probability distributionp(X), measured in
bits; andpi is the probability of observing thei-th out ofn
possible valuesX can take. Uncertainty or Shannon entropy
of a distribution can be interpreted as the missing information
to obtain certainty, or equivalently as the average information
content of the observation of one outcomex of random vari-
ableX if p(X) was known before.

The base of the logarithm determines the unit in which un-
certainty or missing information is measured. In this paper,
we use logarithms to base 2, yielding information measured
in bits. This facilitates the connection to file sizes, which are
measured in the same unit. One bit can also be interpreted as
the information content of the answer to one optimal yes/no
(polar) question. An optimal yes/no question ensures both
answers are a priori equally likely in order to maximize the

uncertainty resolved by the answer. If, for example, a stream-
flow value must be guessed, the most efficient way is to ask a
series of questions of the form “IsQ higher thanx?”, wherex
is the median of the distribution reflecting the current knowl-
edge ofQ, given all previous answers received. Another unit
for information that is commonly used the in hydrological
literature is the “nat” (1 nat≈ 1.44 bits), resulting from use
of the natural logarithm. We do not use it here due to the lack
of a clear interpretation in the data compression context.

We refer the reader toShannon(1948) and Cover and
Thomas(2006) for more background on information theory.
See alsoWeijs et al.(2010a,b) for introduction and interpre-
tations of information measures in the context of hydrologi-
cal prediction and model calibration. We also refer the reader
to Singh and Rajagopal(1987), Singh (1997) and Ruddell
et al.(2013) for more references on applications of informa-
tion theory in the geosciences. In the following, the interpre-
tation of information content as description length is elabo-
rated.

2.1 Information theory: entropy and description length

For the data compression perspective, data can be regarded
as a file stored on a computer, i.e., as a sequence of symbols,
e.g., numbers, that represent events or values that correspond
to quantities in a real or modeled world. Data compression
seeks more efficient descriptions for data stored in a specific
format so they can be stored or transmitted more efficiently,
which can save resources. Of greater interest to hydrology is
the fact that the size of a description can be interpreted as the
information content of data.

In this paper, we focus on lossless compression as opposed
to lossy compression. This means that we look exclusively at
descriptions from which it is possible to reproduce the orig-
inal data exactly. Lossy compression achieves further com-
pression by approximate instead of exact descriptions of the
data set. Lossy compression is mainly used for various media
formats (pictures, video, audio), where these errors are often
beyond our perceptive capabilities. This is analogous to a de-
scription of the observed values to within measurement pre-
cision, which could be a way to account for uncertainties in
observation (Beven and Westerberg, 2011; Westerberg et al.,
2011; Weijs and Van de Giesen, 2011; Weijs et al., 2013a).
In this paper, we use lossless compression of time series af-
ter first coarse-graining them to deal with limited observation
precision and time series length (Palǔs, 1996); see Sect.3.1.

Generally speaking, lossless compression is achieved by
exploiting patterns in a data set. One of those patterns is the
fact that not all symbols or events are equally likely to occur
in the data set. Data compression seeks to represent the most
likely events (e.g., the most frequent characters in a text file
or the most frequent daily rainfall amount in a time series)
with the shortest descriptions (sequences of symbols), yield-
ing the shortest total description length. On the most basic
level of a binary computer, a data point is described by a
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occurrence frequencies codes expected code lengths per value
event I II III A B A I B I A II B II A III B III
CC 0.25 0.5 0.4 00 0 0.5 0.25 1 0.5 0.8 0.4
OO 0.25 0.25 0.05 01 10 0.5 0.5 0.5 0.5 0.1 0.1
GG 0.25 0.125 0.35 10 110 0.5 0.75 0.25 0.375 0.7 1.05
RR 0.25 0.125 0.2 11 111 0.5 0.75 0.25 0.375 0.4 0.6

total H=2 H=1.75 H=1.74 2 2.25 2 1.75 2 2.15
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Fig. 1. Assigning code lengths proportional to minus the log of their probabilities leads to optimal compression. Code B is optimal for
distribution II, but not for the other distributions. The figure on the right shows that in an optimal dictionary, every bit in a word answers
one yes/no question with maximum a priori uncertainty (50 / 50 %), hence giving 1 bit of information. See the text for more explanation.
Distribution III has no optimal code that achieves the entropy bound, because the probabilities are not negative integer powers of 2.

binary code or “word” (a sequence of zeros and ones), and
the word lengths can be measured in bits.

In an efficient description, there is a close connection be-
tween word lengths and the probabilities of the events the
words represent. A compression problem can be viewed as
a prediction problem. As is the case with dividing high pre-
dictive probabilities, also short words are a limited resource
that has to be allocated as efficiently as possible: short words
come at the cost of longer words elsewhere. This follows
from the fact that to be uniquely decodable from a sequence,
such words must be prefix-free; that is, no word can be the
first part (prefix) of another one.

The binary tree in Fig.1 illustrates the connection between
word lengths and probabilities for prefix-free words. When
the variable length binary words for data points are concate-
nated in one file without spaces, they can only be unambigu-
ously deciphered when no word in the dictionary forms the
beginning of another word of the dictionary. In the binary
tree, the prefix-free words must be at the leaves, since any
word defined by an intermediate node is the prefix of all
words on the downstream nodes. The depth of each branch
represents the length of the corresponding word. The cor-
responding optimal probabilities of the events the words of
length li encode are 2−li . A way to interpret these optimal
probabilities is the idea that every branching represents one
yes/no question whose answer is encoded in one bit of the
word. These questions are optimal if they represent 50 / 50 %
uncertainty, leading to the optimal probabilities given in the
figure. If the questions on each branch have less than 1-bit
uncertainty (entropy), the answers give less than 1 bit of in-
formation per bit of word length and hence the efficiency of
the coding is reduced. The scarcity of short words is formal-
ized by the following theorem ofMcMillan (1956), who gen-
eralized the inequality (Eq.2) of Kraft (1949) to all uniquely
decodable codes (including those that do use, e.g., spaces).

∑
i

A−li ≤ 1, (2)

in which A is the alphabet size (2 in the binary case, where
the alphabet contains only the symbols 0 and 1) andli is the
length of the word assigned to eventi. In Fig. 1, the four 2-
bit binary numbers of dictionary “A” are prefix-free, and can
be used to uniquely describe the sequence of colors in Fig.1.
For dictionary “B”, the use of a word of length 1 invalidates
two words of 2-bit length and makes it necessary to use two
words of length 3. We can verify that the word lengths of B
sharply satisfy Eq. (2): usingA = 2, we find 1·2−1

+1·2−2
+

2 · 2−3
= 1 ≤ 1.

In Fig. 1, it is illustrated how the total description length
of the color sequence can be reduced using dictionary B,
which assigns words of varying length depending on oc-
currence frequency. As shown byShannon(1948), if every
value could be represented with one word, allowing for non-
integer word lengths, the optimal word length for an eventi

is li = log(1/pi) . The minimum average word length is the
expectation of this word length over all events,H bits per
symbol (bps), whereH can be recognized as the entropy of
the distribution (Shannon, 1948; Cover and Thomas, 2006),
which is a lower bound for the average description length per
data point.

H (p) = Ep {l} =

n∑
i=1

pi log2
1

pi

(3)

In contrast to probabilitiespi , which can be chosen freely,
the word lengthsli are limited to an integer number of bits.
This results in some extra description length (overhead). The
rounded coding would be optimal for a probability distribu-
tion of events,

qi =
1

2li
∀i, (4)

such as frequency II in Fig.1. In Eq. (4), qi is thei-th element
of the PMFq for which the dictionary would be optimal,
and li is the word length assigned to eventi. The overhead
in the case wherep 6= q is given by the relative entropy or
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Fig. 2. The missing value in the flow time series can be guessed from the surrounding values (a guess would for example be the gray
histogram). This will usually lead to a better guess than one purely based on the occurrence frequencies over the whole 40 yr data set (dark
histogram) alone. The missing value therefore contains less information than when assumed independent.

Kullback–Leibler divergence,DKL , (Kullback and Leibler,
1951) from p to q,

DKL (p||q) =

n∑
i=1

pi log2
pi

qi

. (5)

This divergence measure between two probability distribu-
tions measures the extra uncertainty introduced by approxi-
matingp with q, or the extra description length per symbol
when describing a sequence with symbol frequenciesp when
words are optimal forq. This yields a total average word
length of

H(p) + DKL (p||q) bps. (6)

This extra description length is analogous to the reliabil-
ity term in the decomposition of an information-theoretical
score for forecast quality presented inWeijs et al.(2010b),
where the extra overhead to store the dictionary can be inter-
preted as a complexity penalization; see Appendix A for an
elaboration of this connection.

For probability distributions that do not coincide with inte-
ger ideal word lengths, the algorithm known as Huffman cod-
ing (Huffman, 1952) was proven to be optimal for value by
value (one word per observation) compression. It constructs
dictionaries with an expected word length closest to the en-
tropy bound and is applied in popular compressed picture and
music formats like JPEG, TIFF, MP3 and WMA. For a good
explanation of the workings of this algorithm, the reader is
referred toCover and Thomas(2006). In Fig. 1, dictionary
A is optimal for probability distribution I, and dictionary B
is optimal for distribution II; see tree diagram. Both these
dictionaries achieve the entropy bound. Dictionary B is also
an optimal Huffman code for distribution III (last column in
Fig. 1). Although the expected word length is now more than
the entropy, it is impossible to find a shorter code. The over-
head is equal to the Kullback–Leibler divergence from the

true distribution (III) to the distribution for which the code
would be optimal.

DKL (III ||II) = 0.4106 (7)

If the requirement that the codes are value by value is
relaxed, blocks of values can be grouped together to ap-
proach an ideal probability distribution. When the series are
long enough, entropy coding methods such as Shannon and
Huffman coding using blocks can get arbitrarily close to the
entropy bound (Cover and Thomas, 2006). This bound is
also closely approached by arithmetic coding (Rissanen and
Langdon, 1979), where the entire time series is coded as one
single number. Range coding (Martin, 1979) is mathemati-
cally equivalent to arithmetic coding. Both have less over-
head than Huffman coding.

To conclude, all the compression methods discussed so far
make use of the marginal PMF of the variable, without taking
temporal patterns into account. They are called entropy cod-
ing methods because they approach the entropy of the PMF,
which is the lower bound for the average description length
per data point in this case.

2.2 Dependency

If the values in a time series are not independent, however,
the dependencies can be used to achieve even better com-
pression. This high compression results from the fact that,
for dependent values, the joint entropy is lower than the
sum of entropies of indi dual values. In other words, aver-
age uncertainty per value decreases when all the other values
in the series are known because we can recognize patterns
in the series that therefore contain information about them-
selves. Hydrological time series often show strong internal
depen encies, leading to bett r compression and better predic-
tion. Consider, for example, the case where one is asked to
assign probabilities (or code lengths) to possible streamflow

Hydrol. Earth Syst. Sci., 17, 3171–3187, 2013 www.hydrol-earth-syst-sci.net/17/3171/2013/
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values on 12 May 1973. In one case, the information offered
is the dark-colored climatological histogram (Fig.2 on the
right), and in the second case, the time series is available (the
left of the same figure). Obviously, the e pected compression
and expected return for the bets are better in the second case,
which shows the value of exploiting dependencies in the data
set. The surprise (− logPtrue value) upon hearing the true value
is 3.72 bits in the case where the guessed distribution was as-
sumed, and 4.96 bits when using the climate as prior. These
surprises are equivalent to the divergence scores proposed in
Weijs et al.(2010b).

Another example is the omitted characters that the care-
ful reader may (not) have found in the previous paragraph.
There are 49 different characters used, but the entropy of the
text is 4.3 bits, far less than log (49)= 5.6, because of, for
example, the relatively high frequencies of the space (16 %)
and the letter “e” (13 %). Although the entropy is more than
4 bits, the actual uncertainty about the missing letters is far
less for most readers because the structure in the text is simi-
lar to the English language, and that structure can be used to
predict the missing characters. On the one hand, this means
that the English language is compressible and therefore fairly
inefficient. On the other hand, this redundancy leads to more
robustness in the communication because even with many ty-
pographical errors, the meaning is still clear. If English were
100 % efficient, any error would obfuscate the meaning.

In general, better prediction, i.e., less surprise, gives better
results in compression. In water resources management and
hydrology we are generally concerned with predicting one
series of values from other series of values, such as predict-
ing streamflow (Q) from precipitation (P ) and evaporation
(E). In terms of data compression, knowledge ofP andE

would help compressingQ, but would also be needed for
decompression. WhenP , E andQ would be compressed to-
gether in one file, the gain compared to compressing the files
individually is related to what a hydrological model learns
from the relation between these variables (Cilibrasi, 2007).
Similarly, we can try to compress hydrological time series
individually to investigate how much information those com-
pressible series really contain for hydrological modeling.

2.3 Algorithmic information theory

Algorithmic information theory (AIT) was founded as a
field by the appearance of three independent publications
(Solomonoff, 1964; Chaitin, 1966; Kolmogorov, 1968). The
theory looks at data through the lens of algorithms that can
produce those data. The basic idea is that information con-
tent of an object, like a data set, is related to the shortest
way to describe it. The use of algorithms instead of code
words for the description could be compared to switching
from a language with only efficiently assigned nouns to one
with grammar. Hence, AIT is a framework to give alterna-
tive estimations of information content, taking more com-
plex dependencies into account. Although description length

generally depends on the language used, AIT uses the con-
struct of a universal computer introduced byTuring (1937),
the universal Turing machine (UTM), to show that this de-
pendence takes the form of an additive constant, which be-
comes relatively less important when more data are available.
Chaitin(1975) offered some refinements in the definitions of
programs and showed a very complete analogy with Shan-
non’s information theory, including, e.g., the relations be-
tween conditional entropy and conditional program lengths.

Using the thesis that any computable sequence can be
computed by a UTM and that program lengths are univer-
sal up to an additive constant (the length of the program that
tells one UTM how to simulate another),Kolmogorov(1968)
gave very intuitive definitions of complexity and random-
ness; see alsoLi and Vitanyi (2008) for more background.
Kolmogorov defined the complexity of a certain string (i.e.,
data set, series of numbers) as the length of the minimum
computer program that can produce that output on a UTM
and then halt. Complexity or information content of a data set
is thus related to how complicated it is to describe. If there
are clear patterns in the data set, then it can be described
by a program that is shorter than the data set itself; other-
wise, they are defined as random. This is analogous to the
fact that a “law” of nature cannot really be called a law if its
statement is more elaborate than the phenomenon that it ex-
plains; cf.Feynman(1967, p. 171): “When you get it right.
it is obvious that it is right – at least if you have any expe-
rience – because usually what happens is that more comes
out than goes in.”. A problem with Kolmogorov complexity
is that it is incomputable, but can only be approached from
above. This is related to the unsolvability of the halting prob-
lem (Turing, 1937): it is always possible that there exists a
shorter program that is still running (possibly in an infinite
loop) that might eventually produce the output and then halt.
A paradox that would arise if Kolmogorov complexity were
computable is the following definition known as the Berry
paradox: “the smallest positive integer not definable in under
eleven words”.

AIT can be seen as a theory underlying inference prob-
lems. Data mining techniques can be viewed as practi-
cal techniques that approximate idealized AIT methods
such as Solomonoff’s formal theory for inductive inference
(Solomonoff, 1964), which can be seen as a golden but in-
computable standard for prediction from data. AIT gives the
bounds on what is possible and impossible and could give
insights into assumptions underlying commonly used tech-
niques. Any practical technique for inference of laws from
data must make such assumptions to be computable, and AIT
could serve to make explicit what these assumptions are.

2.4 Compression as practical approach to AIT

A shortcut approximation to measuring information content
and complexity is to use a language that is sufficiently flex-
ible to describe any sequence, while still exploiting most of

www.hydrol-earth-syst-sci.net/17/3171/2013/ Hydrol. Earth Syst. Sci., 17, 3171–3187, 2013
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commonly found patterns. While this approach cannot dis-
cover all patterns, like a Turing complete description lan-
guage can, it will offer an upper-bound estimation, without
having the problems of incomputability. Compressed files
are such a language that use a decompression algorithm to
recreate the object in its original, less efficient language. The
compressed files can also be seen a programs for a computer,
which is simulated by the decompression algorithm on an-
other computer. Since the language is not Turing complete
(e.g., no recursion is allowed), it is less powerful than the
original computer. The constant additional description length
for some recursive patterns is replaced by one that grows in-
definitely with growing numbers of data. As an example, one
can think of using a common compressed image format to
store an ultra-high-resolution image of a fractal generated
by a simple program. Although the algorithmic complexity
with respect to the Turing complete executable fractal pro-
gram language is limited by the size of the fractal program
executable and its settings, the losslessly compressed output
image will continue to grow with increasing resolution.

Notwithstanding these limitations, the compression frame-
work can serve to give upper-bound estimates for informa-
tion content of hydrological time series, given the specifica-
tion of the context. We now present a practical experiment
employing this method, and will subsequently use the results
to discuss some important issues surrounding the concept of
information content.

3 Compression experiment setup

In this experiment, a number of compression algorithms are
applied to different data sets to obtain an indication of the
amount of information they contain. Most compression algo-
rithms use entropy-based coding methods such as introduced
in the previous section, often enhanced by methods that try
to discover dependencies and patterns in data sets, such as
autocorrelation and periodicity.

The data compression perspective indicates that formulat-
ing a rainfall–runoff model has an analogy with compress-
ing rainfall–runoff data. A short description of the data set
will contain a good model about it, whose predictive power
outperforms the description length of the model. However,
not all patterns found in the data set should be attributed to
the rainfall–runoff process. For example, a series of rainfall
values is highly compressible due to the many zeros (a far
from uniform distribution), the autocorrelation and the sea-
sonality. These dependencies are in the rainfall alone and
can tell us nothing about the relation between rainfall and
runoff. The amount of information that the rainfall contains
for the hydrological model is thus less than the number of
data points multiplied by the number of bits to store rainfall
at the desired precision. This amount is important because
it determines the model complexity that is warranted by the
data (Schoups et al., 2008). In fact, we are interested in the

Kolmogorov complexity of the data, but this is incomputable.
A crude practical approximation of the complexity is the file
size after compression by some commonly available com-
pression algorithms. This provides an upper bound for the
information in the data.

Actually, also the code length of the decompression al-
gorithm should be counted towards this file size (cf. a self-
extracting archive). In the present exploratory example the
inclusion of the algorithmic complexity of the decompres-
sion algorithm is not so relevant since the algorithm is gen-
eral purpose and not biased towards hydrological data. This
means that any specific pattern still needs to be stored in the
compressed file. The compression algorithms will be mainly
used to explore the relative differences in information con-
tent between different signals, since absolute determination
of information content remains elusive.

3.1 Quantization

Due to the limited amount of data, quantization is necessary
to make meaningful estimates of the representative frequency
distributions, which are needed to calculate the amount of in-
formation and compression (Palǔs, 1996). This is analogous
to the maximum number of bins permitted to draw a rep-
resentative histogram. As will be argued in the discussion,
different quantizations imply different questions for which
the information content of the answers is analyzed. All series
were first quantized to 8-bit precision. Eight-bit size was cho-
sen because the commonly available compression algorithms
used in this study operate at the byte (8 bits) level: they as-
sume that each byte represents one value and would not be
able to detect dependencies and nonuniform distributions if
a different number of bits per value is used. Furthermore,
the lengths of the time series are sufficient to make a 256-
bin histogram roughly representative. The quantization used
a simple linear scheme (Eq.8). Using this scheme, the series
were split into 28 = 256 equal intervals and converted into
a series of 8-bit unsigned integers,x integer (integers ranging
from 0 to 255 that can be stored in 8 binary digits).

xinteger=c0.5+ 255
x − min(x)

max(x) − min(x)
, (8)

where min(x) and max(x) are the minimum and maximum
values occurring in time seriesx. These can be converted
back to real numbers using

xquantized=

(
max(x) − min(x)

255

)
x integer+ min(x). (9)

Because of the limited precision achievable with 8 bits,
xquantized6= x. This leads to rounding errors, which can be
quantified as a signal-to-noise ratio (SNR). The SNR is the
ratio of the variance of the original signal to the variance of
the rounding errors.

SNR=

1
n

∑n
t=1 (xt − x̄)2

1
n

∑n
t=1

(
xt − xt,quantized

)2
(10)
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Because the SNR can have a large range, it is usually mea-
sured in the form of a logarithm, which is expressed in the
unit decibel: SNRdB = 10log10(SNR).

To investigate the influence of quantization on the results,
we also performed a quantization with 6-bit precision for one
experiment. The 0–255 range integers were mapped to 0–
63 range integers and stored as 8-bit integers with the first
2 bits always set to zero to allow for algorithms working at
the byte level.

3.2 Compression algorithms

The algorithms that were used are a selection of commonly
available compression programs and formats. Below are very
short descriptions of the main principles and main features of
each of the algorithms used and some references for more de-
tailed descriptions. The descriptions are sufficient to under-
stand the most significant pattern in the results. It is beyond
the scope of this paper to describe the algorithms in detail.
Links to executables and source codes of the used algorithms
can be found in the Supplement.

– ARJ: Uses LZ77 (see LZMA) with sliding window and
Huffman coding.

– WAVPACK: Is a lossless compression algorithm for au-
dio files.

– JPG: The Joint Photography Experts Group created the
JPEG standard, which includes a range of lossless and
lossy compression techniques. Here the lossless coding
is used, which uses a Fourier-like type of transform (dis-
crete cosine transform) followed by Huffman coding of
the errors.

– HDF RLE: HDF (hierarchical data format) is a data for-
mat for scientific data of any form, including pictures,
time series and metadata. It can use several compression
algorithms, including run-length encoding (RLE). RLE
replaces sequences of reoccurring data with the value
and the number of repetitions. It would therefore be use-
ful to compress pictures with large uniform surfaces and
rainfall series with long dry periods.

– PPMD: A variant of prediction by partial matching,
implemented in the 7Zip program. It uses a statistical
model for predicting each value from the preceding val-
ues using a variable sliding window. Subsequently the
errors are coded using Huffman coding.

– LZMA: The Lempel–Ziv–Markov-chain algorithm
combines the Lempel–Ziv algorithm, LZ77 (Ziv and
Lempel, 1977), with a Markov-chain model. LZ77 uses
a sliding window to look for reoccurring sequences,
which are coded with references to the previous loca-
tion where the sequence occurred. The method is fol-
lowed by range coding.

– BZIP2: Uses theBurrows and Wheeler(1994) block-
sorting algorithm in combination with Huffman coding.

– PNG: Portable Network Graphics (PNG) uses a filter
based on prediction of one pixel from the preceding
pixels. Afterward, the prediction errors are compressed
by the algorithm “deflate” that uses dictionary coding
(matching repeating sequences) followed by Huffman
coding.

– TIFF: A container image format that can use several
compression algorithms. In this case PackBits compres-
sion was used, which is a form of run-length encoding.

3.3 Experiment A: comparison of generated and
hydrological time series

In the first experiment, the algorithms are tested on a hydro-
logical data set from Leaf River (MS, USA) near Collins,
MS, at an elevation of 60 m above sea level. The upstream
basin has an area of 1924×106 m2 and is located in a humid
subtropical climate (K̈oppen climate class Cfa). The annual
runoff ratio is 0.42. The data consist of time series for rainfall
“potential evapotranspiration”, which is better described as
apparent potential evaporation (Brutsaert, 2005), and stream-
flow from October 1948 to October 1988. The maximum
recorded daily rainfall in this period was 222 mm. The dis-
charge ranged from 0.044 m3 s−1 to a peak of 1444 m3 s−1;
see Fig.2 for an example 2-month period and histogram. See,
e.g.,Vrugt et al.(2003) for a description and more references
for this data set. As a reference, various artificially generated
series were used; see Table1. The generated series consist of
50 000 values, while the time series of the Leaf River data set
contains 14 610 values (40 yr of daily values). All are quan-
tized directly with the linear scheme using Eq. (8).

3.4 Experiment B: compression with a hydrological
model

The second experiment is a first exploration of jointly com-
pressing time series. In the previous experiment single time
series were compressed to obtain an indication of their in-
formation content. Given the connection between modeling
and data compression, a hydrological model should in prin-
ciple be able to compress hydrological data. This can be use-
ful to identify good models in information-theoretical terms,
but can also be useful for actual compression of hydrological
data. Although a more comprehensive experiment is left for
future work, we perform a first test of estimating the perfor-
mance of hydrological models using data compression tools.

The hydrological model HYMOD was used to predict dis-
charge from rainfall for the Leaf River data set; see, e.g.,
Vrugt et al.(2009) for a description of model and data. Sub-
sequently, the modeled discharges were quantized using the
same scheme as the observed discharges in order to make
resulting information measures comparable, i.e., assessed
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Table 1.Signals used in experiment A. For implementation details, see the Supplement.

Signal Description

constant contains only one value repeatedly
linear contains a slowly linearly increasing trend

uniform white the output from the Matlab® function “rand”, uniform white noise

Gaussian white the output from the Matlab® function “randn”, normally distributed white noise
sin 1 single sinusoidal wave (with a wavelength spanning all 50 000 values)
sin 100 repetition of 100 sinusoidal waves (with a wavelength spanning 1/100 of 50 000 values)
LeafP daily area-averaged rainfall series from the catchment of Leaf River (1948–1988)
LeafQ corresponding daily series of observed streamflow in Leaf River

relative to the same question. An error signal was defined
by subtracting the modeled (Qmod) from the observed (Q)
quantized discharge. This gives a signal that can range from
−255 to +255, but because the errors are sufficiently small,
ranging from−55 to +128, this allows for 8-bit coding. In
order to losslessly reproduceQ, we could storeP , a rainfall–
runoff model and the error time series needed to correct the
modeledQ to the original measured time series. This way
of storing Q and P leads to compression if the model is
sufficiently parsimonious and the errors have a small range
and spread (entropy), enabling compact storage. Since the
model also takes some description space, it is a requirement
for compression that the error series can be more compactly
described than the original time series ofQ. In this experi-
ment we test whether that is the case for the HYMOD model
applied to Leaf River. The reduction in file size could then be
interpreted as the portion of the uncertainty inQ explained
by P .

3.5 Experiment C: compression of hydrological time
series from the MOPEX data set

In a third experiment, we looked at the spatial distribution of
compressibility for daily streamflow and area-averaged pre-
cipitation data in the 431 river basins across the continental
USA, as contained in the MOPEX data set, available athttp://
www.nws.noaa.gov/oh/mopex/modatasets.htm. The basins
span a wide range of climates and characteristics, as can be
seen from the summary of Table2. For these experiments,
the streamflow values are log-transformed before quantiza-
tion to reflect the heteroscedastic uncertainty in the measure-
ments. This results in a quantized signal with a moderate in-
formation loss, which retains a relatively high information
content, reflected in an entropy close to the maximum possi-
ble 8 bits. Quantifying the information loss compared to the
original signal remains elusive, since these signals are typi-
cally quantized and stored at much higher precision than the
measurement precision warrants. Moreover, the series are too
short to have representative histograms at the original preci-
sion. Missing values, which were infrequent, were removed
from the series. Although this can have some impact on the

ability to exploit autocorrelation and periodicity, the effect is
deemed to be small and has a smaller influence than other
strategies such as replacing the missing values by zero or a
specific marker. We repeated the experiments for the time se-
ries quantized at 6-bit precision. Results of this compression
experiment are presented in Sect.4.3.

4 Results of the compression experiments

This section shows results from the compression analysis
for single time series. Also, an example of compression of
discharge, using a hydrological model in combination with
knowledge of rainfall, is shown.

4.1 Results A: generated data

As expected, the file sizes after quantization are exactly equal
to the number of values in the series, as each value is encoded
by 1 byte (8 bits), allowing for 28 = 256 different values, and
stored in binary raw format. From the occurrence frequen-
cies of the values, the entropy of their distribution was cal-
culated. Normalized with the maximum entropy of 8 bits, the
fractions in row 3 of Table3 give an indication of the entropy
bound for the ratio of compression achievable by entropy en-
coding schemes such as Huffman coding, which do not use
temporal dependencies.

The signal-to-noise ratios in row 4 give an indication of the
amount of data corruption that is caused by the quantization.
As a reference, the uncompressed formats BMP (bitmap),
WAV (waveform audio file format), and uncompressed HDF
are included, indicating that the file size of those formats,
relative to the raw data, does not depend on file contents, but
only on the series length, because they have a fixed overhead
that is relatively smaller for larger files.

The results for the various lossless compression algo-
rithms are shown in rows 7–17. The numbers are the percent-
age of the file size after compression, relative to the original
file size (a lower percentage indicates better compression).
The best compression ratios per time series are highlighted.
From the result it becomes clear that the constant, linear and
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Table 2.Some statistics of the annual MOPEX basin characteristics show a wide range of behavior.

Statistic Min. Max. Median Mean Std.

area (109 m2) .067 10.3 2.19 3.02 2.52
aridity index (P/PET) 0.22 4.32 1.17 1.21 0.55
runoff ratio 0.02 0.76 0.35 0.34 0.14
ET/PET 0.21 1.06 0.76 0.72 0.16

Climates (K̈oppen) BSk, BWk, Cfa/b, Csa/b, Dfa/b/c, Dsb, Dwa

Table 3.The performance, as percentage of the original file size, of well-known compression algorithms on various time series (see Table1).
The best results per signal are highlighted in italic.

Data set Constant Linear Uniform white Gaussian white Sin 1 Sin 100 LeafQ LeafP

file size 50 000 50 000 50 000 50 000 50 000 50 000 14 610 14 610
H

logN
0.0 99.9 99.9 86.3 96.0 92.7 42.1 31.0

SNR NaN 255.0 255.6 108.0 307.4 317.8 42.6 39.9

Uncompressed formats

BMP 102.2 102.2 102.2 102.2 102.2 102.2 407.4 407.4
WAV 100.1 100.1 100.1 100.1 100.1 100.1 100.3 100.3
HDF NONE 100.7 100.7 100.7 100.7 100.7 100.7 102.3 102.3

Lossless compression algorithms

JPGLS 12.6 12.8 110.6 94.7 12.9 33.3 33.7 49.9
HDF RLE 2.3 2.7 101.5 101.5 3.2 92.3 202.3 202.3
WAVPACK 0.2 1.9 103.0 87.5 2.9 25.6 38.0 66.2
ARJ 0.3 1.0 100.3 88.0 3.1 1.9 33.7 40.0
PPMD 0.3 2.1 102.4 89.7 3.6 1.4 27.7 36.4
LZMA 0.4 0.9 101.6 88.1 1.9 1.2 31.0 37.8
BZIP2 0.3 1.8 100.7 90.7 3.0 2.3 29.8 40.5
PNG 0.3 0.8 100.4 93.5 1.5 0.8 40.2 50.0
GIF 2.3 15.7 138.9 124.5 17.3 32.0 38.8 45.9
TIFF 2.0 2.4 101.2 101.2 2.9 91.2 201.5 201.5

periodic signals can be compressed to a large extent. Most
algorithms achieve this high compression, although some
have more overhead than others. The uniform white noise
is theoretically incompressible, and indeed none of the al-
gorithms appears to know a clever way around this. The
Gaussian white noise is also completely random in time, but
does not have a uniform distribution. Therefore the theoreti-
cal limit for compression is the entropy bound of 86.3 %. The
WAVPACK algorithm gets closest to the theoretical limit, but
also several file archiving algorithms (ARJ, PPMD, LZMA
BZIP2) approach that limit very closely. This is because they
all use a form of entropy coding as a back end (Huffman and
range coding). Note that the compression of this nonuniform
white noise signal is equivalent to the difference in uncer-
tainty or information gain due to knowledge of the occur-
rence frequencies of all values (the climate), compared to a

naive uniform probability estimate; cf. the first two bars in
Fig. 1 ofWeijs et al.(2010a).

The results for the hydrological series firstly show that
the streamflow series is better compressible than the precip-
itation series. This is interesting because the rainfall series
has the lower entropy. The higher predictability and com-
pressibility of the linearly quantized streamflow results from
its strong autocorrelation. Furthermore, it can be seen that,
for the rainfall series, the entropy bound is not achieved by
any of the algorithms, presumably because of the overhead
caused by the occurrence of 0 rainfall more than 50 percent
of the time, while the code words cannot be shorter than 1 bit;
see Eqs. (4) and (6). Further structure-like autocorrelation
and seasonality cannot be used sufficiently to compensate
for this overhead. In contrast to this, the streamflow series
can be compressed to well below the entropy bound (27.7 %
vs. 42.1 %) because of the strong autocorrelation between the
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data. These dependencies are best exploited by the PPMD al-
gorithm, which uses a local prediction model that apparently
can predict the correlated values quite accurately. Many of
the algorithms cross the entropy bound, indicating that they
use at least part of the temporal dependencies in the data set.

4.2 Results B: compression with a hydrological model

As a first attempt to estimate the information thatP delivers
aboutQ through a hydrological model, we analyzed the time
series ofQ andP for leaf river, along with the modeledQ
(Qmod) and its errors (Qerr). In Table4, the entropies of the
signals are shown. The second row shows the resulting file
size as percentage of the original file size for the best com-
pression algorithm for each series (PPMD or LZMA). The
compressed size of the errors is an indication of the informa-
tion content of the errors, i.e., the missing information about
Q when Qmod is available (sinceQ = Qmod+ Qerr). The
compressed error size can be interpreted as the predictive un-
certainty, assuming an additive error model, no biases and an
error model using temporal dependencies to reduce predic-
tive uncertainty. In that sense, it is more an indication of po-
tential model performance, which can only be reached when
using the model in combination with these error-correcting
schemes.

The table also shows the statistics for the series where
the order of the values was randomly permuted (Qperm and
Q

perm
err ). As expected, this does not change the entropy, be-

cause that depends only on the histograms of the series. In
contrast, the compressibility of the signals is significantly
affected, indicating that the compression algorithms made
use of the temporal dependence for the non-permuted sig-
nals. The joint distribution of the modeled and observed dis-
charges was also used to calculate the conditional entropy
H(Q|Qmod), which should give an indication of potential
minimum achievable predictive uncertainty, given the model
and a not-necessarily-additive error model. It must be noted,
however, that this conditional entropy is probably under-
estimated compared to what is representative for a longer
time series, as it is based on a joint distribution with 2552

probabilities estimated from 14 610 value pairs. This is the
cost of estimating dependency without limiting it to a spe-
cific functional form. The estimation of mutual information
needs more data than Pearson correlation because the lat-
ter is limited to a linear setting and looks at variance rather
than uncertainty. In the description length, the underestima-
tion of H(Q|Qmod) is compensated by the fact that the de-
pendency must be stored by the entire joint distribution. If
joint distribution ofQ andQmod is known a priori or enough
data are available to make its description length negligible,
H(Q|Qmod) gives a theoretical limit of compressingQ with
knowledge ofP and the model, while not making use of tem-
poral dependencies inQ unexplained by the model.

A somewhat unexpected result is that the errors seem more
difficult to compress (31.5 %) than the observed discharge
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Fig. 3. Spatial distribution of entropy for quantized streamflow and
rainfall shows the drier climate in the central part of the USA.

itself (27.7 %) even though the entropy is lower. Apparently
the reduced temporal dependence in the errors (lag-1 au-
tocorrelation coefficientρ = 0.60), compared to that of the
discharge (ρ = 0.89), offsets the gain in compression due to
the lower entropy of the errors. Possibly, the temporal de-
pendence in the errors becomes too complex to be detected
by the compression algorithms. Further research is needed
to determine the exact cause of this result, which should be
consistent with the theoretical idea that the information in
P should reduce uncertainty inQ. The Nash–Sutcliffe ef-
ficiency (NSE) of the model over the mean is 0.82, while
the NSE over the persistence forecast (Qmod(t) = Qt−1) is
0.18 (seeSchaefli and Gupta, 2007), indicating a reasonable
model performance. Furthermore, the difference between the
conditional entropy and the entropy of the errors could in-
dicate that an additive error model is not the most efficient
way of coding and consequently not the most efficient tool
for probabilistic prediction. The use of, for example, het-
eroscedastic probabilistic forecasting models (e.g.,Pianosi
and Soncini-Sessa, 2009) for compression is left for future
work.

4.3 Results C: MOPEX data set

For the time series of the quantized scaled log streamflow and
scaled quantized rainfall of the MOPEX basins, from now
on simply referred to as streamflow (Q) and rainfall (P ) for
brevity, the compressibility and entropy show clear spatial
patterns. For most of the streamflow time series, the entropy
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Table 4. Information-theoretical and variance statistics and compression results (remaining file size %) for rainfall–runoff modeling.

Statistic P Q Qmod Qerr Q|Qmod Qperm Q
perm
err

entropy (% of 8 bits) 31.0 42.1 44.9 38.9 26.4 42.1 38.9
best compression (%) 36.4 27.7 25.8 31.5 N.A. 45.4 44.1
std. dev. (range = 256) 11.7 11.6 10.4 4.95 N.A. 11.6 4.95
autocorrelationρ 0.15 0.89 0.95 0.60 N.A. < 0.01 < 0.01
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Fig. 4. Spatial distribution the compression size normalized by en-
tropy for streamflow and rainfall; this gives an indication of the
amount of temporal structure found in the different basins. The
streamflow is better temporally compressible due to the strong au-
tocorrelation structure, but not enough to compensate for the higher
entropy.

is close to 8 bits, indicating that the frequency distribution of
the preprocessed streamflow does not diverge much from a
uniform distribution. An exception is the basins in the central
part of the USA, which show lower entropy time series due
to high peaks and relatively long, low base flow periods. Also
for the rainfall, entropy values are lower in this region due to
longer dry spells; see Fig.3.

Compression beyond the entropy bound can be achieved
by using temporal patterns. This is visible in Fig.4, where
the compression ratio of the best-performing algorithm is vi-
sualized relative to the entropy of the signals. The temporal
compressibility is much better for streamflow. This is likely
the result of autocorrelation due to low-pass-filter behavior
of catchments, which are sufficiently large to dampen daily
fluctuations in rainfall. Different algorithms are specialized
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Fig. 5. Spatial distribution of the best-performing algorithms for
streamflow and rainfall. This can give an indication as to what type
of structure is found in the data. Especially for rainfall, the best-
performing algorithm is linked to the number of dry days per year.
See also Fig.6.

in describing different kinds of patterns, so the map of best-
performing algorithms (Fig.5) can be used as an indication
for which types of patterns are found in a data set. In this
paper, we refrain from more elaborate interpretations of the
results in connection with hydrological characteristics, and
focus instead of properly understanding the technicalities and
inherent difficulties in estimation of information content. The
full results of the compression experiment are available in
the Supplement to allow for further research into hydrologi-
cal interpretations. In Fig.6, two influences on compression
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rate are shown. Firstly, due to temporal dependencies in the
streamflow, the conditional entropy given the previous value
H(Qt |Qt−1), known as the entropy rateH ′(Q), is much
lower than the entropy itself. This could theoretically lead to
a compression describing the signal withH ′(Q) bits per time
step. However, because of the relatively short length of the
time series compared to the complexity of the model that de-
scribes it (a two-dimensional 256-bin histogram), this com-
pression is not reached in practice, because the model needs
to be stored too. This is a natural way of accounting for model
complexity in the context of estimating information content
of data.

The compression performance was also tested for time se-
ries at a coarser, 6-bit quantization. The compression per-
centages were then defined as the compressed file size di-
vided by the original file size with 6 bits per sample (=

0.75N bytes, whereN is the length of the time series).
Like for the 8-bit experiment, compression performance was
compared to entropy. Figure7 shows how the results for 6
and 8 bits compare when appropriately normalized. ForP , a
coarser quantization leads to higher compressibility due to a
lower normalized entropy (non-uniformness of the distribu-
tion), which is only partly offset by the increased overhead
caused by an higher percentage of days considered as dry (the
threshold rainfall for a wet day goes up). ForQ, the normal-
ized entropy also decreases and the resulting improvement in
compression rate is enhanced by the stronger temporal de-
pendence, which is now less disturbed by small fluctuations.

In Table5, correlations were calculated between the 6- and
8-bit quantization-based results. The change in results indi-
cates that information content is to some degree subjective,
but the relatively high correlations show that the tendencies
in results are only moderately affected in this case. We will
discuss the reasons behind subjectivity in more detail in the
next section.

5 Discussion

The data compression results give an indication of the in-
formation content or complexity of the data sets. Eventually
these may be linked to climate and basin characteristics and
become a tool for hydrological time series analysis and infer-
ence. One possibility is the use of the temporal dependency
indicators plotted in Fig.4 as a correction factor for the num-
ber of data points, for use in significance tests or model com-
plexity control measures such as the Akaike information cri-
terion (Akaike, 1974), when dependence is not accounted for
in the likelihood by using, e.g., a Markov-chain model (Katz,
1981; Cahill, 2003). This would facilitate choosing a model
with appropriate complexity for the data. Additionally, esti-
mates of the information content in measured data sets may
be used to optimize the collection of information in, e.g.,
sensor networks. Although information theory may eventu-
ally provide a solid foundation for hydrological modeling,

Table 5. Correlation coefficients (ρ) and Spearman rank correla-
tions (rs) between various results for 6- and 8-bit quantization for
precipitation (P ) and streamflow (Q). Correlations are shown for
entropy (H ), best compression rate (C), temporal structure (C/H )
and the compression rates for the individual algorithms. Correla-
tions are generally high, showing that tendencies in information
content and temporal structure are similar for the different questions
the 6- and 8-bit quantizations represent.

Statistic ρ,P rs,P ρ,Q rs,Q

H 0.973 0.971 0.935 0.952
C 0.973 0.966 0.956 0.978
C/H 0.894 0.814 0.971 0.971
WAVPACK 0.995 0.995 0.992 0.996
ARJ 0.975 0.976 0.983 0.993
PPMD 0.958 0.959 0.917 0.949
LZMA 0.976 0.975 0.924 0.943
BZIP2 0.966 0.959 0.930 0.972
PNG 0.978 0.977 0.967 0.983
GIF 0.977 0.974 0.983 0.993
TIFF 0.974 0.970 0.988 0.989

it is also important to first consider the limitations of such
approaches. The patterns visible in the compression results
can probably be given further hydrological interpretations,
but there are several subtleties that should be considered be-
fore doing so. We therefore focus the discussion on some
inherent issues in quantifying the information content, which
make the results subjective and not straightforward to ana-
lyze.

5.1 How much information is contained in this data set?

From the presented theoretical background, results and anal-
ysis it can be concluded that although information theory
can quantify information content, the outcome depends on
a number of subjective choices. These subjective choices in-
clude the quantization, auxiliary data and prior knowledge
used.

The quantization can be linked to what question the re-
quested information answers. When quantizing streamflow
into 256 equally sized classes, the question that is implicitly
posed is “In which of these equally spaced intervals does the
streamflow fall?”. When only 64 classes are used, less infor-
mation is requested from the data, and hence less informa-
tion will be contained in the answer. Also, the log-transform
of Q changes the intervals, and therefore also the questions
change. They request more absolute precision on the lower
flows than on the higher flows. The information contained in
the answers given by the data, i.e., the information content of
the time series, depends on the question that is asked.

The information content of time series depends also on
what prior knowledge one has about the answers to the ques-
tion asked. If one knows the frequency distribution but has
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Fig. 7. Changes in results due to coarsening the quantization from 8 to 6 bits (8b and 6b) for precipitation (P ) and streamflow (Q). For
interpretation, we refer to the text.

no knowledge of surrounding values, the prior knowledge
takes the form of a probability distribution that matches the
observed frequencies. In that case, the expected information
content of each observation is given by the entropy of the
frequency distribution. The entropy in bits gives the limit of
the minimum average space per observation needed to store
a long i.i.d. time series of that distribution.

In many situations in practice, however, prior knowledge
does not include knowledge of the occurrence frequencies,
or does include more knowledge than frequencies alone,
e.g., temporal dependencies. In the first case the informa-
tion content of the data set should also include the knowl-
edge gained from observing the frequencies. Also in com-
pression, optimal coding table, which depends on the fre-
quencies, should be stored, and adds to the file size. One

could see the histogram as a simple form of a model that
is inferred from the data. The model generally forms part of
the information content.

In the second case, temporal dependencies reduce the av-
erage information content per observation. Also, when the
forms of the temporal dependencies are not known a priori,
but are inferred from the data, they can decrease the infor-
mation content if the gain in compression offsets the space
needed to store the model describing the dependencies. In
the theoretical framework of algorithmic information theory,
model and data are unified in one algorithm (one could see
it as a self-extracting archive) and the length of the shortest
algorithm that reproduces the data is the information content,
or Kolmogorov complexity (Kolmogorov, 1968).
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Flexible data compression algorithms, such as those used
in this paper, are able to give an upper bound for the informa-
tion content of hydrological data because they are not specif-
ically tuned towards hydrological data. All patterns inferred
from the data set are stored in the compressed file, and very
little is considered as prior information. Theoretically, prior
information can be explicitly fed to new compression algo-
rithms in the form of auxiliary data files (e.g., rainfall to com-
press runoff) or function libraries (e.g., hydrological models),
which should reduce information content of the data set due
to the increase in prior knowledge (Weijs et al., 2013b).

To summarize, we can state that information content of a
data set depends on (1) what question we ask of the data,
and (2) how much is already known about the answer before
seeing the data.

5.2 Aleatoric and epistemic uncertainty

In the current hydrological literature, attempts are sometimes
made to separate epistemic (due to incomplete knowledge
of the process) from aleatoric (the “inherent” randomness in
the system) uncertainty (Montanari et al., 2009; Gong et al.,
2013). The approach to answering this question is equivalent
to trying to separate pattern from scatter (signal from noise)
in high-dimensional data spaces to see how much of the vari-
ability can potentially be explained by any model.

However, the inherent problem in answering this question
is the subjectivity of what we call pattern and what we call
scatter. The remaining uncertainty in discharge given rain-
fall, H(Q|P) (the aleatoric uncertainty), can be made arbi-
trarily small by choosing an extremely fine quantization and
calculatingH based on a corresponding joint histogram. It
is important to realize that such a histogram is a model, and
any smoothing or dimensionality reduction method used is
also a model, so in principle no assessment of mutual in-
formation is model-free. Although model complexity control
methods can give guidelines on how much pattern can be rea-
sonably inferred from a data set, they usually do not account
for prior knowledge. This prior knowledge may affect to a
large degree what is considered a pattern – for example, by
constraining the model class that is used to search for patterns
or by introducing knowledge of underlying physics. In the al-
gorithmic information theory sense, the prior knowledge can
be expressed in the use of a specific computer language that
offers a shorter program description for that specific pattern.
Prior knowledge is then contained in the code, data and li-
braries available to the compiler for the language. An anal-
ogy in hydrology would be to have, e.g., a digital elevation
model available, or the principle of mass balance, which a
hydrological model can use but is considered as a truth not
inferred from the current data set, and hence should not be
considered part of the complexity of the explanation of those
data.

As a somewhat extreme, unlikely but illustrative example
of the subjectivity of randomness, consider that we encounter

100 consecutive digits ofπ as a streamflow time series. Our
prior hydrological knowledge would indicate those values as
random, and containing a large amount of information (no
internal dependence or predictability). With different prior
knowledge, however, for example that the data set is the out-
put of a computer program authored by a student, we would
consider the data set as having a pattern, and could use this
to make predictions or compress the data set (by inferring
one of the possible programs that enumerate digits ofπ as a
probable source of it). There would be little surprise in the
second half of the data set, given the first, and information
content is drastically reduced.

6 Conclusions

Determining information content of a data set is a similar
process to building a model of the data or compressing the
data. These processes are subject to prior knowledge, and
therefore this knowledge should be explicitly considered in
determining information content. Quantization of the data
can be seen as a formulation of the question the data set is
asked to give information about. Upper bounds for informa-
tion content for that question can then be found using com-
pression algorithms on the quantized data.

A hydrological model actually is such a compression tool
for a hydrological data set. It makes use of the dependencies
between, for example, rainfall and streamflow. The patterns
that are already present in the rainfall and runoff individu-
ally reduce the information that the hydrological model can
learn from: a long dry period could, for example, be sum-
marized by encoding the dry spell length, or one parameter
for an exponential recession curve in the streamflow. The in-
formation content of individual series are estimated in this
paper by compression algorithms, and compression of model
errors was tried as a first approach to estimate joint informa-
tion content.

6.1 Future work

A more comprehensive framework for joint compression of
hydrological input and output data will be addressed in fu-
ture research. The information available for a rainfall–runoff
model to explain could theoretically be estimated by com-
paring the file size of compressed rainfall plus the file size
of compressed streamflow with the size of a file where rain-
fall and streamflow are compressed together, exploiting their
mutual dependencies. We could denote this as

learnable info= |ZIP(P )| + |ZIP(Q)| − |ZIP(P,Q)| , (11)

where|ZIP(X)| stands for the file size of a theoretically opti-
mal compression of data setX, which includes the size of the
decompression algorithm. This brings us back to the ideas of
algorithmic information theory, which uses lengths of pro-
grams that reproduce data sets on computers (Turing ma-
chines). The shortening in description length when merging
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input and output data, i.e., the compression progress, could
be seen as the amount of information learned by modeling,
or the number of observations replaced by a “law”. One could
figuratively say “a law is worth a thousand data points”. The
hydrological model that is part of the decompression algo-
rithm embodies the knowledge gained from the data. The
expression|ZIP(P,Q)| can be seen as the AIT formulation
of what Gong et al.(2013) call the aleatoric (irreducible)
uncertainty, which can now also be interpreted as the in-
compressible minimum representation of thatP,Q data set.
When prior knowledge is available, this may be employed
to decompress without counting the the representation size,
indicating that the line between epistemic and aleatoric un-
certainty may be drawn differently in the presence of prior
knowledge.

Further explorations of these ideas from algorithmic in-
formation theory are expected to put often-discussed issues
in hydrological model inference in a wider perspective with
more general and robust foundations. This is important since
every choice in model building, data analysis, data collection,
model calibration, data assimilation and prediction involves
implicit assumptions on prior knowledge and the information
content of the data set. The information-theoretical frame-
work can serve to make these choices more explicit.

Appendix A

Correspondence of resolution–reliability–uncertainty
decomposition to compression and structure

In this appendix, we give a data-compression interpretation
of Kullback–Leibler divergence as a forecast skill score and
its decomposition into uncertainty, reliability and resolution,
as proposed inWeijs et al.(2010b,a). For definitions of the
terminology used in this appendix, the reader is referred to
those papers, and scripts available atdivergence.wrm.tudelft.
nl. As noted in Sect.2.1, when observations have distribu-
tion p, but an optimal fixed dictionary is chosen assuming
the distribution isq, the expected average word length per
observation,̄L, is given by

L̄ = H(p) + DKL (p||q). (A1)

The code length is related to the remaining uncertainty,
i.e., the missing information – the amount of information
that remains to be specified to reproduce the data. In terms of
forecast evaluation and the decomposition presented inWeijs
et al.(2010b), using the same notation, this remaining uncer-
tainty is the divergence score associated with a forecast with
zero resolution (forecasts do not change), and non-zero reli-
ability (forecast distributionf is not equal to climatological
distributionō):

L̄ = DS= H(ō) + DKL (ō||f ) = UNC+ REL. (A2)

The resolution term, given by the Kullback–Leibler diver-
gence from the marginal distribution̄o to the conditional dis-
tributions of observations̄ok, given forecastf k,

RES= DKL (ōk||ō), (A3)

is zero sincēok = ō for an unconditioned, constant forecast
(code for compression).

When a data set with temporal dependencies is com-
pressed, a lower average code length per observation can be
achieved since we can use a dynamically changing coding for
next observations, depending on the previous ones. In terms
of forecast quality, this means that the individual probabil-
ity estimates now have non-zero resolution. This resolution,
which is equivalent to the mutual information between the
forecast based on the past time series and the value to code,
will reduce the average code length per observation. Since
also the individual forecasts will not be completely reliable,
the average code length per observation will now have a con-
tribution from each term in the decomposition of the diver-
gence score

L̄ = H(ō) +

K∑
k=1

nk

N
[DKL (ō||f k) − DKL (ōk||ō)]

= UNC+ REL− RES, (A4)

wherenk is the number of observations for which unique
forecast numberk is given andN is the total number of ob-
servations. When compressing data, however, the prediction
model that describes the temporal dependence needs to be
stored as well. Therefore, the average total code length per
data point will become

L̄ = UNC+ REL− RES+ |model|/N, (A5)

where|model| is the description length of the model algo-
rithm, i.e., model complexity. Although this model length
is language dependent, it is known from AIT that this de-
pendence is just an additive constant, and can be interpreted
as the prior knowledge encoded in the language. If the lan-
guage is not specifically geared towards a certain type of
data, the total code length will give a fairly objective esti-
mate of the amount of new information in the data set, which
cannot be explained from the data set itself. The number of
bits per symbol needed to store data set can therefore be in-
terpreted as a complexity-penalized version of the divergence
score presented inWeijs et al.(2010a,b), applied to a “self-
prediction” of the data based on previous time steps. We can
make the following observations. Firstly, a data set can only
be compressed if there is a pattern – i.e., something that can
be described be an algorithm where the resolution or gain
in description efficiency or predictive power outweighs the
loss due to complexity. Secondly, the data compression view
naturally leads to the notion that we have to penalize model
complexity when evaluating the predictive performance of
models.
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Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
17/3171/2013/hess-17-3171-2013-supplement.zip.
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