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Abstract. Global seasonal hydrologic prediction is crucial to
mitigating the impacts of droughts and floods, especially in
the developing world. Hydrologic predictability at seasonal
lead times (i.e., 1–6 months) comes from knowledge of ini-
tial hydrologic conditions (IHCs) and seasonal climate fore-
cast skill (FS). In this study we quantify the contributions of
two primary components of IHCs – soil moisture and snow
water content – and FS (of precipitation and temperature) to
seasonal hydrologic predictability globally on a relative ba-
sis throughout the year. We do so by conducting two model-
based experiments using the variable infiltration capacity
(VIC) macroscale hydrology model, one based on ensemble
streamflow prediction (ESP) and another based on Reverse-
ESP (Rev-ESP), both for a 47 yr re-forecast period (1961–
2007). We compare cumulative runoff (CR), soil moisture
(SM) and snow water equivalent (SWE) forecasts from each
experiment with a VIC model-based reference data set (gen-
erated using observed atmospheric forcings) and estimate the
ratio of root mean square error (RMSE) of both experiments
for each forecast initialization date and lead time, to deter-
mine the relative contribution of IHCs and FS to the seasonal
hydrologic predictability. We find that in general, the contri-
butions of IHCs to seasonal hydrologic predictability is high-
est in the arid and snow-dominated climate (high latitude)
regions of the Northern Hemisphere during forecast periods
starting on 1 January and 1 October. In mid-latitude regions,
such as the Western US, the influence of IHCs is greatest
during the forecast period starting on 1 April. In the arid and
warm temperate dry winter regions of the Southern Hemi-
sphere, the IHCs dominate during forecast periods starting
on 1 April and 1 July. In equatorial humid and monsoonal
climate regions, the contribution of FS is generally higher
than IHCs through most of the year.

Based on our findings, we argue that despite the limited FS
(mainly for precipitation) better estimates of the IHCs could
lead to improvement in the current level of seasonal hydro-
logic forecast skill over many regions of the globe at least
during some parts of the year.

1 Introduction

Drought and floods are among the most important natural
disasters globally in terms of socio-economic losses (Wilhite,
2000; Dilley et al., 2005). Since 2010, a record number of
extreme drought and flood events have impacted many re-
gions across the globe (Blunden et al., 2011; Blunden and
Arndt, 2012) and caused enormous losses. For example, ac-
cording to the US National Climate Data Center, the number
of deaths and total economic losses (adjusted to 2012 USD)
attributed to drought (including wild fires) and flooding, in
2010 and 2011 alone, was at least 209 and 33.6 billion USD,
respectively (http://www.ncdc.noaa.gov/billions/).

Some recent studies have linked changes in the frequency
and severity of natural hazards to climate change (Lau and
Kim, 2012; Peterson et al., 2012; Trenberth and Fasullo,
2012) and projected a higher likelihood of occurrence of
these kinds of extreme events in the future in many regions
of the globe (Burke et al., 2006; Hirabayashi et al., 2008;
Sheffield and Wood, 2008b; Kundzewicz et al., 2010; Dai,
2011). Global climate change and unprecedented popula-
tion growth as well as industrial development has put global
water resources in ever greater stress (Vörösmarty et al.,
2000; Oki and Kanae, 2006; Oelkers et al., 2011). There-
fore, the stakes for the implementation of global hydrologic
and drought prediction systems to provide outlooks for water

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://www.ncdc.noaa.gov/billions/


2782 S. Shukla et al.: On the sources of global land surface hydrologic predictability

resource conditions globally in real time are rising. Develop-
ment of a Global Drought Information System was a key rec-
ommendation of a World Climate Research Program work-
shop “Drought Predictability and Prediction in a Changing
Climate” held in 2011 (Heim and Brewer, 2012; Pozzi et al.,
2013). Though thus far, the implementation of a global sea-
sonal hydrologic prediction system has largely been elusive
notwithstanding major strides in the last two decades in the
development of large scale hydrologic models (Liang et al.,
1994; Mitchell et al., 2004; Wang et al., 2009) and improve-
ment in seasonal climate forecast skill (Goddard et al., 2001,
2003; Palmer et al., 2004; Saha et al., 2006; Barnston et al.,
2010; Yuan et al., 2011).

Hydrologic predictability at seasonal lead times (1 to
6 months) is derived from knowledge of initial hydrologic
conditions (IHCs), which includes soil moisture (SM), snow
water content (SWE), ground water and surface water (Paiva
et al., 2012; Singla et al., 2012; Rosenberg et al., 2013)
and seasonal climate forecast skill (FS) of meteorological
variables like temperature, precipitation. In the past, nu-
merous studies have investigated the contributions of the
IHCs and/or FS in seasonal hydrologic predictability over
different regions of the globe. For example, Maurer and
Lettenmaier (2003) used multiple regression to identify the
sources of hydrologic predictability in the Mississippi River
basin and found that initial SM was the primary source of
runoff predictability at 1 month lead in all seasons except the
summer months over the western mountainous region, where
snow dominated the runoff predictability. In a similar study
using Principal Component Analysis, Maurer et al. (2004) in-
vestigated the controlling factors to the runoff predictability
over all of North America and concluded that the IHCs (SM
and SWE) could provide useful levels of seasonal hydrologic
predictability beyond what is available via climate anomalies
only. Berg and Mulroy (2006) utilized a residual analysis ap-
proach and found that for a statistically significant number of
stations in the Saskatchewan/Nelson River basin in Canada
even macroscale estimates of initial SM could be used to im-
prove streamflow predictability at 1 to 3 months lead time.
Likewise Mahanama et al. (2008) showed that in the tropical
island country of Sri Lanka, initial SM could contribute to
the seasonal hydrologic predictability for up to 3 months lead
time. They found the correlation of initial SM and monthly
runoff to be the highest at 1 month lead time mainly during
April-May-June (AMJ) and July-August-September with the
island-wide correlation significant at 5 % significance level
for 3 months lead time during AMJ. Based on their results,
they concluded that improving the estimate of initial SM is
far more achievable than the improvement in seasonal precip-
itation forecast skill. More recently, Koster et al. (2010) and
Mahanama et al. (2011) used a suite of hydrologic models
to evaluate the contributions of SM and SWE to streamflow
predictability across the conterminous United States. Those
studies indicated that the contribution of the IHCs to seasonal

hydrologic predictability was consistent among hydrologic
models.

All the studies cited above and various others not men-
tioned here have addressed the question “What are the
sources of seasonal hydrologic predictability and what is
their relative influence?” Various methods have been used,
however to our knowledge there has been no attempt to an-
swer this question for the entire globe with one consistent
method. Understanding the relative contributions of the IHCs
and FS to seasonal hydrologic predictability at different fore-
cast initialization dates and lead times globally is impor-
tant for identifying those regions of the globe where use-
ful skill can be attained in any given season, given current
global hydrologic monitoring capability (the basis for pro-
viding the IHCs) and seasonal FS. For example, depending
on which one of those factors dominates the seasonal hydro-
logic predictability, efforts can be focused toward improv-
ing the estimation of the IHCs (e.g., by data assimilation,
or model improvement that reduce prediction uncertainty in
the land surface models used to estimate IHCs) or improv-
ing FS. This knowledge could also lead to better understand-
ing of the uncertainty of seasonal hydrologic predictability
for any region and season. Hence the primary objective of
this study is to provide a consistent estimate of the relative
contributions of the IHCs and FS in seasonal hydrologic pre-
dictability over the entire globe throughout the year. In this
study we only consider the contribution of soil moisture and
snow water content as IHCs. We use an ensemble stream-
flow prediction (ESP) framework based on an experimental
design structure proposed by Wood and Lettenmaier (2008)
(described in Sect. 2.1) to conduct this analysis. ESP (Day,
1985; Wood et al., 2002; Wood and Lettenmaier, 2008;
Shukla and Lettenmaier, 2011) is a method widely used
for seasonal hydrologic prediction. In this method a physi-
cally based hydrology model is run up to the time of fore-
cast using observation-based atmospheric forcings to set ini-
tial conditions. During the forecast period, the hydrology
model uses ensembles of observed forcings that are resam-
pled from sequences of past observations. This process re-
sults in ensemble-based hydrologic forecasts that are based
solely on knowledge of the IHCs (no FS). An alternative hy-
pothetical structure, termed reverse ESP (Rev-ESP) by Wood
and Lettenmaier (2008), runs the model up to the forecast
date using ensembles of past observation-based atmospheric
forcings sequences, and pairs each with observation-based
atmospheric forcings (perfect FS) during the forecast period.
The combination of ESP and Rev-ESP includes the two end
points of no FS and perfect FS. Variations of the ESP/Rev-
ESP approach have since been used in recent studies such
as Li et al. (2009), Shukla and Lettenmaier (2011), Paiva et
al. (2012) and Singla et al. (2012) to partition the influence
of IHCs and FS on seasonal hydrologic predictability.
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2 Data and methods

We implemented the ESP/Rev-ESP approach to quan-
tify the relative contributions of the IHCs and FS in
seasonal hydrologic predictability as in previous studies
(Wood and Lettenmaier, 2008; Li et al., 2009; Shukla and
Lettenmaier, 2011). We conducted ESP and Rev-ESP ex-
periments (Sect. 2.1) using the variable infiltration capacity
(VIC) land surface model (Sect. 2.2). In each experiment we
generated two distinct sets of re-forecasts (ESP and Rev-
ESP based) of cumulative runoff (CR) (accumulated over
1 to 6 months lead time), soil moisture (SM) and snow wa-
ter equivalent (SWE) for the entire globe during 1961–2007,
for 4–6 a month long forecast periods starting on 1 January,
1 April, 1 July and 1 October. To calculate the skill of each
set of re-forecasts, we used a long term consistent data set
of CR, SM and SWE that was simulated by the VIC model
by forcing the model with observational atmospheric forc-
ings (Sect. 2.2). Then we used a simple root mean square
error (RMSE) based score to quantify the skill of both exper-
iments (Sect. 2.3). The ratio of the RMSE score of the two
experiments was used to measure the relative contribution of
the IHCs and FS to the seasonal hydrologic predictability.

2.1 Experiments

In the first experiment (ESP) the VIC model was initialized
with a “true” IHC (for any given initialization day) and was
forced with the ensembles of atmospheric forcings (precipi-
tation, maximum (Tmax) and minimum (Tmin) temperature,
wind speed) randomly sampled from the period 1961–2007
(the total number of ensembles was 46, leaving out the target
year). The IHC is “true” in the context of the VIC model sim-
ulation. In the second experiment (Rev-ESP) the model was
initialized with ensembles of the IHCs randomly sampled
from the same climatological period as in the ESP experi-
ment, again leaving out the IHC of the target year. Each en-
semble sequence was forced from the forecast date onwards
with observed (assumed true) atmospheric forcings for the
target year (equivalent to perfect climate forecast skill). The
ESP experiment derives its skill from the knowledge of the
IHCs only whereas the Rev-ESP experiment derives its skill
solely from the observed forcings (perfect FS).

2.2 Observational analysis

We used a long-term simulated data set of CR, SM, and SWE
as the reference data set to verify the skill of the ESP and
Rev-ESP experiments. The availability of global, long-term
and spatially distributed observations of CR, SM and SWE
is scarce at best. Therefore we used the VIC model-derived
simulated values of those variables, generated by forcing the
model with observed atmospheric forcings, as the assumed
truth for CR, SM, and SWE.

2.2.1 Atmospheric forcings

We used gridded daily precipitation, temperature maximum,
temperature minimum and wind speed data developed by
Sheffield et al. (2006) to drive the VIC model. Originally
this data set spanned the period 1948–September 2006 (but
was later extended through 2008) at one degree latitude–
longitude spatial resolution and 3-hourly temporal resolu-
tion. However, for the purpose of this study we spatially in-
terpolated the data to 0.5◦ and temporally aggregated to a
daily time step. The original Sheffield et al. (2006) data set
was constructed by combining multiple ground and satellite
based global observational data sets with the National Cen-
ters for Environmental Prediction – National Center for At-
mospheric Research (NCEP – NCAR) reanalysis. Further de-
tails on the methodology involved in the generation of this
data set can be found in Sheffield et al. (2006)

2.2.2 The variable infiltration capacity (VIC) model

The VIC model is a semi-distributed macroscale hydrol-
ogy model that parameterizes major surface, subsurface, and
land–atmosphere hydrometeorological processes (Liang et
al., 1994, 1996; Cherkauer et al., 2003). The VIC model has
been widely used at global scale in many previous studies
and has been demonstrated to capture the hydrology of dif-
ferent regimes well (Nijssen et al., 1997, 2001a,b,c; Maurer
et al., 2002; Adam et al., 2007). The VIC model has also been
used to successfully simulate and reconstruct hydrologic ex-
tremes such as drought and floods globally (Sheffield et al.,
2004; Sheffield and Wood, 2008a,b; Voisin et al., 2011; Wang
et al., 2011).

The VIC model represents the role of sub-grid spatial het-
erogeneity in soil moisture, elevation bands, and vegetation
on runoff generation. The subsurface in the VIC model is
partitioned into three layers. The first layer has a fixed depth
of ∼ 30 cm and responds quickly to changes in surface con-
ditions and precipitation. Moisture transfers between the first
and second, and second and third soil layers are governed
by gravity drainage, with diffusion from the second to the
upper layer allowed in unsaturated conditions (Liang et al.,
1996). Baseflow is a nonlinear function of the moisture con-
tent of the third soil layer (Todini, 1996). Each grid cell
in the VIC model is divided intoN + 1 land cover tiles,
wheren = 1 to N represents different vegetation types and
N + 1 land cover is bare soil. Each vegetation type has as-
sociated monthly vegetation parameters such as leaf area in-
dex (LAI), albedo, minimum stomatal resistance, architec-
tural resistance, roughness length, relative fraction of roots
in each soil layer, and displacement length. Actual evapotran-
spiration in the VIC model is calculated using the Penman–
Monteith equation (Shuttleworth, 1999). Total actual evapo-
transpiration is the sum of canopy evaporation and transpira-
tion from each vegetation tile and bare soil evaporation from
the bare soil tile, weighted by the coverage fraction for each

www.hydrol-earth-syst-sci.net/17/2781/2013/ Hydrol. Earth Syst. Sci., 17, 2781–2796, 2013



2784 S. Shukla et al.: On the sources of global land surface hydrologic predictability

tile. For further details about the VIC model the reader is re-
ferred to Liang et al. (1994, 1996).

For this study we ran the VIC model in water balance
mode. In the water balance mode the model runs at daily
time step (except the snow module that was run at 3 hourly
time step) and the surface energy balance is not calculated,
instead assuming that the soil surface temperature is equal to
the surface air temperature. The global soil, vegetation and
snow band parameters used to run the VIC model were the
same as used by Su et al. (2005) and Voisin et al. (2008). We
conducted the model spinup by first cold starting a model
run (i.e., arbitrary initial state) for the period 1948–2008 and
then used the state at the end of that simulation (as of 31 De-
cember 2008) to start another simulation for 1948 through
1959. Finally, we used the state at the end of that simulation
(as of 31 December 1959) to initialize a simulation for 1948
through 2008 and used the model output from the simulation
period 1960–2008 as the reference. Furthermore, the state
files from that simulation (during the period of 31 Decem-
ber 1960 through 31 December 2007) were used to initialize
both experiments (ESP and Rev-ESP) for different forecast
periods.

2.3 Forecast score

In order to quantify the relative contributions of the IHCs and
FS on seasonal hydrologic predictability, we calculated the
RMSE of both experiments and then used the RMSE ratio
to partition the influence of the IHCs and FS. As in Li et
al. (2009) and Shukla and Lettenmaier (2011), we estimated
RMSE for each experiment by first calculating the squared
error for each ensemble member, and then calculating the
square root of the mean squared error. We could have used
other skill scores such as anomaly correlation; however, we
wanted to be consistent in our methodology with the past
studies mentioned above.

We considered that when the RMSE ratio is less than 1.0
then IHCs dominate the seasonal hydrologic predictability
and vice versa. Note that in what follows, we use the word
“skill” to denote the “forecast skill score” of the ESP or Rev-
ESP experiments as described in this section.

3 Results

In this section we present and discuss the seasonal, spatial
and temporal (with lead time) variability of the relative con-
tributions of the IHCs and FS in seasonal hydrologic pre-
dictability across the globe. We first discuss the variation of
the kappa (κ) parameter defined by Mahanama et al. (2011)
and used by Shukla and Lettenmaier (2011) and then illus-
trate the predictability of SM, SWE and CR, respectively, in
Sects. 3.2, 3.3 and 3.4.

3.1 Variability of kappa (κ) parameter

Kappa (κ) was defined by Mahanama et al. (2011) as the ra-
tio of the standard deviation of total moisture (soil moisture
and snow) at the time of forecast initialization to total precip-
itation during the forecast period as shown below:

k = σw/σP, (1)

whereσw is the standard deviation of total initial moisture
(SM+ SWE) over the hindcast period (i.e., 1961–2007 in
this case) andσP is the standard deviation of the total pre-
cipitation during the forecast period (calculated at 1, 3 and
6 month leads) over the same hindcast period. We used total
SM (SM summed over all three soil layers) along with SWE
to estimateσw. The total depth of the three layers varied from
about 1 to 4.6 m globally.

κ greater than 1 implies that variability of the initial total
moisture may dominate the hydrological forecasts and the
reverse is implied byκ less than 1. Figure 1 shows the varia-
tion of κ globally at lead times of 1 to 6 months for forecasts
starting on (a) 1 January, (b) 1 April, (c) 1 June and (d) 1 De-
cember. Red colors indicateκ values greater than 1, with
dark red colors indicating the highest values, whereas blue
colors show the opposite (i.e., kappa values less than 1). To-
tal moisture variability is higher than precipitation variability
(resulting inκ greater than 1) in North America, except for
the US Pacific coast, Western Mexico, and the Southeastern
US. For at least 1 month lead time except in Northwestern
Europe, the same is true in the rest of Europe, Russia and
Asia for forecast periods starting on 1 January (Fig. 1a).κ

values greater than 1 persist through lead times of 3 months
over some parts of the high latitude regions of North Amer-
ica (North of 50◦ N latitude), Central US, Russia and Central
Asia. On the other hand,κ values are below 1 in the Southern
Hemisphere with the exceptions of deserts in South America
for the rest of the period during the same 1 January forecast
period. We can see opposite spatial patterns ofκ values in
forecast periods starting on 1 July (Fig. 1c).

In the snow-dominated regions of the world (mainly in the
Northern Hemisphere)κ values are higher than 1 during at
least the first three months of the forecast period starting on
1 January (Fig. 1a) and on 1 April (Fig. 1b). Snowmelt con-
tributes to runoff and soil moisture during the otherwise dry
summer months (June to September) in those regions. Again
during the forecast period starting on 1 October (Fig. 1d),
κ values are greater than 1 for the regions that are dry dur-
ing October to March. Regions such as northern India and
Central Asia particularly stand out becauseκ > 1 for up to
6 months lead time in those regions. On the contrary for re-
gions such as Western US, and tropical regions (∼ between
23◦ S to 23◦ N), κ < 1 starting at 1 month lead time.

In the next 3 sub-sections we describe the role of IHCs
(SM and SWE only) and FS in the predictability of SM,
SWE and CR, in terms of the RMSE ratio of the ESP and
Rev-ESP experiments. We expected the spatial and temporal
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Fig. 1: Spatial variability of κ (ratio of the standard deviation of initial total moisture to 805 

total precipitation during the forecast period) at lead-1, -3 and -6 months for forecast 806 

initialization on (a) 01 January (b) 01 April (c) 01 July (d) 01 October.  807 
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Fig. 1. Spatial variability ofκ (ratio of the standard deviation of initial total moisture to total precipitation during the forecast period) at
lead-1, -3 and -6 months for forecast initialization on(a) 1 January,(b) 1 April, (c) 1 July and(d) 1 October.

pattern of the RMSE ratio to be in general agreement withκ.
Shukla and Lettenmaier (2011) also showed a first order rela-
tionship betweenκ and the inverse RMSE ratio. The RMSE
ratio is the ratio of RMSEESP and RMSERev-ESP; therefore,
if its value is less than 1 then it indicates that the relative
contribution of the IHCs is larger than the contribution of
the FS in the CR forecasts and vice versa. To quantify the
co-variability between kappa and the RMSE ratio, we calcu-
lated a rank based spatial pattern correlation between kappa
and the inverse RMSE ratio (i.e., RMSERev-ESP/RMSEESP)
for SM and CR forecasts. This metric calculates correlations
among the ranks of the data (not the actual values). Rank

based correlation metrics are more appropriate for calculat-
ing correlations among inverse RMSE score and kappa be-
cause they are relatively insensitive to outliers and can detect
monotonic relationships that are not necessarily linear in na-
ture. Results of this analysis are shown in Figs. 4 and 8. High
pattern correlation between both quantities indicates that low
values of kappa coincide with low values of inverse RMSE
ratio globally and vice versa.

3.2 Predictability of soil moisture (SM)

Figure 2a through d show the RMSE ratio for SM forecasts
at 1, 3 and 6 months lead time during the forecast period

www.hydrol-earth-syst-sci.net/17/2781/2013/ Hydrol. Earth Syst. Sci., 17, 2781–2796, 2013
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Fig. 2: RMSE ratio for soil moisture (SM) forecasts at lead-1, -3 and -6 months for 822 
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Fig. 2. RMSE ratio for soil moisture (SM) forecasts at lead-1, -3 and -6 months for forecast initialization on(a) 1 January,(b) 1 April,
(c) 1 July and(d) 1 October.

starting on 1 January, 1 April, 1 July and 1 October, respec-
tively. Figure 3a and b show the median of the RMSE ra-
tio for SM forecasts over different Koppen–Geiger climate
classes (Kottek et al., 2006) (Table 1). Figure 3a includes all
the climate classes in the Northern Hemisphere as well as
equatorial climate regions and Fig. 3b shows rest of the cli-
mate classes in the Southern Hemisphere.

The main pattern that stands out in these figures is the
strong influence of the IHCs almost globally (with excep-
tions of equatorial climate regions) at 1 month lead time, in-
dicated by low values of the RMSE ratio. Shukla and Letten-
maier (2011) and Mo et al. (2012) also found a predominant
effect of SM persistence (hence dominance of IHCs) at short
leads.
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Table 1.Köppen–Geiger Climate Classification (source: Kottek et al., 2006).

Main climates Precipitation Temperature

A: Equatorial W: Desert h: Hot arid F: Polar frost
B: Arid S: Steppe k: Cold arid T: Polar tundra
C: Warm temperature f: Fully humid a: Hot summer
D: Snow s: Summer dry b: Warm summer
E: Polar w: Winter dry c: Cool summer

m: Monsoonal d: Extremely continental
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Fig. 3: Median of RMSE ratio for SM forecasts, over the grid cells in different Koppen-830 

Geiger climate classes in (a) Northern Hemisphere and Tropics and (b) Southern 831 

Hemisphere (excluding Equatorial climate regions, that are included in (a))  832 

 833 
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Fig. 3. Median of RMSE ratio for SM forecasts, over the grid cells in different Koppen–Geiger climate classes in(a) Northern Hemisphere
and tropics and(b) Southern Hemisphere – excluding equatorial climate regions that are included in(a).

In the Northern Hemisphere the influence of the IHCs
on SM predictability is particularly dominant over arid as
well as snow-dominated climate regions during the forecast
period starting on 1 January (Figs. 2a and 3a). In snow-
dominated climate regions, the strong influence of the IHCs
for up to 6 month lead times can be seen in the forecast period
starting on 1 October as well (Figs. 2d and 3a). A noteworthy
contrasting pattern of RMSE ratio can be seen over the equa-
torial regions where the FS dominates the SM predictability
almost throughout the year.

Similar to climate regions in the Northern Hemisphere, the
IHCs influence SM predictability at 1 month lead time in the
Southern Hemisphere as well (Figs. 2 and 3b). Overall the
influence of IHCs is strongest during forecast periods start-
ing on 1 April and 1 July (Figs. 2b,c and 3b), mainly over
arid and temperate dry winter climate regions of the Southern
Hemisphere. For the rest of the climate regions FS dominates
SM predictability beyond 1 month lead time.

Figure 4 shows the rank-based pattern correlation between
kappa and the inverse RMSE ratio for SM forecasts. Gener-
ally the pattern correlation between both quantities is strong
(> 0.5), with the lowest values during the forecast period
starting on 1 April. The lower correspondence between in-
verse RMSE and kappa values in April may be due to the
fact that by construct the inverse RMSE ratio takes into ac-
count the timing of snowmelt whereas kappa does not. For
example in regions with high SWE values at the beginning of
the April forecast period, kappa values will tend to be high
(> 1) at 1 month lead simply because initial moisture vari-
ability is higher than precipitation variability during the first
month; however, the inverse RMSE ratio attains high values
only when the snowmelt actually starts to contribute to the
replenishment of the soil moisture, which may not necessar-
ily happen in the first month of the forecast period depending
on the elevation and temperature of the region.
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Fig. 4. Pattern correlation between kappa and inverse RMSE ra-
tio (RMSERev-ESP/RMSEESP) at lead-1, -3 and -6 months for SM
forecasts initialized on 1 January, 1 April, 1 July and 1 October.

3.3 Predictability of snow water equivalent (SWE)

Snow plays a major role in the annual water supply for
nearly half of the Northern Hemisphere (Barnett et al., 2005).
In those regions snows accumulates through the winter and
melts in the spring and/or summer months to replenish runoff
and soil moisture. Figure 5 shows the ratio ofκ calculated
using initial SM variability (κSM) and initial SWE variabil-
ity (κSWE). We focus on those grid cells only whereκ values
(calculated using both SM and SWE variability) are greater
than 1 (i.e., the regions where initial total moisture variability
is higher than then total precipitation variability) and where
κSWE is greater than 0.1 (grid cells where there is an appar-
ent contribution of snow to hydrologic predictability). This
figure shows that during forecast periods starting in January
and April the relative contribution of snow is higher than the
contribution of SM (i.e., those grid cells whereκSM/κSWE
is less than 1 over large parts of the high latitude regions
of the Northern Hemisphere). This in turn implies that in
those regions predictability of SWE is crucial to predict wa-
ter supply.

Figure 6 shows the spatial and temporal variability of the
RMSE ratios for SWE forecasts during the forecast period
starting on 1 January (Fig. 6a), 1 April (Fig. 6b), 1 July
(Fig. 6c) and 1 October (Fig. 6d). In this figure we show those
grid cells only for months for which the long-term mean
SWE (calculated over 1961–2007) is higher than 50 mm.
This screening based on the long-term mean values of SWE
allows us to focus on those regions of the globe that re-
ceive substantial amounts of snow. Figure 6 shows that at
short leads the IHCs dominate the SWE forecast, which is
expected because SWE is a state variable.

During the forecast period starting on 1 January, which
consists of the months with highest values of SWE during
most years, over the high latitude regions of Asia and North

America the IHC influence on the SWE predictability per-
sists through at least 3 months lead time.

3.4 Predictability of cumulative runoff (CR)

Figure 7 shows the RMSE ratios for CR forecasts globally
at 1 to 6 months lead time during the forecast period start-
ing on 1 January (Fig. 7a), 1 April (Fig. 7b), 1 July (Fig. 7c)
and 1 October (Fig. 7d). CR at any lead timeN is the sum of
runoff during lead 1 toN months. Sinceκ at any lead time
N (1, 3 and 6 months for this study as shown in Fig. 1) was
also calculated using the total precipitation during lead 1 to
N months (and the initial total moisture at the beginning of
the forecast period). In Fig. 7 we only show the RMSE ratio
for those grid cells where RMSERev-ESPor both RMSEESP
and RMSERev-ESP are greater than zero (RMSEESP and
RMSERev-ESPboth could be zero for desert areas, e.g., in
Africa, Middle East, Central Asia, South America and Aus-
tralia). Similar to Fig. 3, Fig. 8 shows the median values of
the RMSE ratio for CR forecasts over Koppen–Geiger cli-
mate classes (Table 1).

In general, in the Northern Hemisphere the influence of
IHCs on CR predictability is highest during the forecast pe-
riod starting on 1 January and 1 October (Figs. 7a,d and 8a).
This is particularly true for arid regions (such as the inte-
rior Western US and central Asia) as well as snow-dominated
climate regions in the high latitudes of the Northern Hemi-
sphere. In the Pacific coastal portion of the Western US,
IHCs influence the CR predictability for up to 6 months lead
time during the forecast period starting on 1 April (Figs. 7b
and 8a) and up to 3 months during the forecast period start-
ing on 1 July. Again, in the equatorial climate regions FS
dominates CR predictability throughout the year.

In the arid regions and dry winter temperate climate re-
gions of the Southern Hemisphere, IHCs influence the CR
predictability during forecast periods starting on 1 April and
1 July (Figs. 7b,c and 8b). In the warm temperate humid re-
gions of the Southern Hemisphere (in Southern America and
in Eastern Australia) FS dominates CR forecast predictabil-
ity almost through the year beyond 1 month lead time.

Figure 9 shows the pattern correlation between kappa val-
ues and inverse RMSE ratio for CR Forecasts. In general the
pattern correlation values are stronger than for SM forecasts,
but the spatial variations are roughly similar.

3.5 Sensitivity analysis

The depth of the second and third soil layers in the VIC
model was estimated via calibration. Given the dearth of high
quality long-term observations of runoff and soil moisture,
uncertainty in the calibrated soil depths is unavoidable. The
soil parameters used in this study are the same as in Nijssen
et al. (2001b,c). In those studies VIC parameters were eval-
uated by comparing VIC simulated runoff, soil moisture and
snow cover with the observations globally. The studies found
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Fig. 5: Ratio of κSM to κSWE (depicting the contribution of SM relative to SWE in seasonal 852 

hydrologic predictability) at lead-1, -3 and -6 months since the forecast initialization on 853 

(a) 01 January (b) 01 April (c) 01 July (d) 01 October. (The regions shaded in grey are 854 

grid cells for which κ < 1 and κSWE < 0.1, or the regions that do not receive snow).  855 
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Fig. 5. Ratio of κSM to κSWE (depicting the contribution of SM relative to SWE in seasonal hydrologic predictability) at lead-1, -3 and
-6 months since the forecast initialization on(a) 1 January,(b) 1 April, (c) 1 July and(d) 1 October. (The regions shaded in grey are grid
cells for whichκ < 1 andκSWE< 0.1, or the regions that do not receive snow.)

a reasonable agreement between the observations and VIC
simulations. Nevertheless, we conducted an analysis to esti-
mate the sensitivity of the results of this study to the change
in the depth of the soil layer 2 and 3, since the soil depth im-
pacts the water holding capacity and in turn the convergence
of the Rev-ESP experiments to the control simulation.

We selected 29 grid cells for this analysis (Fig. 10) that
represent different climate zones across the globe. We gener-
ated two sets of soil parameters by reducing the depth of soil
layers 2 and 3 by 20 % [CONTROL− 20 %] and by increas-
ing them by 20 % [CONTROL+ 20 %], where CONTROL

is the nominal set of soil parameters used in all other exper-
iments. We then performed ESP and REV-ESP experiments
for each set of soil parameters in the same manner as de-
scribed in Sect. 2.1. We also generated reference data sets
using both sets of soil parameters (as mentioned in Sect. 2.2).

Figures 11 and 12 compare the RMSE ratios obtained by
the CONTROL− 20 %, CONTROL and CONTROL+ 20 %
experiments for SM and CR forecasts, made during forecast
periods starting 1 January and 1 July. From those figures it
is clear that the impact of change in soil depth on the RMSE
ratio is minimal. In general, changes in the RMSE ratio occur
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Fig. 6: RMSE ratio for Snow Water Equivalent (SWE) forecasts at lead-1, -3 and -6 867 

months since the forecast initialization on (a) 01 January (b) 01 April (c) 01 July (d) 868 
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SWE is less than 50 mm). 870 
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Fig. 6. RMSE ratio for snow water equivalent (SWE) forecasts at lead-1, -3 and -6 months since the forecast initialization on(a) 1 January,
(b) 1 April, (c) 1 July and(d) 1 October. (The regions shaded in grey are grid cells for which long-term mean SWE is less than 50 mm.)

mostly it in the middle range of 0.6 to 1.4 for the CONTROL
experiment, meaning when neither IHCs nor FS dominates
the seasonal hydrologic predictability.

4 Discussion

We have evaluated the relative contributions of the IHCs and
FS on the seasonal hydrologic predictability at the global
scale. The regions and seasons where the IHCs dominate

the seasonal hydrologic predictability, improvement in meth-
ods of IHC estimation, such as by land data assimilation,
multimodel frameworks for hydrologic modeling, and/or im-
proved parameter estimation could improve hydrologic fore-
cast skill. In contrast, the regions and seasons where we show
that FS dominates the hydrologic predictability the improve-
ment in seasonal climate forecast skill can result in the im-
provement in seasonal hydrologic forecast skill.
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Fig. 7: RMSE ratio for cumulative runoff (CR) forecasts at lead-1, -3 and -6 months since 885 
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Fig. 7. RMSE ratio for cumulative runoff (CR) forecasts at lead-1, -3 and -6 months since the forecast initialization on(a) 1 January,
(b) 1 April, (c) 1 July and(d) 1 October.

While we believe that our study is unique in the extent of
its domain as well as the length of the period of analysis,
there are some caveats that need to be highlighted.

1. Components of initial hydrologic conditions taken into
account in this study were soil moisture and snow only.
However, for some regions of the globe knowledge of

the initial level of surface water (e.g., lakes and wet-
lands) and/or ground water could also provide useful
skill in the forecast of streamflow or water availability.
For example in a recent study, Paiva et al. (2012) in-
vestigated the role of surface water state variables, such
as river discharge and water levels, surface runoff and
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Fig. 8: Median of RMSE ratio for CR forecasts, over the grid cells in different Koppen-893 

Geiger climate classes in (a) Northern Hemisphere and Tropics and (b) Southern 894 

Hemisphere (excluding Equatorial climate regions, that are included in (a))  895 
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(b)

Fig. 8. Median of RMSE ratio for CR forecasts, over the grid cells in different Koppen-Geiger climate classes in(a) Northern Hemisphere
and Tropics and(b) Southern Hemisphere – excluding equatorial climate regions that are included in(a).
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Fig. 9: Pattern correlation between Kappa and inverse RMSE ratio (RMSERev-ESP/ 898 

RMSEESP) at lead-1, -3 and -6 months for CR forecasts initialized on 01 January, 01 899 
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  902 

Fig. 9. Pattern correlation between kappa and inverse RMSE ratio
(RMSERev-ESP/RMSEESP) at lead-1, -3 and -6 months for CR fore-
casts initialized on 1 January, 1 April, 1 July and 1 October.

floodplain storage, as well as soil moisture, ground wa-
ter and the meteorological forcings, on river flow fore-
casts in the Amazon basin. They concluded that the un-
certainties in the knowledge of surface water state vari-
ables and ground water storage at the time of forecast
initialization is the major source of uncertainties in the
hydrological forecast for up to 3 months lead time. In
contrast, in Sects. 3.2 and 3.3, we argue that, in gen-
eral, it is the FS that mainly accounts for the uncer-
tainties in the forecast of CR and SM in that region.
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Fig. 10: Locations of the grid cells selected for the sensitivity analysis of the RMSE ratio 904 

to soil depth. 905 
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Fig. 10.Locations of the grid cells selected for the sensitivity anal-
ysis of the RMSE ratio to soil depth.

Our conclusions do agree with the findings of Paiva et
al. (2012) when they considered only SM as the state
variable and showed that in that case, the lead timeT

until which the spread of the ESP ensemble becomes
larger than the reverse-ESP is less than 10 days. They
concluded thatsoil moisture is not as important as other
state variables as a source of hydrological prediction
uncertaintyin the Amazon basin and our findings are in
agreement with that conclusion.

Additionally, in this study we have not accounted for
the effects of glaciers. Although many previous stud-
ies have indicated that glacier melt can be an important
source of water supply to many major basins (Barnett
et al., 2005; Huss, 2011; Kaser et al., 2010) a recent
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Fig. 11.Variation of RMSE ratio for(a) SM and(b) CR forecasts (during forecast period starting on 1 January) with the change in soil depth.
Top panel in each figure shows the RMSE ratio when the CONTROL soil layer depth was reduced by 20 % and bottom panel shows the same
for when the CONTROL soil layer depth was increased by 20 %.
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Fig. 12.Variation of RMSE ratio for(a) SM and(b) CR forecasts (during forecast period starting on 1 July) with the change in soil depth.
Top panel in each figure shows the RMSE ratio when the CONTROL soil layer depth was reduced by 20 % and bottom panel shows the same
for when the CONTROL soil layer depth was increased by 20 %.

study by Schaner et al. (2012) showed that over much of
the global domain, which Barnett et al. (2005) showed
as snow dominated, the contribution from glacier melt
to runoff is a small fraction of that derived from sea-
sonal snow melt (which we accounted for). Moreover
in this study we focus on runoff accumulated over up
to 6 months, therefore we believe that the impact of
not prescribing glaciers on our findings is minimal in a
global context (notwithstanding that in some locations
it can be important). Finally, we did not account for the
impact of anthropogenic changes such as reservoirs, ir-
rigation and ground water extraction on the IHCs. We
expect that a study focused on a smaller spatial scale
may have to account for these factors since they could

potentially alter the evolution and intensity of flood and
drought events.

2. The ESP and Rev-ESP experiments we conducted as-
sume unconditional distributions (i.e., climatological
spread) of the uncertainty related to climate forecast
skill and the IHCs. In reality, however, the uncertainty in
climate forecast skill and the estimate of IHCs in opera-
tional hydrologic prediction systems, is generally lower
than the climatological spread. We used the climatology
of atmospheric forcings (ESP) and the IHCs (Rev-ESP)
to assure that the only source of the skill in both experi-
ments is the knowledge of the IHCs and climate forecast
skill, so we can easily differentiate between the contri-
butions of both factors.
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3. Our analysis is a “perfect model” experiment, in which
we assumed that the uncertainties in the hydrologic
model do not play a major role in the partitioning of sea-
sonal hydrologic predictability between IHCs and FS.
Consistent with this assumption, we use the reference
data derived from the same hydrologic model (VIC) to
evaluate the skill of ESP and Rev-ESP experiments. A
more general analysis could consider uncertainties in
the model itself (e.g., via a multimodel framework) as
well as uncertainty in the observations used to force the
model in order to generate IHCs. Operationally, tech-
niques like data assimilation are often used to compen-
sate for the uncertainties in model based estimate of
IHCs.

4. The focus of our study is hydrologic prediction at sea-
sonal scales. Although seasonal runoff, SM and SWE
are relevant to water and drought management, clearly
this temporal scale generally is not appropriate for flood
analysis (aside perhaps for very large rivers). At shorter
timescales, factors other than IHCs and FS may play a
role – e.g., basin characteristics, and the forecasted in-
tensity and timing of storms.

5. Finally, we used the VIC model for this study. Given its
prior successful applications (as listed in Sect. 2.2) in
simulating hydrologic variables in many major basins
across the globe, we argue that the VIC model is a good
choice for this analysis. Furthermore previous studies
such as Koster et al. (2010) found no significant differ-
ences in the contribution of SM and snow in streamflow
forecast skill as estimated by multiple large scale mod-
els (including VIC). For this reason, we argue that our
analysis should be reasonably robust to the choice of
model.

5 Conclusions

Our primary findings are

1. IHCs play a crucial role in determining seasonal hydro-
logic skill globally. In general, the contributions of IHCs
to CR forecasts are greater than the contribution of FS
over the arid and snow-dominated climate regions of
the Northern Hemisphere for forecast periods starting
on 1 January and 1 October through 3 months and in
some cases up to 6 months lead times. In the wet win-
ter regions of the Northern Hemisphere, FS dominates
the hydrologic predictability during those forecast peri-
ods. IHCs dominate hydrologic predictability over snow
dominated mid-latitude regions of the Northern Hemi-
sphere during the forecast period starting on 1 April.

2. in the Southern Hemisphere, IHCs mainly dominate
during the forecast periods starting on 1 April and

1 July, especially over arid regions and temperate dry
winter regions.

3. over equatorial humid and monsoonal climate regions
the contribution of FS is higher than IHCs throughout
most of the year.

4. the contribution of IHCs at lead-1 is generally stronger
for SM forecasts than for CR.

5. the contributions of IHCs to SWE predictability is
strongest for the forecast period starting in January,
particularly over snow climate regions of the Northern
Hemisphere.

Our findings should have important implications for imple-
mentation of global hydrologic prediction systems for the
forecast of droughts (and floods in large rivers) at seasonal
scales, several of which are now under development. De-
spite improvements in the understanding of climate variabil-
ity (mainly ENSO) in the last few decades, precipitation fore-
cast skill is generally limited to short lead times (one month
or so) especially during non-ENSO years. Our work sheds
light on regions of the globe where improvements in seasonal
hydrologic predictability can be attained through better esti-
mates of IHCs (soil moisture and snow) in at least some parts
of the year, regardless of FS.
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